k | 2 | 20 | 30 | 60 | 100 | ⋯ | +∞ |
bound (1.2) | 7.3125 | 51.1875 | 75.5625 | 148.6875 | 246.1875 | ⋯ | +∞ |
bound (1.3) | 48.1089 | 54.4704 | 54.8144 | 55.1699 | 55.3155 | ⋯ | 55.5375 |
bound (2.1) | 29.8235 | 31.4335 | 33.1377 | 33.4355 | 33.7785 | ⋯ | 33.9556 |
Using the range for the infinity norm of inverse matrix of a strictly diagonally dominant M-matrix, some new error bounds for the linear complementarity problem are obtained when the involved matrix is a BS-matrix. Theory analysis and numerical examples show that these upper bounds are more accurate than some existing results.
Citation: Deshu Sun. Note on error bounds for linear complementarity problems involving BS-matrices[J]. AIMS Mathematics, 2022, 7(2): 1896-1906. doi: 10.3934/math.2022109
[1] | Lanlan Liu, Pan Han, Feng Wang . New error bound for linear complementarity problem of $ S $-$ SDDS $-$ B $ matrices. AIMS Mathematics, 2022, 7(2): 3239-3249. doi: 10.3934/math.2022179 |
[2] | Yuanjie Geng, Deshu Sun . Error bounds for linear complementarity problems of strong $ SDD_{1} $ matrices and strong $ SDD_{1} $-$ B $ matrices. AIMS Mathematics, 2023, 8(11): 27052-27064. doi: 10.3934/math.20231384 |
[3] | Hongmin Mo, Yingxue Dong . A new error bound for linear complementarity problems involving $ B- $matrices. AIMS Mathematics, 2023, 8(10): 23889-23899. doi: 10.3934/math.20231218 |
[4] | Xinnian Song, Lei Gao . CKV-type $ B $-matrices and error bounds for linear complementarity problems. AIMS Mathematics, 2021, 6(10): 10846-10860. doi: 10.3934/math.2021630 |
[5] | Dizhen Ao, Yan Liu, Feng Wang, Lanlan Liu . Schur complement-based infinity norm bounds for the inverse of $ S $-Sparse Ostrowski Brauer matrices. AIMS Mathematics, 2023, 8(11): 25815-25844. doi: 10.3934/math.20231317 |
[6] | Yingxia Zhao, Lanlan Liu, Feng Wang . Error bounds for linear complementarity problems of $ SD{{D}_{1}} $ matrices and $ SD{{D}_{1}} $-$ B $ matrices. AIMS Mathematics, 2022, 7(7): 11862-11878. doi: 10.3934/math.2022662 |
[7] | Lanlan Liu, Yuxue Zhu, Feng Wang, Yuanjie Geng . Infinity norm bounds for the inverse of $ SDD_1^{+} $ matrices with applications. AIMS Mathematics, 2024, 9(8): 21294-21320. doi: 10.3934/math.20241034 |
[8] | Maja Nedović, Dunja Arsić . New scaling criteria for $ H $-matrices and applications. AIMS Mathematics, 2025, 10(3): 5071-5094. doi: 10.3934/math.2025232 |
[9] | Hsien-Chung Wu . Numerical method for solving the continuous-time linear programming problems with time-dependent matrices and piecewise continuous functions. AIMS Mathematics, 2020, 5(6): 5572-5627. doi: 10.3934/math.2020358 |
[10] | Jing Xia . Note on subdirect sums of $ \{i_0\} $-Nekrasov matrices. AIMS Mathematics, 2022, 7(1): 617-631. doi: 10.3934/math.2022039 |
Using the range for the infinity norm of inverse matrix of a strictly diagonally dominant M-matrix, some new error bounds for the linear complementarity problem are obtained when the involved matrix is a BS-matrix. Theory analysis and numerical examples show that these upper bounds are more accurate than some existing results.
The linear complementarity problem (LCP) is to find a vector x∈Rn such that
(Mx+z)Tx=0, Mx+z≥0, x≥0, |
or to show that no such vector x exists, where M=(mij)∈Rn×n and z∈Rn. Many problems such as the contact problem, Nash equilibrium point of a bimatrix game, and the free boundary problem for journal bearing can be posed in the framework of the LCP, see [1,2,3].
It is well known that the LCP has a unique solution for any z∈Rn if and only if M is a P-matrix [2]. Here, a matrix M∈Rn×n is called a P-matrix if all its principal minors are positive [4]. In 2006, Chen et al. [5] gave the following result for the LCP when M is a P-matrix:
‖x−x∗‖∞≤maxd∈[0,1]n‖(I−D+DM)−1‖∞‖r(x)‖∞ for any x∈Rn, |
where x∗ is the solution of the LCP, r(x)=min{x,Mx+z}, D=diag(di) with 0≤di≤1, and the min operator r(x) denotes the componentwise minimum of two vectors. When the matrix M for the LCP belongs to P-matrices or some subclass of P-matrices, various bounds for maxd∈[0,1]n‖(I−D+DM)−1‖∞ are established [6,7,8,9,10,11,12,13,14].
In 2012, García-Esnaola et al. [9] gave upper bounds for maxd∈[0,1]n‖(I−D+DM)−1‖∞ when M is a BS-matrix as a subclass of P-matrices. Here a matrix M=(mij)∈Rn×n is called a BS-matrix [15] if there exists a subset S of the set N={1,2,…,n}, with 2≤card(S)≤n−2, such that for all i,j∈N, t∈T(i)∖{i}, and k∈K(j)∖{j},
RSi>0, R¯Sj>0, (mit−RSi)(mjk−R¯Sj)<RSjR¯Si, |
where RSi=1n∑k∈Smik, T(i)={t∈S|mit>RSi} and K(j)={k∈¯S|mjk>R¯Sj} with ¯S=N∖{S}.
A square real matrix M=(mik)1≤i,k≤n with positive row sums is a B-matrix [4] if all of its off-diagonal elements are bounded above by the corresponding row means, i.e., for all i=1,…,n,
n∑k=1mik>0 and 1n(n∑k=1mik)>mij, ∀j≠i. |
Let M=(mij)∈Rn×n be a BS-matrix, and let X=diag(x1,⋯,xn) with
xi={γ,i∈S,1,otherwise, |
such that ˜M=MX is a B-matrix with the form ˜M=˜B++˜C, where
˜B+=(˜bij)=[m11x1−˜r+1⋯m1nxn−˜r+1⋮⋮mn1x1−˜r+n⋯mnnxn−˜r+n], ˜C=[˜r+1⋯˜r+1⋮⋮˜r+n⋯˜r+n], | (1.1) |
and ˜r+i=max{0,mijxj|j≠i}. Then
maxd∈[0,1]n‖(I−D+DM)−1‖∞≤(n−1)max{γ,1}min{˜β,γ,1}, | (1.2) |
where ˜βi=˜bii−∑j≠i|˜bij|, ˜β=mini∈N{˜βi}, and
(0<)γ∈(maxj∈N,k∈K(j)∖{j}mjk−R¯SjRSj, maxi∈N,t∈T(i)∖{i}R¯Simit−RSi), |
assuming that if K(j)∖{j}=∅(T(i)∖{i}=∅), then max (min) is set to be −∞(∞) [9].
In 2018, Gao [14] presented a new bound: Let M=(mij)∈Rn×n be a BS-matrix. Then
maxd∈[0,1]n‖(I−D+DM)−1‖∞≤n∑i=1(n−1)max{γ,1}min{ˆβi,xi}i−1∏j=1˜bjjˆβj, | (1.3) |
where ˆβi=˜bii−n∑j=i+1|˜bij|li(˜B+), lk(˜B+)=maxk≤i≤n{1|˜bii|n∑j=k,≠i|˜bij|}, and
i−1∏j=1˜bjjˆβj=1, if i=1. |
In order to improving the above results, in this paper, we establish some new upper bounds for the condition constant maxd∈[0,1]n‖(I−D+DM)−1‖∞ when M is a BS-matrix.
Next, we recall the following definition and lemmas for an n×n matrix.
Definition 1. [13] A matrix M=(mij)∈Cn×n is called a row strictly diagonally dominant matrix if for each i∈N, |mii|>n∑j=1,≠i|mij|. A matrix M=(mij) is called a Z-matrix if mij≤0 for any i≠j, and an M-matrix if M is a Z-matrix with M−1 being nonnegative.
Lemma 1. [9] Let M=(mij)∈Rn×n be a BS-matrix. Then there exists a positive diagonal matrix X=diag(x1,⋯,xn) with
xi={γ,i∈S,1,otherwise, |
such that ˜M=MX is a B-matrix, where γ>0,
maxj∈N,k∈K(j)∖{j}mjk−R¯SjRSj<γ<maxi∈N,t∈T(i)∖{i}R¯Simit−RSi, | (1.4) |
and max (min) is set to be −∞(∞) if K(j)∖{j}=∅(T(i)∖{i}=∅).
Remark 1. From the definitions of B-matrix and BS-matrix, if M is a BS-matrix such that T(i)={i} for all i∈S and K(j)={j} for all j∈¯S, then M is a B-matrix. Moreover, each 3×3 B-matrix is not a BS-matrix and there exists a BS-matrix that is not a B-matrix [9]. Thus the notions of B-matrix and BS-matrix are only related in the sense of Lemma 1.
Lemma 2. [9] Let M=(mij)∈Rn×n be a BS-matrix and let X be the diagonal matrix in Lemma 1 such that ˜M=MX is a B-matrix with the form ˜M=˜B++˜C, where ˜B+=(˜bij) is the matrix in (1.1). Then ˜B+ is strict diagonal dominant by rows with positive diagonal entries.
Lemma 3. [9] If M=(mij)∈Rn×n is a BS-matrix that is not a B-matrix, then there exist k,i∈N with k≠i such that
1nn∑j=1mij≤mik. |
Furthermore, if k∈S (resp., k∈¯S), then γ<1 (resp., γ>1), where γ is the parameter γ satisfying (1.4).
Some notations are given, which will be used in the sequel. Let A=(aij)∈Rn×n. For i,j,k∈N, i≠j, denote
ui(A)=1|aii|n∑j=i+1|aij|, lk(A)=maxk≤i≤n{1|aii|n∑j=k,≠i|aij|},vk(A)=maxk+1≤i≤n{|aik||aii|−n∑j=k+1,≠i|aij|}, wk(A)=maxk+1≤i≤n{|aik|+n∑j=k+1,≠i|aij|vk(A)|aii|}. |
Lemma 4. [16] Let A=(aij)∈Rn×n be a row strictly diagonally dominant M-matrix. Then
‖A−1‖∞≤max{n∑i=1(1aii(1−ui(A)wi(A))i−1∏j=1uj(A)1−uj(A)wj(A)),n∑i=1(wi(A)aii(1−ui(A)wi(A))i−1∏j=111−uj(A)wj(A))}, |
where
i−1∏j=1uj(A)1−uj(A)wj(A)=1, i−1∏j=111−uj(A)wj(A)=1, if i=1. |
Lemma 5. [13] Let γ>0 and η≥0. Then for any x∈[0,1],
11−x+γx≤1min{γ,1}, ηx1−x+γx≤ηγ. |
Lemma 6. [12] Let A=(aij)∈Rn×n with
aii>n∑j=i+1|aij|, ∀i∈N. |
Then for any xi∈[0,1], i∈N,
1−xi+aiixi1−xi+aiixi−n∑j=i+1|aij|xi≤aiiaii−n∑j=i+1|aij|. |
The rest of this paper is organized as follows: In Section 2, we present some new bounds for maxd∈[0,1]n‖(I−D+DM)−1‖∞ when M is a BS-matrix, and new perturbation bounds of BS-matrices linear complementarity problems are also considered. In Section 3, a numerical example is given to show that our proposed bounds are respectively better than those in [6,11] in some cases.
In this section, we propose some new error bounds for linear complementarity problems involved with BS-matrices.
Theorem 1. Let M=(mij)∈Rn×n be a BS-matrix and let X be the diagonal matrix given by Lemma 1 such that ˜M=MX is a B-matrix with the form ˜M=˜B++˜C, where ˜B+=(˜bij) is the matrix in (1.1). Then
maxd∈[0,1]n‖(I−D+DM)−1‖∞≤max{n∑i=1(n−1)max{γ,1}min{ˉβi,xi}i−1∏j=1(1ˉβjn∑k=j+1|˜bjk|), n∑i=1(n−1)max{γ,1}wi(˜B+)min{ˉβi,xi}i−1∏j=1˜bjjˉβj}, | (2.1) |
where ˉβi=˜bii−n∑j=i+1|˜bij|wi(˜B+), and
i−1∏j=1(1ˉβjn∑k=j+1|˜bjk|)=1, i−1∏j=1˜bjjˉβj=1, if i=1. |
Proof. Let ˜MD=X−DX+D˜M. From Lemma 1, we deduce that
˜MD=X−DX+D˜M=X−DX+D(˜B++˜C)=˜B+D+˜CD, |
where ˜B+D=X−DX+D˜B+, ˜CD=D˜C. By Lemma 2, ˜B+ is a strictly diagonal dominant matrix. Let MD=I−D+DM. Note that M=˜MX−1. Then, similarly to the proof of Theorem 2.2 in [8], we can obtain that ˜B+D is a strictly diagonally dominant M-matrix with positive diagonal elements and that
‖M−1D‖∞≤‖X−1‖∞‖(I+(˜B+D)−1˜CD)−1‖∞‖(˜B+D)−1‖∞≤(n−1)max{γ,1}‖(˜B+D)−1‖∞. | (2.2) |
Next, by Lemma 4, we have
‖(˜B+D)−1‖∞≤max{n∑i=11(xi−dixi+˜biidi)(1−ui(˜B+D)wi(˜B+D))i−1∏j=1uj(˜B+D)1−uj((˜B+D))wj(˜B+D),n∑i=1wi(˜B+D)(xi−dixi+˜biidi)(1−ui((˜B+D))wi(˜B+D))i−1∏j=111−uj(˜B+D)wj(˜B+D)}. |
From Lemma 5, we can easily get the following results: For each i,j,k∈N,
vk(˜B+D)=maxk+1≤i≤n{|˜bik|dixi−dixi+˜biidi−n∑j=k+1,≠i|˜bij|di}=maxk+1≤i≤n{|˜bik|xidi1−di+˜biixidi−1xin∑j=k+1,≠i|˜bij|di}≤maxk+1≤i≤n{|˜bik|˜bii−n∑j=k+1,≠i|˜bij|}=vk(˜B+), |
wk(˜B+D)=maxk+1≤i≤n{|˜bik|di+n∑j=k+1,≠i|˜bij|divk(˜B+D)xi−dixi+˜biidi}=maxk+1≤i≤n{1xi|˜bik|di+1xin∑j=k+1,≠i|˜bij|divk(˜B+D)1−di+1xi˜biidi}≤maxk+1≤i≤n{|˜bik|+n∑j=k+1,≠i|˜bij|vk(˜B+)˜bii}=wk(˜B+), |
and
1(xi−dixi+˜biidi)(1−ui(˜B+D)wi(˜B+D))=1xi−dixi+˜biidi−n∑j=i+1|˜bij|diwi(˜B+D)≤1min{˜bii−n∑j=i+1|˜bij|wi(˜B+),xi}=1min{ˉβi,xi}. | (2.3) |
Furthermore, by Lemma 5 and Lemma 6, we have
ui(˜B+D)1−ui(˜B+D)wi(˜B+D)=n∑j=i+1|˜bij|dixi−dixi+˜biidi−n∑j=i+1|˜bij|diwi(˜B+D)≤n∑j=i+1|˜bij|˜bii−n∑j=i+1|˜bij|wi(˜B+)=1ˉβin∑j=i+1|˜bij|, | (2.4) |
and
11−ui(˜B+D)wi(˜B+D)=xi−dixi+˜biidixi−dixi+˜biidi−n∑j=i+1|˜bij|diwi(˜B+D)≤˜bii˜bii−n∑j=i+1|˜bij|wi(˜B+)=˜biiˉβi. | (2.5) |
Finally, by (2.3)–(2.5), we obtain
‖(B+D)−1‖∞≤max{n∑i=11min{ˉβi,xi}i−1∏j=1(1ˉβjn∑k=j+1|˜bjk|), n∑i=1wi(˜B+)min{ˉβi,xi}i−1∏j=1˜bjjˉβj}. | (2.6) |
Therefore, the result in (2.1) holds from (2.2) and (2.6).
Based on Theorem 1 and Lemma 3, the following Corollary can be proved easily.
Corollary 1. Let M=(mij)∈Rn×n be a BS-matrix that is not a B-matrix and let k0,i0∈N with k0≠i0 such that mi0k0≥1n∑j∈Nmi0j. If k0∈¯S, then
maxd∈[0,1]n‖(I−D+DM)−1‖∞≤max{n∑i=1(n−1)γmin{ˉβi,1}i−1∏j=1(1ˉβjn∑k=j+1|˜bjk|), n∑i=1(n−1)γwi(˜B+)min{ˉβi,1}i−1∏j=1˜bjjˉβj}. |
If k0∈S, then
maxd∈[0,1]n‖(I−D+DM)−1‖∞≤max{n∑i=1(n−1)min{ˉβi,γ}i−1∏j=1(1ˉβjn∑k=j+1|˜bjk|), n∑i=1(n−1)wi(˜B+)min{ˉβi,γ}i−1∏j=1˜bjjˉβj}. |
Similarly to the proof of Theorem 2.4 in [6], we can also obtain new perturbation bounds for linear complementarity problems of BS-matrices based on Theorem 1.
Theorem 2. Let M=(mij)∈Rn×n be a BS-matrix and let ˜B+=(˜bij) be the matrix in (1.1). Then
β∞(M)≤max{n∑i=1(n−1)max{γ,1}min{ˉβi,xi}i−1∏j=1(1ˉβjn∑k=j+1|˜bjk|), n∑i=1(n−1)max{γ,1}wi(˜B+)min{ˉβi,xi}i−1∏j=1˜bjjˉβj}, |
where β∞(M)=maxd∈[0,1]n‖(I−D+DM)−1D‖∞, D=diag(di) with 0≤di≤1 for each i∈N, and
ˉβi=˜bii−n∑j=i+1|˜bij|wi(˜B+), i−1∏j=1(1ˉβjn∑k=j+1|˜bjk|)=1 if i=1, i−1∏j=1˜bjjˉβj=1 if i=1. |
Finally, we give a comparison of the bounds in (1.3) and (2.1) as follows.
Theorem 3. Let M=(mij)∈Rn×n be a BS-matrix and let X be the diagonal matrix given by Lemma 1 such that ˜M=MX is a B-matrix with the form ˜M=˜B++˜C, where ˜B+=(˜bij) is the matrix in (1.1). Let ˆβi and ˉβi be defined as in (1.3) and (2.1), respectively. Then
max{n∑i=1(n−1)max{γ,1}min{ˉβi,xi}i−1∏j=1(1ˉβjn∑k=j+1|˜bjk|), n∑i=1(n−1)max{γ,1}wi(˜B+)min{ˉβi,xi}i−1∏j=1˜bjjˉβj}≤n∑i=1(n−1)max{γ,1}min{ˆβi,xi}i−1∏j=1˜bjjˆβj. | (2.7) |
Proof. For any i∈N, based on ˜B+ is strict diagonal dominant, we have
0<wi(˜B+)≤li(˜B+)<1, | (2.8) |
and by (2.8), we get
ˆβi=˜bii−n∑j=i+1|˜bij|li(˜B+)≤˜bii−n∑j=i+1|˜bij|wi(˜B+)=ˉβi. | (2.9) |
Furthermore, by (2.9), for all i∈N, we have
1min{ˉβi,xi}≤1min{ˆβi,xi}, | (2.10) |
and for each j=1,2,…,n−1,
1ˉβjn∑k=j+1|˜bjk|≤1ˆβjn∑k=j+1|˜bjk|≤˜bjjˆβj. | (2.11) |
The result in (2.7) follows by (2.10) and (2.11).
In this section, we give a numerical example to illustrate the advantages of new bound.
Example 1. Consider the family of BS-matrices for S={1,2} in [14]:
Mk=[2111.5−2kk+121k+11k+111211112], |
where k≥1. We choose X=diag{γ,γ,1,1} with γ∈(3.53,1.5). So ˜Mk=MkX can be written ˜M=˜B+k+˜Ck as in (1.1), where
˜B+k=[2γ−1.5γ−1.5−0.50−2kk+1γ−1k+12γ−1k+100002−γ1−γ001−γ2−γ]. |
In fact, the bound (1.2), with the hypotheses that k≥1, is
(4−1)max{γ,1}min{˜β,γ,1}=3γ2γ−1(k+1), |
and it can be arbitrarily large when k→+∞.
In particular, let γ=1.3, then we can use the bound (1.2), the bound (1.3) and the bound (2.1) for k=2,20,30,60,100…,+∞ to estimate maxd∈[0,1]n‖(I−D+DM)−1‖∞, see Table 1.
k | 2 | 20 | 30 | 60 | 100 | ⋯ | +∞ |
bound (1.2) | 7.3125 | 51.1875 | 75.5625 | 148.6875 | 246.1875 | ⋯ | +∞ |
bound (1.3) | 48.1089 | 54.4704 | 54.8144 | 55.1699 | 55.3155 | ⋯ | 55.5375 |
bound (2.1) | 29.8235 | 31.4335 | 33.1377 | 33.4355 | 33.7785 | ⋯ | 33.9556 |
Remark 2. From Example 1, it is easy to see that each bound (1.2) or (2.1) is better than the other one. Thus it is difficult to say in advance which one is better. However, for a BS-matrix M with ˜M=˜B++˜C, where the diagonal dominance of ˜B+ is weak (e.g., for a matrix Mk with a large number of k here), the bound (2.1) is more effective than the bound (1.2).
We present a new error bound for linear complementarity problems associated with BS-matrices, which improves some existing results. A numerical example shows the feasibility and effectiveness of the results which are obtained in this paper. Besides BS-matrices, some similar assertions for linear complementarity problems of other classes of matrices are provided, such as DB-matrices, SB-matrices and MB-matrices. So we conjecture here that by the technique above, new sharper bounds for linear complementarity problems of these classes of matrices could be given.
This work was supported by the Foundation of Science and Technology Department of Guizhou Province (20191161, 20181079) and the Research Foundation of Guizhou Minzu University (2019YB08).
The author declare that they have no competing interests.
[1] |
X. J. Chen, S. H. Xiang, Perturbation bounds of P-matrix linear complementarity problems, SIAM J. Optim., 18 (2007), 1250–1265. doi: 10.1137/060653019. doi: 10.1137/060653019
![]() |
[2] | R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, Academic Press, San Diego, 1992. |
[3] | K. G. Murty, F. T. Fu, Linear complementarity, linear and nonlinear programming, Heldermann Verlag, Berlin, 1988. |
[4] |
J. M. Pe˜na, A class of P-matrices with applications to the localization of the eigenvalues of a real matrix, SIAM J. Matrix Anal. Appl., 22 (2001), 1027–1037. doi: 10.1137/S0895479800370342. doi: 10.1137/S0895479800370342
![]() |
[5] |
X. J. Chen, S. H. Xiang, Computation of error bounds for P-matrix linear complementarity problem, Math. Program., 106 (2006), 513–525. doi: 10.1007/s10107-005-0645-9. doi: 10.1007/s10107-005-0645-9
![]() |
[6] |
T. T. Chen, W. Li, X. Wu, S. Vong, Error bounds for linear complementarity problems of MB-matrices, Numer. Algorithms, 70 (2015), 341–356. doi: 10.1007/s11075-014-9950-9. doi: 10.1007/s11075-014-9950-9
![]() |
[7] |
P. F. Dai, C. J. Lu, Y. T. Li, New error bounds for the linear complementarity problem with an SB-matrix, Numer. Algorithms, 64 (2013), 741–757. doi: 10.1007/s11075-012-9691-6. doi: 10.1007/s11075-012-9691-6
![]() |
[8] |
M. García-Esnaola, J. M. Pe˜na, Error bounds for linear complementarity problems for B-matrices, Appl. Math. Lett., 22 (2009), 1071–1075. doi: 10.1016/j.aml.2008.09.001. doi: 10.1016/j.aml.2008.09.001
![]() |
[9] |
M. García-Esnaola, J. M. Pe˜na, Error bounds for linear complementarity problems involving BS-matrices, Appl. Math. Lett., 25 (2012), 1379–1383. doi: 10.1016/j.aml.2011.12.006. doi: 10.1016/j.aml.2011.12.006
![]() |
[10] |
M. García-Esnaola, J. M. Pe˜na, B-Nekrasov matrices and error bounds for linear complementarity problems, Numer. Algorithms, 72 (2016), 435–445. doi: 10.1007/s11075-015-0054-y. doi: 10.1007/s11075-015-0054-y
![]() |
[11] |
C. Q. Li, M. T. Gan, S. R. Yang, A new error bound for linear complementarity problems for B-matrices, Electron. J. Linear Al., 31 (2016), 476–484. doi: 10.13001/1081-3810.3250. doi: 10.13001/1081-3810.3250
![]() |
[12] |
C. Q. Li, Y. T. Li, Weakly chained diagonally dominant B-matrices and error bounds for linear complementarity problems, Numer. Algorithms, 73 (2016), 985–998. doi: 10.1007/s11075-016-0125-8. doi: 10.1007/s11075-016-0125-8
![]() |
[13] |
C. Q. Li, Y. T. Li, Note on error bounds for linear complementarity problems for B-matrices, Appl. Math. Lett., 57 (2016), 108–113. doi: 10.1016/j.aml.2016.01.013. doi: 10.1016/j.aml.2016.01.013
![]() |
[14] |
L. Gao, An alternative error bound for linear complementarity problems involving BS-matrices, J. Inequal. Appl., 28 (2018), 1–9. doi: 10.1186/s13660-018-1618-x. doi: 10.1186/s13660-018-1618-x
![]() |
[15] |
L. Cvetković, J. M. Pe˜na, Minimal sets alternative to minimal Gersgorin sets, Appl. Nnmber. Math., 60 (2010), 442–451. doi: 10.1016/j.apnum.2009.09.005. doi: 10.1016/j.apnum.2009.09.005
![]() |
[16] | X. Y. Yang, B. G. Zeng, Q. Y. Zhu, X. Liu, New upper bound for ‖A−1‖∞ of strictly diagonally dominant M-matrices, J. Natur. Sci. Hunan Norm. Univ., 37 (2014), 91–95. |
1. | 雨薇 罗, Upper Estimates of ||A-1||∞ for Strictly α-Diagonally Dominant M-Matrices, 2023, 13, 2160-7583, 1643, 10.12677/PM.2023.136167 |
k | 2 | 20 | 30 | 60 | 100 | ⋯ | +∞ |
bound (1.2) | 7.3125 | 51.1875 | 75.5625 | 148.6875 | 246.1875 | ⋯ | +∞ |
bound (1.3) | 48.1089 | 54.4704 | 54.8144 | 55.1699 | 55.3155 | ⋯ | 55.5375 |
bound (2.1) | 29.8235 | 31.4335 | 33.1377 | 33.4355 | 33.7785 | ⋯ | 33.9556 |