Research article

Certain subfamily of multivalently Bazilevič and non-Bazilevič functions involving the bounded boundary rotation

  • Published: 30 May 2025
  • MSC : 30C45

  • In the present paper, we introduce a certain subfamily of multivalently Bazilevič and non-Bazilevič functions associated with bounded boundary rotation to study some interesting properties, inclusion results, and the upper bounds of the initial Taylor-Maclaurin coefficients for functions in this subfamily. In addition, some special cases of this subfamily are also discussed.

    Citation: Tamer M. Seoudy, Amnah E. Shammaky. Certain subfamily of multivalently Bazilevič and non-Bazilevič functions involving the bounded boundary rotation[J]. AIMS Mathematics, 2025, 10(5): 12745-12760. doi: 10.3934/math.2025574

    Related Papers:

  • In the present paper, we introduce a certain subfamily of multivalently Bazilevič and non-Bazilevič functions associated with bounded boundary rotation to study some interesting properties, inclusion results, and the upper bounds of the initial Taylor-Maclaurin coefficients for functions in this subfamily. In addition, some special cases of this subfamily are also discussed.



    加载中


    [1] K. M. Alsager, G. Murugusundaramoorthy, A. Catas, S. M. E. Deeb, Applications of Caputo-type fractional derivatives for subclasses of bi-univalent functions with bounded boundary rotation, Fractal Fract., 8 (2024), 501. https://doi.org/10.3390/fractalfract8090501 doi: 10.3390/fractalfract8090501
    [2] M. K. Aouf, A generalized of functions with real part bounded in the mean on the unit disc, Math. Japonica, 33 (1988), 175–182.
    [3] M. K. Aouf, T. M. Seoudy, On certain class of multivalent analytic functions defined by differential subordination, Rend. Circ. Mat. Palermo, 60 (2011), 191–201. https://doi.org/10.1007/s12215-011-0042-6 doi: 10.1007/s12215-011-0042-6
    [4] M. K. Aouf, T. M. Seoudy, Some properties of certain subclasses of p-valent Bazilevič functions associated with the generalized operator, Appl. Math. Lett., 24 (2011), 1953–1958. https://doi.org/10.1016/j.aml.2011.05.029 doi: 10.1016/j.aml.2011.05.029
    [5] M. K. Aouf, T. M. Seoudy, Certain class of bi-Bazilevič functions with bounded boundary rotation involving Salagean operator, Constr. Math. Anal., 3 (2020), 139–149. https://doi.org/10.33205/cma.781936 doi: 10.33205/cma.781936
    [6] M. K. Aouf, T. Bulboaca, T. M. Seoudy, Subclasses of meromorphic functions associated with a convolution operator, Filomat, 33 (2019), 2211–2218. https://doi.org/10.2298/FIL1908211A doi: 10.2298/FIL1908211A
    [7] M. K. Aouf, T. Bulboaca, T. M. Seoudy, Subclasses of multivalent non-Bazilevič functions defined with higher order derivatives, Bull. Transilvania Univ. Brasov, Series Ⅲ Math. Comput. Sci., 13 (2020), 411–422. https://doi.org/10.31926/but.mif.2020.13.62.2.4 doi: 10.31926/but.mif.2020.13.62.2.4
    [8] D. Breaz, P. Sharma, S. Sivasubramanian, S. M. E. Deeb, On a new class of Bi-close-to-convex functions with bounded boundary rotation, Mathematics, 11 (2023), 4376. https://doi.org/10.3390/math11204376 doi: 10.3390/math11204376
    [9] P. Goswami, B. S. Alkahtani, T. Bulboacă, Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions, Miskolc Math. Notes, 17 (2016), 739–748. https://doi.org/10.18514/MMN.2017.1565 doi: 10.18514/MMN.2017.1565
    [10] M. Liu, On certain subclass of p-valent functions, Soochow J. Math., 20 (2000), 163–171.
    [11] S. S. Miller, P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289–305. https://doi.org/10.1016/0022-247X(78)90181-6 doi: 10.1016/0022-247X(78)90181-6
    [12] A. Murugan, S. M. E. Deeb, M. R. Almutiri, J. S. Ro, P. Sharma, S. Sivasubramanian, Certain new subclasses of bi-univalent function associated with bounded boundary rotation involving salagean derivative, AIMS Math., 9 (2024), 27577–27592. https://doi.org/10.3934/math.20241339 doi: 10.3934/math.20241339
    [13] K. I. Noor, On subclasses of close-to-convex functions of higher order, Int. J. Math. Math. Sci., 15 (1992), 279–290. https://doi.org/10.1155/S016117129200036X doi: 10.1155/S016117129200036X
    [14] M. Obradovic, A class of univalent functions, Hokkaido Math. J., 27 (1998), 329–335. https://doi.org/10.14492/hokmj/1351001289 doi: 10.14492/hokmj/1351001289
    [15] S. Owa, M. Obradovic, Certain subclasses of Bazilevič functions of type $\alpha $, Int. J. Math. Math. Sci., 9 (1986), 97–105.
    [16] S. Owa, On certain Bazilevič functions of order $\beta $, Int. J. Math. Math. Sci., 15 (1992), 613–616. https://doi.org/10.1155/S0161171292000796 doi: 10.1155/S0161171292000796
    [17] K. S. Padmanabhan, R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Pol. Math., 31 (1975), 311–323. https://doi.org/10.4064/ap-31-3-311-323 doi: 10.4064/ap-31-3-311-323
    [18] B. Pinchuk, Functions with bounded boundary rotation, Isr. J. Math., 10 (1971), 7–16. https://doi.org/10.1007/BF02771515 doi: 10.1007/BF02771515
    [19] H. Saitoh, On certain class of mulivalent functions, Math. Japonica, 37 (1992), 871–875.
    [20] T. M. Seoudy, A. E. Shammaky, On certain class of Bazilevič functions associated with the Lemniscate of Bernoulli, J. Funct. Spaces, 2020 (2020), 6622230. https://doi.org/10.1155/2020/6622230 doi: 10.1155/2020/6622230
    [21] R. Singh, On Bazilevič functions, P. Am. Math. Sci., 38 (1973), 261–267. https://doi.org/10.1090/S0002-9939-1973-0311887-9 doi: 10.1090/S0002-9939-1973-0311887-9
    [22] N. L. Sharma, T. Bulboaca, Logarithmic coefficient bounds for the class of bazilevic functions, Anal. Math. Phys., 14 (2024), 52. https://doi.org/10.1007/s13324-024-00909-y doi: 10.1007/s13324-024-00909-y
    [23] P. Sharma, S. Sivasubramanian, N.vE. Cho, Initial coefficient bounds for certain new subclasses of bi-bazilevic functions and exponentially bi-convex functions with bounded boundary rotation, Axioms, 13 (2024), 25. https://doi.org/10.3390/axioms13010025 doi: 10.3390/axioms13010025
    [24] H. M. Srivastava, S. Khan, S. N. Malik, F. Tchier, A. Saliu, Q. Xin, Faber polynomial coefficient inequalities for bi-bazilevic functions associated with the Fibonacci number series and the square-root functions, J. Inequal. Appl., 16 (2024). https://doi.org/10.1186/s13660-024-03090-9 doi: 10.1186/s13660-024-03090-9
    [25] Y. Tian, Z. Wang, Finite-time extended dissipative filtering for singular T-S fuzzy systems with nonhomogeneous Markov jumps, IEEE T. Cybernetics, 52 (2022), 4574–4584. https://doi.org/10.1109/TCYB.2020.3030503 doi: 10.1109/TCYB.2020.3030503
    [26] N. Tuneski, M. Darus, Fekete-Szegö functional for non-Bazilevič functions, Acta Math. Acad. Paed. Nyireyháziensis, 18 (2002), 63–65.
    [27] S. Umar, M. Arif, M. Raza, S. K. Lee, On a subclass related to Bazilevič functions, AIMS Math., 5 (2020), 2040–2056. https://doi.org/10.3934/math.2020135 doi: 10.3934/math.2020135
    [28] A. K. Wanas, S. A. Sehen, A. O. P. Szabo, Toeplitz matrices for a class of bazilevic functions and the $\lambda $-pseudo-starlike functions, Axioms, 13 (2024), 521. https://doi.org/10.3390/axioms13080521 doi: 10.3390/axioms13080521
    [29] Z. Wang, C. Gao, M. Liao, On certain generalized class of non-Bazilevič functions, Acta Math. Acad. Paed. Nyireyháziensis, 21 (2005), 147–154.
    [30] D. G. Yang, Properties of certain classes of multivalent functions, Bull. Inst. Math. Acad., 22 (1994), 361–367.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(828) PDF downloads(39) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog