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1. Introduction

The linear complementarity problem (LCP) is to find a vector x ∈ Rn such that

(Mx + z)T x = 0, Mx + z ≥ 0, x ≥ 0,

or to show that no such vector x exists, where M = (mi j) ∈ Rn×n and z ∈ Rn. Many problems such as
the contact problem, Nash equilibrium point of a bimatrix game, and the free boundary problem for
journal bearing can be posed in the framework of the LCP, see [1–3].

It is well known that the LCP has a unique solution for any z ∈ Rn if and only if M is a P-matrix [2].
Here, a matrix M ∈ Rn×n is called a P-matrix if all its principal minors are positive [4]. In 2006, Chen
et al. [5] gave the following result for the LCP when M is a P-matrix:

∥x − x∗∥∞ ≤ max
d∈[0,1]n

∥(I − D + DM)−1∥∞∥r(x)∥∞ f or any x ∈ Rn,

where x∗ is the solution of the LCP, r(x) = min{x,Mx + z}, D = diag(di) with 0 ≤ di ≤ 1, and the min
operator r(x) denotes the componentwise minimum of two vectors. When the matrix M for the LCP
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belongs to P-matrices or some subclass of P-matrices, various bounds for max
d∈[0,1]n

∥(I − D + DM)−1∥∞

are established [6–14].
In 2012, Garcı́a-Esnaola et al. [9] gave upper bounds for max

d∈[0,1]n
∥(I − D + DM)−1∥∞ when M is a

BS -matrix as a subclass of P-matrices. Here a matrix M = (mi j) ∈ Rn×n is called a BS -matrix [15] if
there exists a subset S of the set N = {1, 2, . . . , n}, with 2 ≤ card(S ) ≤ n − 2, such that for all i, j ∈ N,
t ∈ T (i) \ {i}, and k ∈ K( j) \ { j},

RS
i > 0, RS

j > 0,
(
mit − RS

i

) (
m jk − RS

j

)
< RS

j RS
i ,

where RS
i =

1
n

∑
k∈S

mik, T (i) = {t ∈ S |mit > RS
i } and K( j) = {k ∈ S |m jk > RS

j } with S = N \ {S }.

A square real matrix M = (mik)1≤i,k≤n with positive row sums is a B-matrix [4] if all of its off-
diagonal elements are bounded above by the corresponding row means, i.e., for all i = 1, . . . , n,

n∑
k=1

mik > 0 and
1
n

 n∑
k=1

mik

 > mi j, ∀ j , i.

Let M = (mi j) ∈ Rn×n be a BS -matrix, and let X = diag(x1, · · · , xn) with

xi =

{
γ, i ∈ S ,
1, otherwise,

such that M̃ = MX is a B-matrix with the form M̃ = B̃+ + C̃, where

B̃+ = (b̃i j) =


m11x1 − r̃+1 · · · m1nxn − r̃+1

...
...

mn1x1 − r̃+n · · · mnnxn − r̃+n

 , C̃ =


r̃+1 · · · r̃+1
...

...

r̃+n · · · r̃+n

 , (1.1)

and r̃+i = max{0,mi jx j| j , i}. Then

max
d∈[0,1]n

∥(I − D + DM)−1∥∞ ≤
(n − 1) max{γ, 1}

min{β̃, γ, 1}
, (1.2)

where β̃i = b̃ii −
∑
j,i
|b̃i j|, β̃ = min

i∈N
{β̃i}, and

(0 <)γ ∈

 max
j∈N,k∈K( j)\{ j}

m jk − RS
j

RS
j

, max
i∈N,t∈T (i)\{i}

RS
i

mit − RS
i

 ,
assuming that if K( j) \ { j} = ∅(T (i) \ {i} = ∅), then max (min) is set to be −∞(∞) [9].

In 2018, Gao [14] presented a new bound: Let M = (mi j) ∈ Rn×n be a BS -matrix. Then

max
d∈[0,1]n

∥(I − D + DM)−1∥∞ ≤

n∑
i=1

(n − 1) max{γ, 1}
min{β̂i, xi}

i−1∏
j=1

b̃ j j

β̂ j
, (1.3)
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where β̂i = b̃ii −
n∑

j=i+1
|b̃i j|li(B̃+), lk(B̃+) = max

k≤i≤n

{
1
|b̃ii |

n∑
j=k,,i
|b̃i j|

}
, and

i−1∏
j=1

b̃ j j

β̂ j
= 1, i f i = 1.

In order to improving the above results, in this paper, we establish some new upper bounds for the
condition constant max

d∈[0,1]n
∥(I − D + DM)−1∥∞ when M is a BS -matrix.

Next, we recall the following definition and lemmas for an n × n matrix.

Definition 1. [13] A matrix M = (mi j) ∈ Cn×n is called a row strictly diagonally dominant matrix if

for each i ∈ N, |mii| >
n∑

j=1,,i
|mi j|. A matrix M = (mi j) is called a Z-matrix if mi j ≤ 0 for any i , j, and

an M-matrix if M is a Z-matrix with M−1 being nonnegative.

Lemma 1. [9] Let M = (mi j) ∈ Rn×n be a BS -matrix. Then there exists a positive diagonal matrix
X = diag(x1, · · · , xn) with

xi =

{
γ, i ∈ S ,
1, otherwise,

such that M̃ = MX is a B-matrix, where γ > 0,

max
j∈N,k∈K( j)\{ j}

m jk − RS
j

RS
j

< γ < max
i∈N,t∈T (i)\{i}

RS
i

mit − RS
i

, (1.4)

and max (min) is set to be −∞(∞) if K( j) \ { j} = ∅(T (i) \ {i} = ∅).

Remark 1. From the definitions of B-matrix and BS -matrix, if M is a BS -matrix such that T (i) = {i}
for all i ∈ S and K( j) = { j} for all j ∈ S , then M is a B-matrix. Moreover, each 3 × 3 B-matrix is not
a BS -matrix and there exists a BS -matrix that is not a B-matrix [9]. Thus the notions of B-matrix and
BS -matrix are only related in the sense of Lemma 1.

Lemma 2. [9] Let M = (mi j) ∈ Rn×n be a BS -matrix and let X be the diagonal matrix in Lemma 1
such that M̃ = MX is a B-matrix with the form M̃ = B̃+ + C̃, where B̃+ = (b̃i j) is the matrix in (1.1).
Then B̃+ is strict diagonal dominant by rows with positive diagonal entries.

Lemma 3. [9] If M = (mi j) ∈ Rn×n is a BS -matrix that is not a B-matrix, then there exist k, i ∈ N with
k , i such that

1
n

n∑
j=1

mi j ≤ mik.

Furthermore, if k ∈ S (resp., k ∈ S ), then γ < 1 (resp., γ > 1), where γ is the parameter γ
satisfying (1.4).
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Some notations are given, which will be used in the sequel. Let A = (ai j) ∈ Rn×n. For i, j, k ∈ N,
i , j, denote

ui(A) =
1
|aii|

n∑
j=i+1

|ai j|, lk(A) = max
k≤i≤n

 1
|aii|

n∑
j=k,,i

|ai j|

 ,
vk(A) = max

k+1≤i≤n


|aik|

|aii| −
n∑

j=k+1,,i
|ai j|

 , wk(A) = max
k+1≤i≤n


|aik| +

n∑
j=k+1,,i

|ai j|vk(A)

|aii|

 .
Lemma 4. [16] Let A = (ai j) ∈ Rn×n be a row strictly diagonally dominant M-matrix. Then

∥A−1∥∞ ≤ max
{ n∑

i=1

 1
aii(1 − ui(A)wi(A))

i−1∏
j=1

u j(A)
1 − u j(A)w j(A)

 ,
n∑

i=1

 wi(A)
aii(1 − ui(A)wi(A))

i−1∏
j=1

1
1 − u j(A)w j(A)

 },
where

i−1∏
j=1

u j(A)
1 − u j(A)w j(A)

= 1,
i−1∏
j=1

1
1 − u j(A)w j(A)

= 1, i f i = 1.

Lemma 5. [13] Let γ > 0 and η ≥ 0. Then for any x ∈ [0, 1],

1
1 − x + γx

≤
1

min{γ, 1}
,

ηx
1 − x + γx

≤
η

γ
.

Lemma 6. [12] Let A = (ai j) ∈ Rn×n with

aii >

n∑
j=i+1

|ai j|, ∀i ∈ N.

Then for any xi ∈ [0, 1], i ∈ N,

1 − xi + aiixi

1 − xi + aiixi −
n∑

j=i+1
|ai j|xi

≤
aii

aii −
n∑

j=i+1
|ai j|

.

The rest of this paper is organized as follows: In Section 2, we present some new bounds for
max

d∈[0,1]n
∥(I − D + DM)−1∥∞ when M is a BS -matrix, and new perturbation bounds of BS -matrices linear

complementarity problems are also considered. In Section 3, a numerical example is given to show
that our proposed bounds are respectively better than those in [6,11] in some cases.
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2. Error bounds for LCPs of BS -matrices

In this section, we propose some new error bounds for linear complementarity problems involved
with BS -matrices.

Theorem 1. Let M = (mi j) ∈ Rn×n be a BS -matrix and let X be the diagonal matrix given by Lemma 1
such that M̃ = MX is a B-matrix with the form M̃ = B̃+ + C̃, where B̃+ = (b̃i j) is the matrix in (1.1).
Then

max
d∈[0,1]n

∥(I − D + DM)−1∥∞

≤ max


n∑

i=1

(n − 1) max{γ, 1}
min{β̄i, xi}

i−1∏
j=1

(
1
β̄ j

n∑
k= j+1

|b̃ jk|

)
,

n∑
i=1

(n − 1) max{γ, 1}wi(B̃+)
min{β̄i, xi}

i−1∏
j=1

b̃ j j

β̄ j

 , (2.1)

where β̄i = b̃ii −
n∑

j=i+1
|b̃i j|wi(B̃+), and

i−1∏
j=1

(
1
β̄ j

n∑
k= j+1

|b̃ jk|

)
= 1,

i−1∏
j=1

b̃ j j

β̄ j
= 1, i f i = 1.

Proof. Let M̃D = X − DX + DM̃. From Lemma 1, we deduce that

M̃D = X − DX + DM̃ = X − DX + D(B̃+ + C̃) = B̃+D + C̃D,

where B̃+D = X − DX + DB̃+, C̃D = DC̃. By Lemma 2, B̃+ is a strictly diagonal dominant matrix. Let
MD = I − D + DM. Note that M = M̃X−1. Then, similarly to the proof of Theorem 2.2 in [8], we can
obtain that B̃+D is a strictly diagonally dominant M-matrix with positive diagonal elements and that

∥M−1
D ∥∞ ≤ ∥X

−1∥∞∥(I + (B̃+D)−1C̃D)−1∥∞∥(B̃+D)−1∥∞ ≤ (n − 1) max{γ, 1}∥(B̃+D)−1∥∞. (2.2)

Next, by Lemma 4, we have

∥(B̃+D)−1∥∞

≤ max

 n∑
i=1

1
(xi − dixi + b̃iidi)(1 − ui(B̃+D)wi(B̃+D))

i−1∏
j=1

u j(B̃+D)

1 − u j((B̃+D))w j(B̃+D)
,

n∑
i=1

wi(B̃+D)

(xi − dixi + b̃iidi)(1 − ui((B̃+D))wi(B̃+D))

i−1∏
j=1

1
1 − u j(B̃+D)w j(B̃+D)

 .
From Lemma 5, we can easily get the following results: For each i, j, k ∈ N,
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vk(B̃+D) = max
k+1≤i≤n

{
|b̃ik|di

xi − dixi + b̃iidi −
n∑

j=k+1,,i
|b̃i j|di

}

= max
k+1≤i≤n

{ |b̃ik |

xi
di

1 − di +
b̃ii
xi

di −
1
xi

n∑
j=k+1,,i

|b̃i j|di

}

≤ max
k+1≤i≤n

{
|b̃ik|

b̃ii −
n∑

j=k+1,,i
|b̃i j|

}

= vk(B̃+),

wk(B̃+D) = max
k+1≤i≤n

{ |b̃ik|di +
n∑

j=k+1,,i
|b̃i j|divk(B̃+D)

xi − dixi + b̃iidi

}

= max
k+1≤i≤n

{ 1
xi
|b̃ik|di +

1
xi

n∑
j=k+1,,i

|b̃i j|divk(B̃+D)

1 − di +
1
xi

b̃iidi

}

≤ max
k+1≤i≤n

{ |b̃ik| +
n∑

j=k+1,,i
|b̃i j|vk(B̃+)

b̃ii

}
= wk(B̃+),

and

1
(xi − dixi + b̃iidi)(1 − ui(B̃+D)wi(B̃+D))

=
1

xi − dixi + b̃iidi −
n∑

j=i+1
|b̃i j|diwi(B̃+D)

≤
1

min
{

b̃ii −
n∑

j=i+1
|b̃i j|wi(B̃+), xi

}
=

1

min
{
β̄i, xi

} . (2.3)

Furthermore, by Lemma 5 and Lemma 6, we have
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ui(B̃+D)

1 − ui(B̃+D)wi(B̃+D)
=

n∑
j=i+1
|b̃i j|di

xi − dixi + b̃iidi −
n∑

j=i+1
|b̃i j|diwi(B̃+D)

≤

n∑
j=i+1
|b̃i j|

b̃ii −
n∑

j=i+1
|b̃i j|wi(B̃+)

=
1
β̄i

n∑
j=i+1

|b̃i j|, (2.4)

and

1
1 − ui(B̃+D)wi(B̃+D)

=
xi − dixi + b̃iidi

xi − dixi + b̃iidi −
n∑

j=i+1
|b̃i j|diwi(B̃+D)

≤
b̃ii

b̃ii −
n∑

j=i+1
|b̃i j|wi(B̃+)

=
b̃ii

β̄i
. (2.5)

Finally, by (2.3)–(2.5), we obtain

∥(B+D)−1∥∞ ≤ max


n∑

i=1

1
min{β̄i, xi}

i−1∏
j=1

(
1
β̄ j

n∑
k= j+1

|b̃ jk|

)
,

n∑
i=1

wi(B̃+)
min{β̄i, xi}

i−1∏
j=1

b̃ j j

β̄ j

 . (2.6)

Therefore, the result in (2.1) holds from (2.2) and (2.6). □

Based on Theorem 1 and Lemma 3, the following Corollary can be proved easily.

Corollary 1. Let M = (mi j) ∈ Rn×n be a BS -matrix that is not a B-matrix and let k0, i0 ∈ N with k0 , i0

such that mi0k0 ≥
1
n

∑
j∈N

mi0 j. If k0 ∈ S , then

max
d∈[0,1]n

∥(I − D + DM)−1∥∞

≤ max


n∑

i=1

(n − 1)γ
min{β̄i, 1}

i−1∏
j=1

(
1
β̄ j

n∑
k= j+1

|b̃ jk|

)
,

n∑
i=1

(n − 1)γwi(B̃+)
min{β̄i, 1}

i−1∏
j=1

b̃ j j

β̄ j

 .
If k0 ∈ S , then

max
d∈[0,1]n

∥(I − D + DM)−1∥∞

≤ max


n∑

i=1

(n − 1)
min{β̄i, γ}

i−1∏
j=1

(
1
β̄ j

n∑
k= j+1

|b̃ jk|

)
,

n∑
i=1

(n − 1)wi(B̃+)
min{β̄i, γ}

i−1∏
j=1

b̃ j j

β̄ j

 .
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Similarly to the proof of Theorem 2.4 in [6], we can also obtain new perturbation bounds for linear
complementarity problems of BS -matrices based on Theorem 1.

Theorem 2. Let M = (mi j) ∈ Rn×n be a BS -matrix and let B̃+ = (b̃i j) be the matrix in (1.1). Then

β∞(M) ≤ max


n∑

i=1

(n − 1) max{γ, 1}
min{β̄i, xi}

i−1∏
j=1

(
1
β̄ j

n∑
k= j+1

|b̃ jk|

)
,

n∑
i=1

(n − 1) max{γ, 1}wi(B̃+)
min{β̄i, xi}

i−1∏
j=1

b̃ j j

β̄ j

 ,
where β∞(M) = max

d∈[0,1]n
∥(I − D + DM)−1D∥∞, D = diag(di) with 0 ≤ di ≤ 1 for each i ∈ N, and

β̄i = b̃ii −

n∑
j=i+1

|b̃i j|wi(B̃+),
i−1∏
j=1

(
1
β̄ j

n∑
k= j+1

|b̃ jk|

)
= 1 i f i = 1,

i−1∏
j=1

b̃ j j

β̄ j
= 1 i f i = 1.

Finally, we give a comparison of the bounds in (1.3) and (2.1) as follows.

Theorem 3. Let M = (mi j) ∈ Rn×n be a BS -matrix and let X be the diagonal matrix given by Lemma 1
such that M̃ = MX is a B-matrix with the form M̃ = B̃+ + C̃, where B̃+ = (b̃i j) is the matrix in (1.1).
Let β̂i and β̄i be defined as in (1.3) and (2.1), respectively. Then

max


n∑

i=1

(n − 1) max{γ, 1}
min{β̄i, xi}

i−1∏
j=1

(
1
β̄ j

n∑
k= j+1

|b̃ jk|

)
,

n∑
i=1

(n − 1) max{γ, 1}wi(B̃+)
min{β̄i, xi}

i−1∏
j=1

b̃ j j

β̄ j


≤

n∑
i=1

(n − 1) max{γ, 1}
min{β̂i, xi}

i−1∏
j=1

b̃ j j

β̂ j
. (2.7)

Proof. For any i ∈ N, based on B̃+ is strict diagonal dominant, we have

0 < wi(B̃+) ≤ li(B̃+) < 1, (2.8)

and by (2.8), we get

β̂i = b̃ii −

n∑
j=i+1

|b̃i j|li(B̃+) ≤ b̃ii −

n∑
j=i+1

|b̃i j|wi(B̃+) = β̄i. (2.9)

Furthermore, by (2.9), for all i ∈ N, we have

1
min{β̄i, xi}

≤
1

min{β̂i, xi}
, (2.10)

and for each j = 1, 2, . . . , n − 1,

1
β̄ j

n∑
k= j+1

|b̃ jk| ≤
1
β̂ j

n∑
k= j+1

|b̃ jk| ≤
b̃ j j

β̂ j
. (2.11)

The result in (2.7) follows by (2.10) and (2.11). □
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3. A numerical example

In this section, we give a numerical example to illustrate the advantages of new bound.

Example 1. Consider the family of BS -matrices for S = {1, 2} in [14]:

Mk =


2 1 1 1.5
− 2k

k+1 2 1
k+1

1
k+1

1 1 2 1
1 1 1 2

 ,
where k ≥ 1. We choose X = diag{γ, γ, 1, 1} with γ ∈ ( 3.5

3 , 1.5). So M̃k = MkX can be written
M̃ = B̃+k + C̃k as in (1.1), where

B̃+k =


2γ − 1.5 γ − 1.5 −0.5 0
− 2k

k+1γ −
1

k+1 2γ − 1
k+1 0 0

0 0 2 − γ 1 − γ
0 0 1 − γ 2 − γ

 .
In fact, the bound (1.2), with the hypotheses that k ≥ 1, is

(4 − 1) max{γ, 1}
min{β̃, γ, 1}

=
3γ

2γ − 1
(k + 1),

and it can be arbitrarily large when k → +∞.
In particular, let γ = 1.3, then we can use the bound (1.2), the bound (1.3) and the bound (2.1) for

k = 2, 20, 30, 60, 100 . . . ,+∞ to estimate max
d∈[0,1]n

∥(I − D + DM)−1∥∞, see Table 1.

Table 1. The bound (1.2), the bound (1.3) and the bound (2.1).
k 2 20 30 60 100 · · · +∞

bound (1.2) 7.3125 51.1875 75.5625 148.6875 246.1875 · · · +∞

bound (1.3) 48.1089 54.4704 54.8144 55.1699 55.3155 · · · 55.5375
bound (2.1) 29.8235 31.4335 33.1377 33.4355 33.7785 · · · 33.9556

Remark 2. From Example 1, it is easy to see that each bound (1.2) or (2.1) is better than the other one.
Thus it is difficult to say in advance which one is better. However, for a BS -matrix M with M̃ = B̃++ C̃,
where the diagonal dominance of B̃+ is weak (e.g., for a matrix Mk with a large number of k here), the
bound (2.1) is more effective than the bound (1.2).

4. Conclusions

We present a new error bound for linear complementarity problems associated with BS -matrices,
which improves some existing results. A numerical example shows the feasibility and effectiveness of
the results which are obtained in this paper. Besides BS -matrices, some similar assertions for linear
complementarity problems of other classes of matrices are provided, such as DB-matrices, S B-matrices
and MB-matrices. So we conjecture here that by the technique above, new sharper bounds for linear
complementarity problems of these classes of matrices could be given.
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