Throughout the paper, we introduce a new subclass Hn,q,λ,lα,μ,ρ,m,β f(z) by using the Bazilevič functions with the idea of bounded boundary rotation and q-analogue Cătaş operator. Also we find the estimate of the coefficients for functions in this class. Finally, in the concluding section, we have chosen to reiterate the well-demonstrated fact that any attempt to produce the rather straightforward (p,q)-variations of the results, which we have presented in this article, will be a rather trivial and inconsequential exercise, simply because the additional parameter p is obviously redundant.
Citation: S. M. Madian. Some properties for certain class of bi-univalent functions defined by q-Cătaş operator with bounded boundary rotation[J]. AIMS Mathematics, 2022, 7(1): 903-914. doi: 10.3934/math.2022053
[1] | Prathviraj Sharma, Srikandan Sivasubramanian, Nak Eun Cho . Initial coefficient bounds for certain new subclasses of bi-univalent functions with bounded boundary rotation. AIMS Mathematics, 2023, 8(12): 29535-29554. doi: 10.3934/math.20231512 |
[2] | Anandan Murugan, Sheza M. El-Deeb, Mariam Redn Almutiri, Jong-Suk-Ro, Prathviraj Sharma, Srikandan Sivasubramanian . Certain new subclasses of bi-univalent function associated with bounded boundary rotation involving sǎlǎgean derivative. AIMS Mathematics, 2024, 9(10): 27577-27592. doi: 10.3934/math.20241339 |
[3] | Bilal Khan, H. M. Srivastava, Muhammad Tahir, Maslina Darus, Qazi Zahoor Ahmad, Nazar Khan . Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(1): 1024-1039. doi: 10.3934/math.2021061 |
[4] | F. Müge Sakar, Arzu Akgül . Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Mathematics, 2022, 7(4): 5146-5155. doi: 10.3934/math.2022287 |
[5] | Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order ϑ+iδ associated with (p,q)− Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254 |
[6] | Mohammad Faisal Khan . Certain new applications of Faber polynomial expansion for some new subclasses of υ-fold symmetric bi-univalent functions associated with q-calculus. AIMS Mathematics, 2023, 8(5): 10283-10302. doi: 10.3934/math.2023521 |
[7] | Ahmad A. Abubaker, Khaled Matarneh, Mohammad Faisal Khan, Suha B. Al-Shaikh, Mustafa Kamal . Study of quantum calculus for a new subclass of q-starlike bi-univalent functions connected with vertical strip domain. AIMS Mathematics, 2024, 9(5): 11789-11804. doi: 10.3934/math.2024577 |
[8] | Tariq Al-Hawary, Ala Amourah, Abdullah Alsoboh, Osama Ogilat, Irianto Harny, Maslina Darus . Applications of q−Ultraspherical polynomials to bi-univalent functions defined by q−Saigo's fractional integral operators. AIMS Mathematics, 2024, 9(7): 17063-17075. doi: 10.3934/math.2024828 |
[9] | Tamer M. Seoudy, Amnah E. Shammaky . Certain subfamily of multivalently Bazilevič and non-Bazilevič functions involving the bounded boundary rotation. AIMS Mathematics, 2025, 10(5): 12745-12760. doi: 10.3934/math.2025574 |
[10] | Norah Saud Almutairi, Adarey Saud Almutairi, Awatef Shahen, Hanan Darwish . Estimates of coefficients for bi-univalent Ma-Minda-type functions associated with q-Srivastava-Attiya operator. AIMS Mathematics, 2025, 10(3): 7269-7289. doi: 10.3934/math.2025333 |
Throughout the paper, we introduce a new subclass Hn,q,λ,lα,μ,ρ,m,β f(z) by using the Bazilevič functions with the idea of bounded boundary rotation and q-analogue Cătaş operator. Also we find the estimate of the coefficients for functions in this class. Finally, in the concluding section, we have chosen to reiterate the well-demonstrated fact that any attempt to produce the rather straightforward (p,q)-variations of the results, which we have presented in this article, will be a rather trivial and inconsequential exercise, simply because the additional parameter p is obviously redundant.
Let A denote the class of analytic functions of the form:
f(z)=z+∞∑k=2akzk(z∈U:U={z∈C:|z|<1}). | (1.1) |
Let S be the subclass of A consisting of univalent functions in U and let K, Sλ, S∗ and C be the usual subclasses of S consisting of functions which are, respectively, close-to-convex, λ-spiral-like, starlike (w.r.t. the origin) and convex in U.
Definition 1. ([4], with p=1.) Let Pμm(ρ)0≤ρ<1, m≥2 and |μ|<π2, be the class of analytic functions p(z)=1+∞∑k=1ckzk and satisfy the conditions:
p(0)=1 |
and
2π∫0|Reeiμp(z)−ρcosμ1−ρ|≤mπcosμ, | (1.2) |
for every r<1(z=reiθ∈U), 0≤ρ<1, m≥2 and |μ|<π2. |
We note that:
(i) Pμm(0)=Pμm ( m≥2 and |μ|<π2), the class of functions introduced by Robertson [34].
(ii) P0m(ρ)=Pm(ρ) (0≤ρ<1, m≥2), the class of functions introduced by Padmanabhan and Parvatham [31].
(iii) P0m(0)=Pm(m≥2), the class of functions having their real parts bounded in the mean on U, introduced by Robertson [34] and further studied by Pinchuk [32]. (iv) P02(ρ)=P(ρ) (0≤ρ<1), the class of functions with positive real part of order ρ, 0≤ρ<1. (v) P02(0)=P, the class of functions having positive real part for z∈U.
Definition 2. ([12,36,51]). The class of Bazilevi č functions in the open unit disc U was introduced by Bazilevi č [12], he defined Bazilevič functions by the following relation
f(z)={(β+iτ)z∫0p(t)g(t)βtiτ−1dt}1/(β+iτ), |
where g(z)∈S∗,p(z)∈Pμm(ρ) and β,τ>0. Singh [36] studied the class B1(β) of Bazilevič functions by putting g(z)=z and τ=0 in above equation. If f(z)∈B1(β) then f(z) is a Bazilevič function of type β.
By the Koebe one-quarter theorem [15], we know that the image of U under every univalent function f∈A contains the disc with the center in the origin and radius 1/4. Therefore, every univalent function f has an inverse f−1 satisfies
f−1(f(z))=z (z∈U) and f(f−1(w))=w (|w|<r0(f), r0(f)≥1/4). | (1.3) |
It is easy to see that the inverse function has the form
f−1(w)=w−a2w2+(2a22−a3)w3−(5a32−5a2a3+a4)w4+... . | (1.4) |
A function f∈A is said to be bi-univalent in U if both f and its inverse map g=f−1are univalent in U. Let ∑ denote the class of bi-univalent functions in U in the form (1.1). For interesting examples about the class ∑ (see [8,11,16,18,25,46]).
The pioneering work of Srivastava et al. [45] actually revived the study of bi-univalent functions in recent years. In a substantially large number of work subsequent to the work of Srivastava et al. [45], several distinct subclasses of the bi-univalent function class were presented and examined similarly by many authors. For example, the function classes H∑(τ,μ,λ,δ;α) and H∑(τ,μ,λ,γ;β) were defined and the estimates on the Taylor-Maclaurin coefficients |a2| and |a3| were obtained by Srivastava et al. [43]. The upper bounds for the second Hankel determinant for certain subclasses of analytic and bi-univalent functions were obtained by Caglar et al. [13]. Several new subclasses of the class of m-fold symmetric bi-univalent functions were introduced and the initial estimates of the Taylor-Maclaurin series as well as some Fekete-Szeg ö functional problems for each of their defined function classes were obtained by Tang et al. [50] and Srivastava et al. [42]. Several other well-known mathematicians gave their findings on this subject (e.g. [40,41,44]).
As we know that the fractional q-calculus and the fractional of q -derivative operators in Geometric Function Theory were investigated by sturdy of researchers (see [2,3,7,9,10,17,19,20,21,22,23,24,25,37,38,39,47,48,49]). The q-calculus is an important tool which is used to study various applications in mathematics, physics and chemistry and some basic sciences subjects. In the study of Geometric Function Theory, the versatile applications of the q-derivative operator Dq make it remarkably significant. Inspired by the above-mentioned works, in recent years, important researches have played a significant part in the development of Geometric Function Theory of complex analysis. Several convolutional and fractional calculus q-operators were defined by many researchers, which were surveyed in the above-cited work by Srivastava [37]. For a function f(z)∈A given by (1.1) and 0<q<1. Jackson's q-derivative (or q-difference) Dq of a function defined on a subset of the complex space C is defined as follows:
Dqf(z)=f(z)−f(qz)(1−q)z (z≠0, 0<q<1), =1+∞∑k=2[k]qakzk−1, | (1.5) |
where Dqf(0)=f′(0), D2qf(z)=Dq(Dqf(z)) and [k]q=1−qk1−q, as q→1−, then [k]q→k, hence we have
limq→1−Dqf(z)=f′(z) (z∈U). | (1.6) |
For a function f(z)∈A, Aouf and Madian [10] defined the q -analogue Cătaş operator as follows (see also [7,9] with p=1]):
Inq(λ,l)f(z)=z+∞∑k=2Ψnq(k,λ,l)akzk, | (1.7) |
where
Ψnq(k,λ,l)=[[1+l]q+λ([k+l]q−[1+l]q)[1+l]q]n (n∈N0=N∪{0},N={1,2,...}, l,λ≥0, 0<q<1). | (1.8) |
And introduced recurrent relation as follows:
λqlzDq(Inq(λ,l)f(z))=[1+l]qIn+1q(λ,l)f(z)−[(1−λ)ql+[l]q]Inq(λ,l)f(z) (λ>0). |
We note that Inq(λ,l)f(z) generalized many operators such as C ătaş operator, Multiplier operator and Sălăgean operator etc., for more details see [1,5,6,7,14,28,35].
Definition 3. Let f∈∑, α∈C∗=C∖{0}, l,λ β≥0, 0≤ρ<1, m≥2, |μ|<π2,n∈N0 and 0<q<1, then Inq(λ,l)f(z)∈∑ is said to be in Hn,q,λ,lα,μ,ρ,m,β f(z), if it satisfies the following conditions:
{(1−α)(Inq(λ,l)f(z)z)β+αzDq(Inq(λ,l)f(z))Inq(λ,l)f(z)(Inq(λ,l)f(z)z)β}∈Pμm(ρ) (z∈U), | (1.9) |
and
{(1−α)(Inq(λ,l)f−1(w)w)β+αwDq(Inq(λ,l)f−1(w))Inq(λ,l)f−1(w)(Inq(λ,l)f−1(w)w)β}∈Pμm(ρ) (w∈U). | (1.10) |
By choosing different values for α,μ,ρ,m,β,n,q,λ and l, in the a above definition we have:
(1) limq→1−H0,q,λ,l1,0,ρ,m,β f(z)=K∑(ρ,m,β)f(z) (f∈∑, β≥0, 0≤ρ<1, m≥2) (see [29], with γ=1 and δ=0).
(2) limq→1−H0,q,λ,lα,0,ρ,2,β f(z)=Fρ,βf(z) (f∈∑, β≥0, 0≤ρ<1) (see [33]).
(3) H0,q,λ,l1,0,ρ,2,1 f(z)=Fρ,q(f)(z)(f∈∑, 0≤ρ<1) (see [46]).
(4) limq→1−H0,q,λ,lα,0,ρ,2,β f(z)=MPβ,α∑(0,ρ)f(z) (f∈∑, β,α≥0, 0≤ρ<1) (see [30], with β=0]).
(5) limq→1−H0,q,λ,lα,μ,ρ,2,β f(z)=L∑(β,ρ)f(z) ( f∈∑, β≥0, 0≤ρ<1) (see [27]).
(6) limq→1−H0,q,λ,lα,μ,ρ,m,β f(z)=K(α,μ,ρ,m,β)f(z) ( f∈∑, α∈C∗, β≥0, 0≤ρ<1, m≥2, |μ|<π2, 0≤ρ<1) (see [11], with h=z1−z and [8], with h=z1−z,b=1 and δ=0).
As well as, we obtain new subclasses as follows:
(a)
Hn,q,λ,lα,μ,0,m,β f(z)=Pn,q,λ,lα,μ,m,βf(z)={f∈∑:(1−α)(Inq(λ,l)f(z)z)β+αzDq(Inq(λ,l)f(z))Inq(λ,l)f(z)(Inq(λ,l)f(z)z)β∈Pμmand(1−α)(Inq(λ,l)f−1(w)w)β+αwDq(Inq(λ,l)f−1(w))Inq(λ,l)f−1(w)(Inq(λ,l)f−1(w)w)β∈Pμm}. |
(b)
Hn,q,λ,lα,0,ρ,2,βf(z)=Dn,q,λ,lα,ρ,βf(z)={f∈∑:[(1−α)(Inq(λ,l)f(z)z)β+αzDq(Inq(λ,l)f(z))Inq(λ,l)f(z)(Inq(λ,l)f(z)z)β]>ρand[(1−α)(Inq(λ,l)f−1(w)w)β+αwDq(Inq(λ,l)f−1(w))Inq(λ,l)f−1(w)(Inq(λ,l)f−1(w)w)β]>ρ}. |
(c)
Hn,q,λ,l1,μ,ρ,m,β f(z)=Un,q,λ,lμ,ρ,m,βf(z)={f∈∑:zDq(Inq(λ,l)f(z))Inq(λ,l)f(z)(Inq(λ,l)f(z)z)β∈Pμm(ρ)and wDq(Inq(λ,l)f−1(w))Inq(λ,l)f−1(w)(Inq(λ,l)f−1(w)w)β∈Pμm(ρ)}. |
In order to obtain our main results, we have to recall here the following lemma.
Lemma 1. ([4] with p = 1.) If p(z)=1+∞∑n=1cnzn∈Pμm(ρ), then
|cn|≤(1−ρ) m cosμ. | (1.11) |
The result is sharp. Equality is attained for the odd coefficients and even coefficients, respectively, for the functions
p1(z)=1+(1−ρ)cosμ e−iμ[(m+24)(1−z1+z)−(m−24)(1+z1−z)−1], |
p2(z)=1+(1−ρ)cosμ e−iμ[(m+24)(1−z21+z2)−(m−24)(1+z21−z2)−1]. |
We note that for μ=ρ=0 in Lemma 1, we obtain the result obtained by Goswami et al. [16, Lemma 1] for the class Pm.
The object of this paper is to introduce a new subclass of the class ∑ by using the definition of Bazilevič functions, bi-univalent functions with bounded boundary rotation and q-analogue Cătaş operator. As well as I calculate the coefficient estimates for functions in the subclass Hn,q,λ,lα,μ,ρ,m,βf(z). Also I get coefficients bounds for the subclasses of our main class.
Theorem 1. Let f∈∑, α∈C∗∖{−1,−12}, l,λ,β≥0, 0≤ρ<1, m≥2, |μ|<π2,n∈N0 and 0<q<1, then Inq(λ,l)f(z)∈Hn,q,λ,lα,μ,ρ,m,βf(z) if satisfies
|a2|≤min{ √2m(1−ρ)cosμ|2α(([2]q−1)β+q2)+β(β+1)||Ψnq(2,λ,l)|2; m(1−ρ)cosμ|α([2]q−1)+β||Ψnq(2,λ,l)|} | (2.1) |
and
|a3|≤m(1−ρ)cosμ|α([3]q−1)+β||Ψnq(3,λ,l)|+[m(1−ρ)cosμ]2|α+β([2]q−1)|2|Ψnq(3,λ,l)|. | (2.2) |
Proof. Let Inq(λ,l)f(z)∈Hn,q,λ,lα,μ,ρ,m,βf(z), then from Definition 1, we have
(1−α)(Inq(λ,l)f(z)z)β+αzDq(Inq(λ,l)f(z))Inq(λ,l)f(z)(Inq(λ,l)f(z)z)β=p(z), p∈Pμm(ρ) | (2.3) |
and
(1−α)(Inq(λ,l)f−1(w)w)β+αwDq(Inq(λ,l)f−1(w))Inq(λ,l)f−1(w)(Inq(λ,l)f−1(w)w)β=q(w), q∈Pμm(ρ), | (2.4) |
where p and q have Taylor expansions as follows:
p(z)=1+p1z+p2z2+p3z3+...,z∈U, | (2.5) |
q(w)=1+q1w+q2w2+q3w3+...,w∈U. | (2.6) |
By comparing coefficients in (2.3) with (2.5) and coefficients in (2.4) with (2.6), we obtain
p1=[α([2]q−1)+β]a2Ψnq(2,λ,l), | (2.7) |
p2=[α([3]q−1)+β]a3Ψnq(3,λ,l)+[β+2α([2]q−1)](β−1)2 a22(Ψnq(2,λ,l))2, | (2.8) |
q1=−[α([2]q−1)+β] a2Ψnq(2,λ,l), | (2.9) |
and
q2=[β+α([3]q−1)][2a22(Ψnq(2,λ,l))2−a3Ψnq(3,λ,l)]+[β+2α([2]q−1)](β−1)2a22(Ψnq(2,λ,l))2. | (2.10) |
Since p,q∈Pμm(ρ) and by applying Lemma 1, we have
|pn|≤m(1−ρ)cosμ (n≥1) | (2.11) |
and
|qn|≤m(1−ρ)cosμ (n≥1). | (2.12) |
From (2.8), (2.10) and using inequalities (2.11) and (2.12), we obtain
|a2|2≤1|2α([2]q−1)β+q2+β(β+1)||p2|+|q2||Ψnq(2,λ,l)|2≤2m(1−ρ)cosμ|2α([2]q−1)β+q2+β(β+1)||Ψnq(2,λ,l)|2. | (2.13) |
Also, from (2.7) and (2.11), we obtain
|a2|≤m(1−ρ)cosμ|α([2]q−1)+β||Ψnq(2,λ,l)| . | (2.14) |
By subtracting (2.10) from (2.8), we have
p2−q2=2[α([3]q−1)+β]a3Ψnq(3,λ,l)−2[α([3]q−1)+β]a22(Ψnq(2,λ,l))2. | (2.15) |
Also, we have
p21+q21=2[α+β([2]q−1)]2a22(Ψnq(2,λ,l))2. | (2.16) |
After using (2.15), (2.16), (2.11) and (2.12) and some easily calculations, we obtain
|a3|≤m(1−ρ)cosμ|α([3]q−1)+β||Ψnq(3,λ,l)|+[m(1−ρ)cosμ]2|α+β([2]q−1)|2|Ψnq(3,λ,l)|, | (2.17) |
which completes the proof of Theorem 1. The result is sharp in view of the fact that assertion (1.11) of Lemma 1 is sharp. By following the observation of Thomas [52], the equality is attained for the odd coefficients and even coefficients, respectively, for the functions
(1−α)(Inq(λ,l)f(z)z)β+αzDq(Inq(λ,l)f(z))Inq(λ,l)f(z)(Inq(λ,l)f(z)z)β=1+(1−ρ)cosμ e−iμ[(m+24)(1−z1+z)−(m−24)(1+z1−z)−1], |
(1−α)(Inq(λ,l)f(z)z)β+αzDq(Inq(λ,l)f(z))Inq(λ,l)f(z)(Inq(λ,l)f(z)z)β=1+(1−ρ)cosμ e−iμ[(m+24)(1−z21+z2)−(m−24)(1+z21−z2)−1]. |
By using Ma and Minda Lemma (see [26]), we obtain the following corollary.
Corollary 1. Let Inq(λ,l)f(z)∈Hn,q,λ,lα,μ,ρ,m,βf(z), α∈C∗∖{−1,−12}, l,λ,β≥0,n∈N0 and 0<q<1, then (i) For any real number ζ, we have
|a3Ψnq(3,λ,l)−ζa22(Ψnq(2,λ,l))2| |
≤{−4ζ[α([3]q−1)+β]−2{[2α([2]q−1)+β](β−1)}[α([3]q−1)+β][α([2]q−1)+β]2+2[α([3]q−1)+β],ifζ≤[2α([2]q−1)+β](β−1)2[α([3]q−1)+β]2[α([3]q−1)+β], if[2α([2]q−1)+β](β−1)2[α([3]q−1)+β]≤ζ≤2{α([2]q−1)+β}2−[2α([2]q−1)+β](β−1)2[α([3]q−1)+β]4ζ[α([3]q−1)+β]+2{[2α([2]q−1)+β](β−1)}[α([3]q−1)+β][α([2]q−1)+β]2−2[α([3]q−1)+β], ifζ≥2{α([2]q−1)+β}2−[2α([2]q−1)+β](β−1)2[α([3]q−1)+β]. |
(ii) For any complex number ζ, we have
|a3Ψnq(3,λ,l)−ζa22(Ψnq(2,λ,l))2|≤2[α([3]q−1)+β]×max{1;|2ζ[α([3]q−1)+β]+{[2α([2]q−1)+β](β−1)}[α([2]q−1)+β]2−1|}. |
Putting ρ=0, in Theorem 1, we obtain the following corollary.
Corollary 2. Let f∈∑, α∈C∗∖{−1,−12}, l,λ,β≥0, m≥2, |μ|<π2,n∈N0 and 0<q<1, then Inq(λ,l)f(z)∈Pn,q,λ,lα,μ,m,βf(z) if satisfies
|a2|≤min{ √2mcosμ|2α(([2]q−1)β+q2)+β(β+1)||Ψnq(2,λ,l)|2; mcosμ|α([2]q−1)+β||Ψnq(2,λ,l)|} |
and
|a3|≤mcosμ|α([3]q−1)+β||Ψnq(3,λ,l)|+[mcosμ]2|α+β([2]q−1)|2|Ψnq(3,λ,l)|. |
Putting μ=0 and m=2 in Theorem 1, we obtain the following corollary.
Corollary 3. Let f∈∑, α∈C∗∖{−1,−12}, l,λ,β≥0, 0≤ρ<1,n∈N0 and 0<q<1, then Inq(λ,l)f(z)∈Dn,q,λ,lα,ρ,βf(z) if satisfies
|a2|≤min{ √4(1−ρ)|2α(([2]q−1)β+q2)+β(β+1)||Ψnq(2,λ,l)|2; 2(1−ρ)|α([2]q−1)+β||Ψnq(2,λ,l)|} |
and
|a3|≤2(1−ρ)|α([3]q−1)+β||Ψnq(3,λ,l)|+4(1−ρ)2|α+β([2]q−1)|2|Ψnq(3,λ,l)|. |
Putting α=1 in Theorem 1, we obtain the following corollary.
Corollary 4.Let f∈∑, l,λ,β≥0, 0≤ρ<1, m≥2, |μ|<π2,n∈N0 and 0<q<1, then Inq(λ,l)f(z)∈Un,q,λ,lμ,ρ,m,βf(z) if satisfies
|a2|≤min{ √2m(1−ρ)cosμ|2(([2]q−1)β+q2)+β(β+1)||Ψnq(2,λ,l)|2; m(1−ρ)cosμ|[2]q−1+β||Ψnq(2,λ,l)|} |
and
|a3|≤m(1−ρ)cosμ|[3]q−1+β||Ψnq(3,λ,l)|+[m(1−ρ)cosμ]2|1+β([2]q−1)|2|Ψnq(3,λ,l)|. |
Remarks. (i) Putting, β=α=1,m=2 and n=μ=0 in Theorem 1, we obtain the result obtained by Srivastava et al. [46, Theorem 2].
(ii) Letting q→1− and n=0 in Theorem 1, we obtain the result obtained by Aouf and Madian [11, with h=z1−z, Theorem 1] and [8, with h=z1−z,b=1 and δ=0, Theorem 1]).
Throughout the paper, I used the definition of Bazilevič function, bi-univalent functions with bounded boundary rotation and the definition of q-analogue Cătaş operator to introduce the new subclass Hn,q,λ,lα,μ,ρ,m,βf(z). I estimated the coefficients bounds for the functions belong to the subclass Hn,q,λ,lα,μ,ρ,m,βf(z). In addition, through this paper we presented coefficients bounds for the functions belong to the subclasses of our main class.
Srivastava [37, p. 340] discussed the connection between the classical q -analysis, which we used in this article, and its so-called trivial and inconsequential (p,q)-variation involving an obviously superfluous parameter p. Specifically, the results in this article for the q -analogues (0<q<1), can easily translated into the corresponding (p,q) -variants (0<q<p≤1) by following the observation by Srivastava [37, p. 340] who applied some obvious parametric and argument variations, the additional parameter p being redundant. As clearly and significantly pointed out by Srivastava et al. [46,48], some group of authors have made use of the so-called trivial and inconsequential (p,q)-variation by introducing a seemingly redundant parameter p in the already known results dealing with the classical q-analysis. For further details, see the survey-cum-expository review article by Srivastava [37, p. 340].
During the current study the data sets are derived arithmetically.
I would like to thank the referees for their valuable comments and helpful suggestions, which have led to an improvement of the presentation of this paper. Also, I would like to express my sincere thanks to the editor for handling the article.
The authors don't have competing for any interests.
[1] |
F. Al-Aboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci., 27 (2004), 481–494. doi: 10.1155/S0161171204108090. doi: 10.1155/S0161171204108090
![]() |
[2] |
B. Ahmad, M. G. Khan, B. A. Frasin, M. K. Aouf, T. Abdeljawad, W. K. Mashwani, et al., On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain, AIMS Math., 6 (2021), 3037–3052. doi: 10.3934/math.2021185. doi: 10.3934/math.2021185
![]() |
[3] |
Q. Z. Ahmad, N. Khan, M. Raza, M. Tahir, B. Khan, Certain q-difference operators and their applications to the subclass of meromorphic q-starlike functions, Filomat, 33 (2019), 3385–3397. doi: 10.2298/FIL1911385A. doi: 10.2298/FIL1911385A
![]() |
[4] | M. K. Aouf, A generalization of functions with real part bounded in the mean on the unit disc, Math. Japonica., 33 (1988), 175–182. |
[5] |
M. K. Aouf, Generalization of certain subclasses of multivalent functions with negative coefficients defined by using a differential operator, Math. Comput. Model., 50 (2009), 1367–1378. doi: 10.1016/j.mcm.2008.08.026. doi: 10.1016/j.mcm.2008.08.026
![]() |
[6] | M. K. Aouf, On certain multivalent functions with negative coefficients defined by using a differential operator, Mat. Vesn., 62 (2010), 23–35. doi: 0025-51651001023A. |
[7] |
M. K. Aouf, S. M. Madian, Inclusion and properties neighborhood for certain p-valent functions associated with complex order and q-p-valent Cătaş operator, J. Taibah Univ. Sci., 14 (2020), 1226–1232. doi: 10.1080/16583655.2020.1812923. doi: 10.1080/16583655.2020.1812923
![]() |
[8] |
M. K. Aouf, S. M. Madian, Coefficient bounds for bi-univalent classes defined by Bazilevič functions and convolution, Bol. Soc. Mat. Mex., 26 (2020), 1045–1062. doi: 10.1007/s40590-020-00304-0. doi: 10.1007/s40590-020-00304-0
![]() |
[9] |
M. K. Aouf, S. M. Madian, Certain classes of analytic functions associated with q-analogue of p-valent Cătaş operator, Moroccan J. Pure Appl. Anal., 7 (2021), 430–447. doi: 10.2478/mjpaa-2021-0029. doi: 10.2478/mjpaa-2021-0029
![]() |
[10] |
M. K. Aouf, S. M. Madian, Subordination factor sequence results for starlike and convex classes defined by q-Cătaş operator, Afr. Mat., 2021, 1–13. doi: 10.1007/s13370-021-00896-4. doi: 10.1007/s13370-021-00896-4
![]() |
[11] |
M. K. Aouf, S. M. Madian, A. O. Mostafa, Bi-univalent properties for certain class of Bazilevič functions defined by convolution and with bounded boundary rotation, J. Egypt. Math. Soc., 27 (2019), 11. doi: 10.1186/s42787-019-0012-2. doi: 10.1186/s42787-019-0012-2
![]() |
[12] | I. E. Bazilevič, On a case of integrability in quadratures of the Lowner-Kufarev equation, Mat. Sb., 37 (1955), 471–476. |
[13] |
M. Çaǧlar, E. Deniz, H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turk. J. Math., 41 (2017), 694–706. doi: 10.3906/mat-1602-25
![]() |
[14] | A. Cătaş, On certain classes of p-valent functions defined by multiplier transformations, Proceedings of the international symposium on geometric function theory and applications: GFTA, 2007,241–250. |
[15] | P. L. Duren, Univalent functions, New York: Springer Verlag, 1983. |
[16] | P. Goswami, B. S. Alkahtani, T. Bulboaca, Estimate for initial Maclaurin coefficients of certain subclasses of bi-univalent functions, arXiv. Available from: https://arXiv.org/abs/1503.04644. |
[17] |
Q. Hu, H. M. Srivastava, B. Ahmad, N. Khan, M. G. Khan, W. K. Mashwani, et al., A subclass of multivalent Janowski type q-starlike functions and its consequences, Symmetry, 13 (2021), 1275. doi: 10.3390/sym13071275. doi: 10.3390/sym13071275
![]() |
[18] |
Q. H. Xu, H. G. Xiao, H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (2012), 11461–11465. doi: 10.1016/j.amc.2012.05.034. doi: 10.1016/j.amc.2012.05.034
![]() |
[19] |
Q. Khan, M. Arif, M. Raza, G. Srivastava, H. Tang, S. ur Rehman, Some applications of a new integral operator in q-analog for multivalent functions, Mathematics, 7 (2019), 1178. doi: 10.3390/math7121178. doi: 10.3390/math7121178
![]() |
[20] |
B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent q-starlike functions involving higher-order q-derivatives, Mathematics, 8 (2020), 1470. doi: 10.3390/math8091470. doi: 10.3390/math8091470
![]() |
[21] | B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Tahir, Applications of higher-order derivatives to subclasses of multivalent q-starlike functions, Maejo Int. J. Sci. Technol., 15 (2021), 61–72. |
[22] |
N. Khan, M. Shafiq, M. Darus, B. Khan, Q. Z. Ahmad, Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with Lemniscate of Bernoulli, J. Math. Inequal., 14 (2020), 51–63. doi: 10.7153/jmi-2020-14-05. doi: 10.7153/jmi-2020-14-05
![]() |
[23] |
B. Khan, H. M. Srivastava, N. Khan, M. Darus, Q. Z. Ahmad, M. Tahir, Applications of certain conic domains to a subclass of q-starlike functions associated with the Janowski functions, Symmetry, 13 (2021), 574. doi: 10.3390/sym13040574. doi: 10.3390/sym13040574
![]() |
[24] |
B. Khan, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Q. Z. Ahmad, Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain, Mathematics, 8 (2020), 1334. doi: 10.3390/math8081334. doi: 10.3390/math8081334
![]() |
[25] |
B. Khan, H. M. Srivastava, M. Tahir, M. Darus, Q. Z. Ahmad, N. Khan, Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions, AIMS Math., 6 (2020), 1024–1039. doi: 10.3934/math.2021061. doi: 10.3934/math.2021061
![]() |
[26] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Z. Li, F. Ren, L. Lang, S. Zhang, Proceedings of the conference on complex analysis, International Press Inc., 1 (1994), 157–169. |
[27] |
N. Magesh, T. Rosy, S. Varma, Coefficient estimate problem for a new subclass of bi-univalent functions, J. Compl. Anal., 2013 (2013), 474231. doi: 10.1155/2013/474231. doi: 10.1155/2013/474231
![]() |
[28] | H. Orhan, M. Kamali, Neighborhoods of a class of analytic functions with negative coefficients, Acta Math. Acad. Paedagog. Nyhazi., 21 (2005), 55–61. |
[29] |
H. Orhan, N. Magesh, V. K. Balaji, Certain classes of bi-univalent functions with bounded boundary variation, Tbilisi Math. J., 10 (2017), 17–27. doi: 10.1515/tmj-2017-0042. doi: 10.1515/tmj-2017-0042
![]() |
[30] |
H. Orhan, N. Magesh, V. K. Balaji, Initial coefficient bounds for a general class of bi-univalent functions, Filomat, 29 (2015), 1259–1267. doi: 10.2298/FIL1506259O. doi: 10.2298/FIL1506259O
![]() |
[31] |
K. S. Padmanabhan, R. Paravatham, Properties of a class of functions with bounded boundary rotation, Ann. Pol. Math., 31 (1976), 311–323. doi: 10.4064/ap-31-3-311-323
![]() |
[32] |
B. Pinchuk, Functions of bounded boundary rotation, Israel J. Math., 10 (1971), 6–16. doi: 10.1007/BF02771515. doi: 10.1007/BF02771515
![]() |
[33] | S. Prema, B. S. Keerthi, Coefficient bounds for certain subclasses of analytic functions, J. Math. Anal., 4 (2013), 22–27. |
[34] |
M. S. Robertson, Variational formulas for several classes of analytic functions, Math. Z., 118 (1976), 311–319. doi: 10.1007/BF01109867. doi: 10.1007/BF01109867
![]() |
[35] | G. S. Sălăgean, Subclasses of univalent functions, In: C. A. Cazacu, N. Boboc, M. Jurchescu, I. Suciu, Complex analysis-fifth Romanian-finnish seminar, Lecture Notes in Mathematics, Springer-Verlag, 1013 (1983), 362–372. doi: 10.1007/BFb0066543. |
[36] |
R. Singh, On Bazilevič functions, Proc. Am. Math. Soc., 38 (1973), 261–271. doi: 10.1090/S0002-9939-1973-0311887-9. doi: 10.1090/S0002-9939-1973-0311887-9
![]() |
[37] |
H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327–344. doi: 10.1007/s40995-019-00815-0. doi: 10.1007/s40995-019-00815-0
![]() |
[38] | H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent functions, fractional calculus and their applications, Halsted Press, 1989,329–354. |
[39] |
H. M. Srivastava, M. Arif, M. Raza, Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator, AIMS Math., 6 (2021), 5869–5885. doi: 10.3934/math.2021347. doi: 10.3934/math.2021347
![]() |
[40] |
H. M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egypt. Math. Soc., 23 (2015), 242–246. doi: 10.1016/j.joems.2014.04.002. doi: 10.1016/j.joems.2014.04.002
![]() |
[41] |
H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient estimates for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839–1845. doi: 10.2298/FIL1508839S. doi: 10.2298/FIL1508839S
![]() |
[42] |
H. M. Srivastava, S. Gaboury, F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci., 36 (2016), 863–871. doi: 10.1016/S0252-9602(16)30045-5. doi: 10.1016/S0252-9602(16)30045-5
![]() |
[43] |
H. M. Srivastava, S. Gaboury, F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat., 28 (2017), 693–706. doi: 10.1007/s13370-016-0478-0. doi: 10.1007/s13370-016-0478-0
![]() |
[44] | H. M. Srivastava, S. B. Joshi, S. S. Joshi, H. Pawar, Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math., 5 (2016), 250–258. |
[45] |
H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. doi: 10.1016/j.aml.2010.05.009. doi: 10.1016/j.aml.2010.05.009
![]() |
[46] |
H. M. Srivastava, A. O. Mostafa, M. K. Aouf, H. M. Zayed, Basic and fractional q-calculus and associated Fekete-Sezgö problem for p-valent q-starlike functions and p-valent q-convex functions of complex order, Miskolc Math. Notes, 20 (2019), 489–509. doi: 10.18514/MMN.2019.2405. doi: 10.18514/MMN.2019.2405
![]() |
[47] |
H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general families of q-starlike functions associated with the Janowski functions, Filomat, 33 (2019), 2613–2626. doi: 10.2298/FIL1909613S. doi: 10.2298/FIL1909613S
![]() |
[48] |
H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of q-starlike functions Aassociated with the Janowski functions, Symmetry, 11 (2019), 292. doi: 10.3390/sym11020292. doi: 10.3390/sym11020292
![]() |
[49] |
H. M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, N. Khan, Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function, Bull. Sci. Math., 167 (2021), 102942. doi: 10.1016/j.bulsci.2020.102942. doi: 10.1016/j.bulsci.2020.102942
![]() |
[50] |
H. Tang, H. M. Srivastava, S. Sivasubramanian, P. Gurusamy, The Fekete-Szegö functional problems for some subclasses of m -fold symmetric bi-univalent functions, J. Math. Ineq., 10 (2016), 1063–1092. doi: 10.7153/jmi-10-85. doi: 10.7153/jmi-10-85
![]() |
[51] | D. K. Thomas, On Bazilevič functions, Am. Math. Soc., 132 (1968), 353–361. |
[52] |
D. K. Thomas, On the coefficients of gamma-starlike functions, J. Korean Math. Soc., 55 (2018), 175–184. doi: 10.4134/JKMS.j170105. doi: 10.4134/JKMS.j170105
![]() |
1. |
S. O. Olatunji,
Fekete–Szegö inequalities on certain subclasses of analytic functions defined by λ -pseudo-q-difference operator associated with s-sigmoid function,
2022,
28,
1405-213X,
10.1007/s40590-022-00445-4
|
|
2. | Zeinab Nsar, A. O. Mostafa, Samar Mohamed, On a class of bi-univalent functions of complex order related to Faber polynomials and q-Sălăgean operator, 2024, 73, 1303-5991, 664, 10.31801/cfsuasmas.1346024 |