Loading [MathJax]/jax/output/SVG/jax.js
Research article

Note on error bounds for linear complementarity problems involving BS-matrices

  • Received: 20 May 2021 Accepted: 29 October 2021 Published: 03 November 2021
  • MSC : 15A48, 65G50, 90C31, 90C33

  • Using the range for the infinity norm of inverse matrix of a strictly diagonally dominant M-matrix, some new error bounds for the linear complementarity problem are obtained when the involved matrix is a BS-matrix. Theory analysis and numerical examples show that these upper bounds are more accurate than some existing results.

    Citation: Deshu Sun. Note on error bounds for linear complementarity problems involving BS-matrices[J]. AIMS Mathematics, 2022, 7(2): 1896-1906. doi: 10.3934/math.2022109

    Related Papers:

    [1] Lanlan Liu, Pan Han, Feng Wang . New error bound for linear complementarity problem of $ S $-$ SDDS $-$ B $ matrices. AIMS Mathematics, 2022, 7(2): 3239-3249. doi: 10.3934/math.2022179
    [2] Yuanjie Geng, Deshu Sun . Error bounds for linear complementarity problems of strong $ SDD_{1} $ matrices and strong $ SDD_{1} $-$ B $ matrices. AIMS Mathematics, 2023, 8(11): 27052-27064. doi: 10.3934/math.20231384
    [3] Hongmin Mo, Yingxue Dong . A new error bound for linear complementarity problems involving $ B- $matrices. AIMS Mathematics, 2023, 8(10): 23889-23899. doi: 10.3934/math.20231218
    [4] Xinnian Song, Lei Gao . CKV-type $ B $-matrices and error bounds for linear complementarity problems. AIMS Mathematics, 2021, 6(10): 10846-10860. doi: 10.3934/math.2021630
    [5] Dizhen Ao, Yan Liu, Feng Wang, Lanlan Liu . Schur complement-based infinity norm bounds for the inverse of $ S $-Sparse Ostrowski Brauer matrices. AIMS Mathematics, 2023, 8(11): 25815-25844. doi: 10.3934/math.20231317
    [6] Yingxia Zhao, Lanlan Liu, Feng Wang . Error bounds for linear complementarity problems of $ SD{{D}_{1}} $ matrices and $ SD{{D}_{1}} $-$ B $ matrices. AIMS Mathematics, 2022, 7(7): 11862-11878. doi: 10.3934/math.2022662
    [7] Lanlan Liu, Yuxue Zhu, Feng Wang, Yuanjie Geng . Infinity norm bounds for the inverse of $ SDD_1^{+} $ matrices with applications. AIMS Mathematics, 2024, 9(8): 21294-21320. doi: 10.3934/math.20241034
    [8] Maja Nedović, Dunja Arsić . New scaling criteria for $ H $-matrices and applications. AIMS Mathematics, 2025, 10(3): 5071-5094. doi: 10.3934/math.2025232
    [9] Hsien-Chung Wu . Numerical method for solving the continuous-time linear programming problems with time-dependent matrices and piecewise continuous functions. AIMS Mathematics, 2020, 5(6): 5572-5627. doi: 10.3934/math.2020358
    [10] Jing Xia . Note on subdirect sums of $ \{i_0\} $-Nekrasov matrices. AIMS Mathematics, 2022, 7(1): 617-631. doi: 10.3934/math.2022039
  • Using the range for the infinity norm of inverse matrix of a strictly diagonally dominant M-matrix, some new error bounds for the linear complementarity problem are obtained when the involved matrix is a BS-matrix. Theory analysis and numerical examples show that these upper bounds are more accurate than some existing results.



    The linear complementarity problem (LCP) is to find a vector xRn such that

    (Mx+z)Tx=0,      Mx+z0,      x0,

    or to show that no such vector x exists, where M=(mij)Rn×n and zRn. Many problems such as the contact problem, Nash equilibrium point of a bimatrix game, and the free boundary problem for journal bearing can be posed in the framework of the LCP, see [1,2,3].

    It is well known that the LCP has a unique solution for any zRn if and only if M is a P-matrix [2]. Here, a matrix MRn×n is called a P-matrix if all its principal minors are positive [4]. In 2006, Chen et al. [5] gave the following result for the LCP when M is a P-matrix:

    xxmaxd[0,1]n(ID+DM)1r(x)   for any xRn,

    where x is the solution of the LCP, r(x)=min{x,Mx+z}, D=diag(di) with 0di1, and the min operator r(x) denotes the componentwise minimum of two vectors. When the matrix M for the LCP belongs to P-matrices or some subclass of P-matrices, various bounds for maxd[0,1]n(ID+DM)1 are established [6,7,8,9,10,11,12,13,14].

    In 2012, García-Esnaola et al. [9] gave upper bounds for maxd[0,1]n(ID+DM)1 when M is a BS-matrix as a subclass of P-matrices. Here a matrix M=(mij)Rn×n is called a BS-matrix [15] if there exists a subset S of the set N={1,2,,n}, with 2card(S)n2, such that for all i,jN, tT(i){i}, and kK(j){j},

    RSi>0,      R¯Sj>0,      (mitRSi)(mjkR¯Sj)<RSjR¯Si,

    where RSi=1nkSmik, T(i)={tS|mit>RSi} and K(j)={k¯S|mjk>R¯Sj} with ¯S=N{S}.

    A square real matrix M=(mik)1i,kn with positive row sums is a B-matrix [4] if all of its off-diagonal elements are bounded above by the corresponding row means, i.e., for all i=1,,n,

    nk=1mik>0    and    1n(nk=1mik)>mij,      ji.

    Let M=(mij)Rn×n be a BS-matrix, and let X=diag(x1,,xn) with

    xi={γ,iS,1,otherwise,

    such that ˜M=MX is a B-matrix with the form ˜M=˜B++˜C, where

    ˜B+=(˜bij)=[m11x1˜r+1m1nxn˜r+1mn1x1˜r+nmnnxn˜r+n], ˜C=[˜r+1˜r+1˜r+n˜r+n], (1.1)

    and ˜r+i=max{0,mijxj|ji}. Then

    maxd[0,1]n(ID+DM)1(n1)max{γ,1}min{˜β,γ,1}, (1.2)

    where ˜βi=˜biiji|˜bij|, ˜β=miniN{˜βi}, and

    (0<)γ(maxjN,kK(j){j}mjkR¯SjRSj,   maxiN,tT(i){i}R¯SimitRSi),

    assuming that if K(j){j}=(T(i){i}=), then max (min) is set to be () [9].

    In 2018, Gao [14] presented a new bound: Let M=(mij)Rn×n be a BS-matrix. Then

    maxd[0,1]n(ID+DM)1ni=1(n1)max{γ,1}min{ˆβi,xi}i1j=1˜bjjˆβj, (1.3)

    where ˆβi=˜biinj=i+1|˜bij|li(˜B+), lk(˜B+)=maxkin{1|˜bii|nj=k,i|˜bij|}, and

    i1j=1˜bjjˆβj=1,    if i=1.

    In order to improving the above results, in this paper, we establish some new upper bounds for the condition constant maxd[0,1]n(ID+DM)1 when M is a BS-matrix.

    Next, we recall the following definition and lemmas for an n×n matrix.

    Definition 1. [13] A matrix M=(mij)Cn×n is called a row strictly diagonally dominant matrix if for each iN, |mii|>nj=1,i|mij|. A matrix M=(mij) is called a Z-matrix if mij0 for any ij, and an M-matrix if M is a Z-matrix with M1 being nonnegative.

    Lemma 1. [9] Let M=(mij)Rn×n be a BS-matrix. Then there exists a positive diagonal matrix X=diag(x1,,xn) with

    xi={γ,iS,1,otherwise,

    such that ˜M=MX is a B-matrix, where γ>0,

    maxjN,kK(j){j}mjkR¯SjRSj<γ<maxiN,tT(i){i}R¯SimitRSi, (1.4)

    and max (min) is set to be () if K(j){j}=(T(i){i}=).

    Remark 1. From the definitions of B-matrix and BS-matrix, if M is a BS-matrix such that T(i)={i} for all iS and K(j)={j} for all j¯S, then M is a B-matrix. Moreover, each 3×3 B-matrix is not a BS-matrix and there exists a BS-matrix that is not a B-matrix [9]. Thus the notions of B-matrix and BS-matrix are only related in the sense of Lemma 1.

    Lemma 2. [9] Let M=(mij)Rn×n be a BS-matrix and let X be the diagonal matrix in Lemma 1 such that ˜M=MX is a B-matrix with the form ˜M=˜B++˜C, where ˜B+=(˜bij) is the matrix in (1.1). Then ˜B+ is strict diagonal dominant by rows with positive diagonal entries.

    Lemma 3. [9] If M=(mij)Rn×n is a BS-matrix that is not a B-matrix, then there exist k,iN with ki such that

    1nnj=1mijmik.

    Furthermore, if kS (resp., k¯S), then γ<1 (resp., γ>1), where γ is the parameter γ satisfying (1.4).

    Some notations are given, which will be used in the sequel. Let A=(aij)Rn×n. For i,j,kN, ij, denote

    ui(A)=1|aii|nj=i+1|aij|,          lk(A)=maxkin{1|aii|nj=k,i|aij|},vk(A)=maxk+1in{|aik||aii|nj=k+1,i|aij|},       wk(A)=maxk+1in{|aik|+nj=k+1,i|aij|vk(A)|aii|}.

    Lemma 4. [16] Let A=(aij)Rn×n be a row strictly diagonally dominant M-matrix. Then

    A1max{ni=1(1aii(1ui(A)wi(A))i1j=1uj(A)1uj(A)wj(A)),ni=1(wi(A)aii(1ui(A)wi(A))i1j=111uj(A)wj(A))},

    where

    i1j=1uj(A)1uj(A)wj(A)=1,   i1j=111uj(A)wj(A)=1,   if i=1.

    Lemma 5. [13] Let γ>0 and η0. Then for any x[0,1],

    11x+γx1min{γ,1},      ηx1x+γxηγ.

    Lemma 6. [12] Let A=(aij)Rn×n with

    aii>nj=i+1|aij|,    iN.

    Then for any xi[0,1], iN,

    1xi+aiixi1xi+aiixinj=i+1|aij|xiaiiaiinj=i+1|aij|.

    The rest of this paper is organized as follows: In Section 2, we present some new bounds for maxd[0,1]n(ID+DM)1 when M is a BS-matrix, and new perturbation bounds of BS-matrices linear complementarity problems are also considered. In Section 3, a numerical example is given to show that our proposed bounds are respectively better than those in [6,11] in some cases.

    In this section, we propose some new error bounds for linear complementarity problems involved with BS-matrices.

    Theorem 1. Let M=(mij)Rn×n be a BS-matrix and let X be the diagonal matrix given by Lemma 1 such that ˜M=MX is a B-matrix with the form ˜M=˜B++˜C, where ˜B+=(˜bij) is the matrix in (1.1). Then

    maxd[0,1]n(ID+DM)1max{ni=1(n1)max{γ,1}min{ˉβi,xi}i1j=1(1ˉβjnk=j+1|˜bjk|),  ni=1(n1)max{γ,1}wi(˜B+)min{ˉβi,xi}i1j=1˜bjjˉβj}, (2.1)

    where ˉβi=˜biinj=i+1|˜bij|wi(˜B+), and

    i1j=1(1ˉβjnk=j+1|˜bjk|)=1,   i1j=1˜bjjˉβj=1,   if i=1.

    Proof. Let ˜MD=XDX+D˜M. From Lemma 1, we deduce that

    ˜MD=XDX+D˜M=XDX+D(˜B++˜C)=˜B+D+˜CD,

    where ˜B+D=XDX+D˜B+, ˜CD=D˜C. By Lemma 2, ˜B+ is a strictly diagonal dominant matrix. Let MD=ID+DM. Note that M=˜MX1. Then, similarly to the proof of Theorem 2.2 in [8], we can obtain that ˜B+D is a strictly diagonally dominant M-matrix with positive diagonal elements and that

    M1DX1(I+(˜B+D)1˜CD)1(˜B+D)1(n1)max{γ,1}(˜B+D)1. (2.2)

    Next, by Lemma 4, we have

    (˜B+D)1max{ni=11(xidixi+˜biidi)(1ui(˜B+D)wi(˜B+D))i1j=1uj(˜B+D)1uj((˜B+D))wj(˜B+D),ni=1wi(˜B+D)(xidixi+˜biidi)(1ui((˜B+D))wi(˜B+D))i1j=111uj(˜B+D)wj(˜B+D)}.

    From Lemma 5, we can easily get the following results: For each i,j,kN,

    vk(˜B+D)=maxk+1in{|˜bik|dixidixi+˜biidinj=k+1,i|˜bij|di}=maxk+1in{|˜bik|xidi1di+˜biixidi1xinj=k+1,i|˜bij|di}maxk+1in{|˜bik|˜biinj=k+1,i|˜bij|}=vk(˜B+),
    wk(˜B+D)=maxk+1in{|˜bik|di+nj=k+1,i|˜bij|divk(˜B+D)xidixi+˜biidi}=maxk+1in{1xi|˜bik|di+1xinj=k+1,i|˜bij|divk(˜B+D)1di+1xi˜biidi}maxk+1in{|˜bik|+nj=k+1,i|˜bij|vk(˜B+)˜bii}=wk(˜B+),

    and

    1(xidixi+˜biidi)(1ui(˜B+D)wi(˜B+D))=1xidixi+˜biidinj=i+1|˜bij|diwi(˜B+D)1min{˜biinj=i+1|˜bij|wi(˜B+),xi}=1min{ˉβi,xi}. (2.3)

    Furthermore, by Lemma 5 and Lemma 6, we have

    ui(˜B+D)1ui(˜B+D)wi(˜B+D)=nj=i+1|˜bij|dixidixi+˜biidinj=i+1|˜bij|diwi(˜B+D)nj=i+1|˜bij|˜biinj=i+1|˜bij|wi(˜B+)=1ˉβinj=i+1|˜bij|, (2.4)

    and

    11ui(˜B+D)wi(˜B+D)=xidixi+˜biidixidixi+˜biidinj=i+1|˜bij|diwi(˜B+D)˜bii˜biinj=i+1|˜bij|wi(˜B+)=˜biiˉβi. (2.5)

    Finally, by (2.3)(2.5), we obtain

    (B+D)1max{ni=11min{ˉβi,xi}i1j=1(1ˉβjnk=j+1|˜bjk|),  ni=1wi(˜B+)min{ˉβi,xi}i1j=1˜bjjˉβj}. (2.6)

    Therefore, the result in (2.1) holds from (2.2) and (2.6).

    Based on Theorem 1 and Lemma 3, the following Corollary can be proved easily.

    Corollary 1. Let M=(mij)Rn×n be a BS-matrix that is not a B-matrix and let k0,i0N with k0i0 such that mi0k01njNmi0j. If k0¯S, then

    maxd[0,1]n(ID+DM)1max{ni=1(n1)γmin{ˉβi,1}i1j=1(1ˉβjnk=j+1|˜bjk|), ni=1(n1)γwi(˜B+)min{ˉβi,1}i1j=1˜bjjˉβj}.

    If k0S, then

    maxd[0,1]n(ID+DM)1max{ni=1(n1)min{ˉβi,γ}i1j=1(1ˉβjnk=j+1|˜bjk|), ni=1(n1)wi(˜B+)min{ˉβi,γ}i1j=1˜bjjˉβj}.

    Similarly to the proof of Theorem 2.4 in [6], we can also obtain new perturbation bounds for linear complementarity problems of BS-matrices based on Theorem 1.

    Theorem 2. Let M=(mij)Rn×n be a BS-matrix and let ˜B+=(˜bij) be the matrix in (1.1). Then

    β(M)max{ni=1(n1)max{γ,1}min{ˉβi,xi}i1j=1(1ˉβjnk=j+1|˜bjk|),   ni=1(n1)max{γ,1}wi(˜B+)min{ˉβi,xi}i1j=1˜bjjˉβj},

    where β(M)=maxd[0,1]n(ID+DM)1D, D=diag(di) with 0di1 for each iN, and

    ˉβi=˜biinj=i+1|˜bij|wi(˜B+),     i1j=1(1ˉβjnk=j+1|˜bjk|)=1 if i=1,     i1j=1˜bjjˉβj=1 if i=1.

    Finally, we give a comparison of the bounds in (1.3) and (2.1) as follows.

    Theorem 3. Let M=(mij)Rn×n be a BS-matrix and let X be the diagonal matrix given by Lemma 1 such that ˜M=MX is a B-matrix with the form ˜M=˜B++˜C, where ˜B+=(˜bij) is the matrix in (1.1). Let ˆβi and ˉβi be defined as in (1.3) and (2.1), respectively. Then

    max{ni=1(n1)max{γ,1}min{ˉβi,xi}i1j=1(1ˉβjnk=j+1|˜bjk|),  ni=1(n1)max{γ,1}wi(˜B+)min{ˉβi,xi}i1j=1˜bjjˉβj}ni=1(n1)max{γ,1}min{ˆβi,xi}i1j=1˜bjjˆβj. (2.7)

    Proof. For any iN, based on ˜B+ is strict diagonal dominant, we have

    0<wi(˜B+)li(˜B+)<1, (2.8)

    and by (2.8), we get

    ˆβi=˜biinj=i+1|˜bij|li(˜B+)˜biinj=i+1|˜bij|wi(˜B+)=ˉβi. (2.9)

    Furthermore, by (2.9), for all iN, we have

    1min{ˉβi,xi}1min{ˆβi,xi}, (2.10)

    and for each j=1,2,,n1,

    1ˉβjnk=j+1|˜bjk|1ˆβjnk=j+1|˜bjk|˜bjjˆβj. (2.11)

    The result in (2.7) follows by (2.10) and (2.11).

    In this section, we give a numerical example to illustrate the advantages of new bound.

    Example 1. Consider the family of BS-matrices for S={1,2} in [14]:

    Mk=[2111.52kk+121k+11k+111211112],

    where k1. We choose X=diag{γ,γ,1,1} with γ(3.53,1.5). So ˜Mk=MkX can be written ˜M=˜B+k+˜Ck as in (1.1), where

    ˜B+k=[2γ1.5γ1.50.502kk+1γ1k+12γ1k+100002γ1γ001γ2γ].

    In fact, the bound (1.2), with the hypotheses that k1, is

    (41)max{γ,1}min{˜β,γ,1}=3γ2γ1(k+1),

    and it can be arbitrarily large when k+.

    In particular, let γ=1.3, then we can use the bound (1.2), the bound (1.3) and the bound (2.1) for k=2,20,30,60,100,+ to estimate maxd[0,1]n(ID+DM)1, see Table 1.

    Table 1.  The bound (1.2), the bound (1.3) and the bound (2.1).
    k2203060100+
    bound (1.2)7.312551.187575.5625148.6875246.1875+
    bound (1.3)48.108954.470454.814455.169955.315555.5375
    bound (2.1)29.823531.433533.137733.435533.778533.9556

     | Show Table
    DownLoad: CSV

    Remark 2. From Example 1, it is easy to see that each bound (1.2) or (2.1) is better than the other one. Thus it is difficult to say in advance which one is better. However, for a BS-matrix M with ˜M=˜B++˜C, where the diagonal dominance of ˜B+ is weak (e.g., for a matrix Mk with a large number of k here), the bound (2.1) is more effective than the bound (1.2).

    We present a new error bound for linear complementarity problems associated with BS-matrices, which improves some existing results. A numerical example shows the feasibility and effectiveness of the results which are obtained in this paper. Besides BS-matrices, some similar assertions for linear complementarity problems of other classes of matrices are provided, such as DB-matrices, SB-matrices and MB-matrices. So we conjecture here that by the technique above, new sharper bounds for linear complementarity problems of these classes of matrices could be given.

    This work was supported by the Foundation of Science and Technology Department of Guizhou Province (20191161, 20181079) and the Research Foundation of Guizhou Minzu University (2019YB08).

    The author declare that they have no competing interests.



    [1] X. J. Chen, S. H. Xiang, Perturbation bounds of P-matrix linear complementarity problems, SIAM J. Optim., 18 (2007), 1250–1265. doi: 10.1137/060653019. doi: 10.1137/060653019
    [2] R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, Academic Press, San Diego, 1992.
    [3] K. G. Murty, F. T. Fu, Linear complementarity, linear and nonlinear programming, Heldermann Verlag, Berlin, 1988.
    [4] J. M. Pe˜na, A class of P-matrices with applications to the localization of the eigenvalues of a real matrix, SIAM J. Matrix Anal. Appl., 22 (2001), 1027–1037. doi: 10.1137/S0895479800370342. doi: 10.1137/S0895479800370342
    [5] X. J. Chen, S. H. Xiang, Computation of error bounds for P-matrix linear complementarity problem, Math. Program., 106 (2006), 513–525. doi: 10.1007/s10107-005-0645-9. doi: 10.1007/s10107-005-0645-9
    [6] T. T. Chen, W. Li, X. Wu, S. Vong, Error bounds for linear complementarity problems of MB-matrices, Numer. Algorithms, 70 (2015), 341–356. doi: 10.1007/s11075-014-9950-9. doi: 10.1007/s11075-014-9950-9
    [7] P. F. Dai, C. J. Lu, Y. T. Li, New error bounds for the linear complementarity problem with an SB-matrix, Numer. Algorithms, 64 (2013), 741–757. doi: 10.1007/s11075-012-9691-6. doi: 10.1007/s11075-012-9691-6
    [8] M. García-Esnaola, J. M. Pe˜na, Error bounds for linear complementarity problems for B-matrices, Appl. Math. Lett., 22 (2009), 1071–1075. doi: 10.1016/j.aml.2008.09.001. doi: 10.1016/j.aml.2008.09.001
    [9] M. García-Esnaola, J. M. Pe˜na, Error bounds for linear complementarity problems involving BS-matrices, Appl. Math. Lett., 25 (2012), 1379–1383. doi: 10.1016/j.aml.2011.12.006. doi: 10.1016/j.aml.2011.12.006
    [10] M. García-Esnaola, J. M. Pe˜na, B-Nekrasov matrices and error bounds for linear complementarity problems, Numer. Algorithms, 72 (2016), 435–445. doi: 10.1007/s11075-015-0054-y. doi: 10.1007/s11075-015-0054-y
    [11] C. Q. Li, M. T. Gan, S. R. Yang, A new error bound for linear complementarity problems for B-matrices, Electron. J. Linear Al., 31 (2016), 476–484. doi: 10.13001/1081-3810.3250. doi: 10.13001/1081-3810.3250
    [12] C. Q. Li, Y. T. Li, Weakly chained diagonally dominant B-matrices and error bounds for linear complementarity problems, Numer. Algorithms, 73 (2016), 985–998. doi: 10.1007/s11075-016-0125-8. doi: 10.1007/s11075-016-0125-8
    [13] C. Q. Li, Y. T. Li, Note on error bounds for linear complementarity problems for B-matrices, Appl. Math. Lett., 57 (2016), 108–113. doi: 10.1016/j.aml.2016.01.013. doi: 10.1016/j.aml.2016.01.013
    [14] L. Gao, An alternative error bound for linear complementarity problems involving BS-matrices, J. Inequal. Appl., 28 (2018), 1–9. doi: 10.1186/s13660-018-1618-x. doi: 10.1186/s13660-018-1618-x
    [15] L. Cvetković, J. M. Pe˜na, Minimal sets alternative to minimal Gersgorin sets, Appl. Nnmber. Math., 60 (2010), 442–451. doi: 10.1016/j.apnum.2009.09.005. doi: 10.1016/j.apnum.2009.09.005
    [16] X. Y. Yang, B. G. Zeng, Q. Y. Zhu, X. Liu, New upper bound for A1 of strictly diagonally dominant M-matrices, J. Natur. Sci. Hunan Norm. Univ., 37 (2014), 91–95.
  • This article has been cited by:

    1. 雨薇 罗, Upper Estimates of ||A-1|| for Strictly α-Diagonally Dominant M-Matrices, 2023, 13, 2160-7583, 1643, 10.12677/PM.2023.136167
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1818) PDF downloads(52) Cited by(1)

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog