In this paper, we mainly investigate long-time behavior for viscoelastic equation with fading memory
utt−Δutt−νΔu+∫+∞0k′(s)Δu(t−s)ds+f(u)=g(x).
The main feature of the above equation is that the equation doesn't contain −Δut, which contributes to a strong damping. The existence of global attractors is obtained by proving asymptotic compactness of the semigroup generated by the solutions for the viscoelastic equation. In addition, the upper semicontinuity of global attractors also is obtained.
Citation: Jiangwei Zhang, Yongqin Xie. Asymptotic behavior for a class of viscoelastic equations with memory lacking instantaneous damping[J]. AIMS Mathematics, 2021, 6(9): 9491-9509. doi: 10.3934/math.2021552
[1] | Xiaoming Peng, Yadong Shang . Attractors for a quasilinear viscoelastic equation with nonlinear damping and memory. AIMS Mathematics, 2021, 6(1): 543-563. doi: 10.3934/math.2021033 |
[2] | Tingting Liu, Tasneem Mustafa Hussain Sharfi, Qiaozhen Ma . Time-dependent asymptotic behavior of the solution for evolution equation with linear memory. AIMS Mathematics, 2023, 8(7): 16208-16227. doi: 10.3934/math.2023829 |
[3] | Peipei Wang, Yanting Wang, Fei Wang . Indirect stability of a 2D wave-plate coupling system with memory viscoelastic damping. AIMS Mathematics, 2024, 9(7): 19718-19736. doi: 10.3934/math.2024962 |
[4] | Abdelbaki Choucha, Salah Boulaaras, Djamel Ouchenane, Mohamed Abdalla, Ibrahim Mekawy . Existence and uniqueness for Moore-Gibson-Thompson equation with, source terms, viscoelastic memory and integral condition. AIMS Mathematics, 2021, 6(7): 7585-7624. doi: 10.3934/math.2021442 |
[5] | Ke Li, Yongqin Xie, Yong Ren, Jun Li . Pullback attractors for the nonclassical diffusion equations with memory in time-dependent spaces. AIMS Mathematics, 2023, 8(12): 30537-30561. doi: 10.3934/math.20231561 |
[6] | Keltoum Bouhali, Sulima Ahmed Zubair, Wiem Abedelmonem Salah Ben Khalifa, Najla ELzein AbuKaswi Osman, Khaled Zennir . A new strict decay rate for systems of longitudinal m-nonlinear viscoelastic wave equations. AIMS Mathematics, 2023, 8(1): 962-976. doi: 10.3934/math.2023046 |
[7] | Quan Zhou, Yang Liu, Dong Yang . Global attractors for a class of viscoelastic plate equations with past history. AIMS Mathematics, 2024, 9(9): 24887-24907. doi: 10.3934/math.20241212 |
[8] | Qian Li . General and optimal decay rates for a viscoelastic wave equation with strong damping. AIMS Mathematics, 2022, 7(10): 18282-18296. doi: 10.3934/math.20221006 |
[9] | Abdelbaki Choucha, Salah Boulaaras, Asma Alharbi . Global existence and asymptotic behavior for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, distributed delay and Balakrishnan-Taylor damping terms. AIMS Mathematics, 2022, 7(3): 4517-4539. doi: 10.3934/math.2022252 |
[10] | Ahmed Himadan . Well defined extinction time of solutions for a class of weak-viscoelastic parabolic equation with positive initial energy. AIMS Mathematics, 2021, 6(5): 4331-4344. doi: 10.3934/math.2021257 |
In this paper, we mainly investigate long-time behavior for viscoelastic equation with fading memory
utt−Δutt−νΔu+∫+∞0k′(s)Δu(t−s)ds+f(u)=g(x).
The main feature of the above equation is that the equation doesn't contain −Δut, which contributes to a strong damping. The existence of global attractors is obtained by proving asymptotic compactness of the semigroup generated by the solutions for the viscoelastic equation. In addition, the upper semicontinuity of global attractors also is obtained.
In this paper, we mainly study the following initial-boundary value problem for viscoelastic equation with hereditary memory:
{utt−Δutt−νΔu−∫+∞0k′(s)Δu(t−s)ds+f(u)=g(x),(x,t)∈Ω×R+,u(x,t)|∂Ω=0,∀t∈R+,u(x,0)=u0(x),ut(x,0)=u1(x)x∈Ω, | (1.1) |
where Ω⊂R3 is a bounded smooth domain, ν>0, and the forcing term g=g(x)∈L2(Ω) is given.
Next, we establish the following hypotheses for the kernel function k(s)
(H1) Let μ(s)=−k′(s), and assume
μ∈C1(R+)∩L1(R+),μ(s)≥0,μ′(s)≤0,∀s∈R+, | (1.2) |
and there exists δ>0, such that
μ′(s)+δμ(s)⩽0,∀s∈R+, | (1.3) |
and let
m0=∫∞0μ(s)ds. |
(H2) The nonlinearity f∈C1 satisfies f(0)=0 and also fulfills the following conditions
|f′(s)|≤c(1+|s|4),∀s∈R | (1.4) |
and
lim|s|→∞inff(s)s>−λ1. | (1.5) |
where c,λ1 are positive constants and λ1 is the first eigenvalue of −Δ in H10(Ω) with Dirichlet boundary condition. From (1.5), it's easy to get that there exist λ(0<λ<λ1) and cf≥0; such that
f(s)s≥−λs2−C. | (1.6) |
Let F(s)=∫s0f(σ)dσ, then
F(u)≥−12λ|u|2−cfandf(u)u≥F(u)−12λ|u|2−cf. | (1.7) |
The equation associated with Eq (1.1) is as follows
utt−uxx−uxxtt=0, |
which mainly describes a pure dispersion wave process, such as the motion equation of strain-arc wave of linear elastic rod considering transverse inertia and ion-acoustic wave propagation equation in space transformation with weak nonlinear effects (see e.g., [1,2,3,4]).
In recent years, the following types of equations have been studied by many scholars (see e.g., [5,6,7,8,9,10,11,12,13,14,15,16,17,18] and the references therein)
|ut|ρutt−Δutt−γΔut−αΔu+∫t0g(u−t)Δu(s)ds+νf(ut)+μg(u)=0. |
Many researchers considered different kinds of cases, respectively, when the parameters ρ,γ,α,ν,μ=0 or ρ,γ,α,ν,μ≠0 under different situations. However, they only obtained global existence of solutions and the energy decay results[6,7,8,15,16]. In particular, in [10,11,17], the scholars only proved blow-up result, decay result and global existence result of solutions under various kinds of conditions and when the dispersion term and dissipative term don't be contained. Next, we analyze several key results in detail. Araújo et al.[18] established well-posedness result when γ≥0,ν,μ=0 and proved the existence of global attractor when ν,μ=0 and −Δut was included.
Qin et al.[19] proved the existence of uniform attractors in non-autonomous case by improving the result of [18] when −Δut was still included. Recently, Conti et al.[20] obtained the existence of global attractors and optimal regularity of global attractors for the following equation when the nonlinearity f meets critical growth
|ut|ρutt−Δutt−Δu+∫+∞0μ(s)Δu(t−s)ds+f(u)=h. |
with ρ∈[0,4] and ρ<4, respectively. Therefore, based on the above existing research, we devote to obtain the existence of global attractors in higher regular space for the problem (1.1) which doesn't contain the strong damping −Δut in this paper.
Firstly, because the Eq (1.1) doesn't contain strong dissipative term −Δut, which makes that the Eq (1.1) is different from usual viscoelastic equations. Next, for the Eq (1.1), its dissipation is only generated by memory term with weaker dissipation rather than the strong dissipative term −Δut, which leads to the need of higher regularity to ensure compactness, so the multiplier Aκut will be used to obtain our result. We use new analytical techniques to obtain the upper semicontinuity of global attractors. Thus, our results complement the existing conclusions because we only use the memory dissipation to prove the existence and the semicontinuity of global attractors.
In addition, to the best of our knowledge, the key point for proving the existence of global attractors is to verify the existence of bounded absorbing set and the compactness of the semigroup in some sense. However, the absence of term −Δut causes that energy dissipation of Eq (1.1) is lower than usual viscoelastic equation, and its dissipation only is presented by the memory term. Hence, this will lead to two main difficulties. On the one hand, the absence of term −Δut makes the equation lacks strong structural damping. On the other hand, to ensure strong convergence of the solution in L2(0,T;H10(Ω)), how to obtain higher regularity of solutions. Thereby, for obtaining dissipative and compactness of semigroup, we will use analysis techniques and the ideas in [21,22] to overcome these difficulties.
The plan of this paper is as follows. In Section 2, we recall some basic concepts and useful results that will be used later. In Section 3, firstly, the bounded absorbing set is obtained. Secondly, we verify asymptotic compact of semigroup by contractive function method [23,24]. Finally, the existence of global attractors A is proved in H10(Ω)×H10(Ω)×L2μ(R+;H10(Ω)). In section 4, we obtain the upper semicontinuity of global attractors.
Following the Dafermos' idea of introducing an additional variable ηt, the past history of u, whose evolution is ruled by a first-order hyperbolic equation (see e.g., [25] and references therein). Thus the original problem (1.1) can be translated into a dynamical system on a phase space with two components (see [26]). In particular, in the following, we introduce the past history of u in the, i.e.
ηt=ηt(x,s):=u(x,t)−u(x,t−s),s∈R+, | (2.1) |
Provided that let ηtt=∂∂tηt,ηts=∂∂sηt, then we have
ηtt=−ηts+ut∀(x,s)∈Ω×R+,t≥0. | (2.2) |
Historical variable u0(⋅,−s) of u satisfies the following condition
∫∞0e−σs‖u0(−s)‖20ds≤ℜ. | (2.3) |
where ℜ>0 and σ≤δ (δ is from (1.3)).
By (H1) and (2.1), (2.2), we get
−∫∞0k′(s)Δu(t−s)ds=∫∞0μ(s)Δuds−∫∞0μ(s)Δηt(s)ds | (2.4) |
=m0Δu−∫∞0μ(s)Δηt(s)ds. | (2.5) |
Thus, if we assume ν−m0=1, then the system (1.1) can be rewrite as
{ utt−Δutt−Δu−∫∞0μ(s)Δηt(s)ds+f(u)=g(x),ηtt=−ηts+ut. | (2.6) |
with initial-boundary condition
{ u(x,t)|∂Ω=0,ηt(x,s)|∂Ω×R+=0,t≥0,u(x,0)=u0(x),ut(x,0)=u1(x),η0(x,s)=∫s0u0(x,−r)dr,(x,s)∈Ω×R+. | (2.7) |
In the whole paper, unless otherwise stated, z(t)=(u(t),ut(t),ηt) is the solution of systems (2.6), (2.7) with initial value z0=(u0,u1,η0).
For conveniences, hereafter let |⋅|p be the norm of Lp(Ω)(p≥1). Let ⟨⋅,⋅⟩ be the inner product of L2(Ω), ‖⋅‖20 be the equivalent norm H10(Ω). Denote A=−Δ with domain D(A)=H2(Ω)∩H10(Ω).
Denoting the weight space V1=L2μ(R+;H10(Ω)), V2=L2μ(R+;D(A)) and its inner product and norm are
⟨ψ,η⟩μ,0=∫∞0μ(s)⟨∇ψ,∇η⟩ds;‖ηt‖2μ,0=∫∞0μ(s)‖ηt‖20ds. |
Then phase spaces of the Eq (2.6) are
M1=H10×H10×V1, |
and their corresponding norms are
‖⋅‖2M1=‖⋅‖20+‖⋅‖20+‖⋅‖2V1, |
In addition, denote Vκ=D(Aκ+12)(κ∈(0,12)) and let ‖⋅‖κ be the norm of Vκ. Then we can also define phase space of the Eq (1.1) is
Mκ=Vκ×Vκ×L2μ(R+;Vκ). |
and the corresponding norm is ‖⋅‖2Mκ=‖⋅‖2κ+‖⋅‖2κ+‖⋅‖2μ,κ.
And there exists the following compact embedding
D(As2)↪D(Ar2),∀s>r. | (2.8) |
Definition 2.1. Let X be a Banach spaces and X be a family of operators defined on it. We say that {S(t)}t≥0 is a continuous semigroup on X if {S(t)}t≥0 fulfills
S(t):X→X,∀t≥0. |
and satisfies
(i)S(0)=Id(Identity operator);
(ii)S(t+s)=S(t)S(s),∀t,s≥0.
The main results of this paper (the existence of global attractors) can be obtained by the following definitions and theorem. Next, let's talk about it (it's similar to [14,23,26]).
Definition 2.2. Let X,Y be two Banach spaces and B be a bounded subset of X×Y. We call a function ϕ(⋅,⋅;⋅,⋅), defined on (X×X)×(Y×Y), to be a contractive function if for any sequence {(xn,yn)}∞n=1⊂B, there is a subsequence {(xnk,ynk)}∞k=1⊂{(xn,yn)}∞n=1 satisfies
limk→∞liml→∞ϕ(xnk,xnl;ynk,ynl)=0. | (2.9) |
We denote the set of all contractive functions on B×B by E(B).
Lemma 2.3. Let X,Y be two Banach spaces and B be a bounded subset of X×Y, {S(t)}t≥0 is semigroup with a bounded absorbing set B0 on X×Y. Moreover, assume that for any ε>0 there exist T=T(B;ε) and ϕT(⋅,⋅;⋅,⋅)∈E(B) such that
‖S(T)z1−S(T)z2‖X≤ε+ϕT(x1,x2;y1,y2),∀(xi,yi)∈B(i=1,2). |
where ϕT depends on T. Then the semigroup {S(t)}t≥0 is asymptotically compact in X×Y.
In the following theorem, we give a method to verify the asymptotically compactness of a semigroup generated by the Eq (1.1), which will be used in our later discussion.
Theorem 2.4. Let X,Y be two Banach spaces and {S(t)}t≥0 be a continuous semigroup on X×Y. Then {S(t)}t≥0 has a global attractor in X×Y. Provided that the following conditions hold:
(i) {S(t)}t≥0 has a bounded absorbing set B0 on X×Y;
(ii) {S(t)}t≥0 is a contractive semigroup on X×Y.
Lemma 2.5. Let X⊂⊂H⊂Y be Banach spaces, with X reflexive. Suppose that un is a sequence that is uniformly bounded in L2(0,T;X) and dun/dt is uniformly bounded in Lp(0,T;Y), for some p>1. Then there is a subsequence of un that converges strongly in L2(0,T;H).
Throughout the paper, we assume that Ω⊂Rn(n=3) be bounded smooth domain, the kernel function μ and the nonlinearity satisfy (H1) and (H2) respectively, and g∈L2(Ω).
Firstly, the well-posedness result for the Eq (1.1) can be obtained by the Faedo-Galerkin method (see e.g., [18]). Thereout, we only give the final result.
Lemma 3.1. For any T>0 and z0=(u0,u1,η0)∈M1, the problem (1.1) has unique weak solution z=(u(x,t),ut(x,t),ηt) satisfying
z∈C([0,T];M1),. |
and
u∈L∞([0,T];H10(Ω)),ut∈L∞([0,T];H10(Ω)),utt∈L2([0,T];H10(Ω)),ηt∈L∞([0,T],L2μ(R+;H10(Ω))). |
By Lemma 3.1, the semigroup {S(t)}t≥0 in M1 will be defined as the following:
S(t):M1→M1,z0→z(t)=S(t)z0, |
and it is a strongly continuous semigroup on M1.
Lemma 3.2. For some R>0 and
‖z0‖M1≤R, |
then there exists a constant R1=R1(R), such that for any t≥0, the following estimate holds:
|ut(t)|22+‖ut(t)‖20+‖u(t)‖20+‖ηt‖2μ,0≤R1. |
Proof. Multiplying the first equation of (2.6) by ut, and integrating over Ω, we obtain that
12ddt[|ut|22+‖ut‖20+‖u‖20+‖ηt‖2μ,0−2⟨F(u),1⟩−2⟨g,u⟩]+δ‖ηt‖2μ,0=0. | (3.1) |
Next, let E(t)=|ut|22+‖ut‖20+‖u‖20+‖ηt‖2μ,0−2⟨F(u),1⟩−2⟨g,u⟩, then by (H2), H¨older inequality and Young inequality, we can get that
E(t)≥|ut|22+‖ut‖20+1−λλ12‖u‖20+‖ηt‖2μ,0−2λ1−λ|g|22−2cf|Ω|≥1−λλ12[|ut|22+‖ut‖20+12‖u‖20+‖ηt‖2μ,0]−C(1+|g|22), | (3.2) |
and
E(t)≤|ut|22+‖ut‖20+‖u‖20+‖ηt‖2μ,0+λ12|u|22+2λ1|g|22+C(1+|u|66)≤|ut|22+‖ut‖20+32‖u‖20+‖ηt‖2μ,0+2λ1|g|22+C(1+‖u‖60) | (3.3) |
hold for any t≥0.
In addition, it's easy to obtain that
ddtE(t)+δ‖ηt‖2μ,0≤0. | (3.4) |
Integrating (3.4) about t from 0 to t, and combining with (3.2), (3.3), we have
|ut(t)|22+‖ut(t)‖20+‖u(t)‖20+‖ηt‖2μ,0+∫t0‖ητ‖2μ,0dτ≤R1. | (3.5) |
where R1=R1(‖z(0)‖M1) depends on ‖z(0)‖M1.
Lemma 3.3. For any T>0, z0∈M1 and ‖z0‖M1≤R, then there exists a constant K1=K1(R,T), it follows that
|utt|22+‖utt(t)‖20+∫t0‖utt(s)‖20ds≤K1. | (3.6) |
holds for any t∈[0,T].
Proof. Multiplying the first equation of (2.6) by utt, and integrating over Ω, we obtain that
|utt|22+‖utt(t)‖20≤−∫Ω∇u∇utt−∫Ωf(u)utt+∫Ωgutt−∫∞0μ(s)∫Ω∇ηt(s)∇uttds. | (3.7) |
Using Lemma3.2, H¨older inequality and Young inequality, then
|−∫Ω∇u∇uttdx|≤2‖u‖20+18‖utt‖20.|∫Ωguttdx|≤2λ1|g|22+18‖utt‖20.|−∫∞0μ(s)∫Ω∇ηt(s)∇uttdxds|≤2m0‖ηt‖2μ,0+18‖utt‖20.|−∫Ωf(u)uttdx|≤c∫Ω(1+|u|5)uttdx≤C(1+R61)+12|utt|22+18‖utt‖20 | (3.8) |
By Lemma 3.2, we have
|utt|22+‖utt(t)‖20≤C[1+R61+|g|22]. | (3.9) |
Combining with (3.8) and t∈[0,T], we get
∫t0‖utt(s)‖20ds≤C[1+R61+|g|22]T. | (3.10) |
Just let K1=C[1+R61+|g|22](1+T), then (3.6) holds.
Lemma 3.4. Provided that (u(t),ut(t),ηt) is a sufficiently regular solution of (2.6), (2.7). Then, for the functional
Λ0(t)=−⟨ηt,ut⟩M1−∫∞0μ(s)⟨ηt,ut⟩ds, |
it satisfies the following estimate
ddtΛ0(t)+m02[|ut(t)|22+‖ut(t)‖20]≤(l+C)‖u(t)‖20+(m0l+m0)‖ηt‖2μ,0+μ(0)2m0(1+1λ21)∫∞0−μ′(s)‖ηt(s)‖20ds+l2λ21|g|22. | (3.11) |
And we can also obtain
|Λ0(t)|≤k0H(t). | (3.12) |
where H(t)=12|ut|22+12‖u‖20+12‖ut‖20+12‖ηt‖2μ,0, and k0=k0(m0) is a positive constant.
Proof. First of all, by Hölder inequality and Young inequality, it's easy to get that
|Λ0(t)|≤‖ut‖0∫∞0μ(s)‖ηt(s)‖0ds+|ut|2∫∞0μ(s)|ηt|2ds≤√m0‖ut‖0‖ηt(s)‖μ,0+√m0λ1|ut|2‖ηt(s)‖μ,0≤k0H(t). |
Next, taking the derivative about t for Λ0(t), we have
ddtΛ0(t)=∫∞0μ(s)⟨ηt,Δutt−utt⟩ds+∫∞0μ(s)⟨ηtt,Δut−ut⟩ds=∫∞0μ(s)⟨ηt,−Δu−∫∞0μ(s)Δηt(s)ds+f(u)−g⟩ds+∫∞0μ(s)⟨ηtt,Δut−ut⟩ds. | (3.13) |
Now, we sequentially deal with the two terms on the right of (3.13).
The estimate for the first term is as follows
|∫∞0μ(s)⟨ηt,−Δu⟩ds|≤l‖u‖20+m04l‖ηt‖2μ,0|∫∞0μ(s)⟨ηt,−∫∞0μ(s)Δηtds⟩ds|≤m0‖ηt‖2μ,0|∫∞0μ(s)⟨ηt,g⟩ds|≤l2λ21|g|22+m02l‖ηt‖2μ,0;|∫∞0μ(s)⟨ηt,f(u)⟩ds|≤m120|f(u)|65‖ηt‖μ,0≤C‖u‖20+m04l‖ηt‖2μ,0. | (3.14) |
The estimate for the second term, by concerning the second equation of (2.6), we obtain
∫∞0μ(s)⟨ηtt,Δut⟩ds=−⟨ηtt,ut⟩M1=⟨ηts,ut⟩M1−m0‖ut‖20≤√μ(0)‖ut‖0(∫∞0−μ′(s)‖ηt(s)‖20ds)12−m0‖ut‖20≤−m02‖ut‖20+μ(0)2m0∫∞0−μ′(s)‖ηt(s)‖20ds. | (3.15) |
and
|∫∞0μ(s)⟨ηtt,−ut⟩ds|≤√μ(0)λ1|ut|2(∫∞0−μ′(s)‖ηt(s)‖20ds)12−m0|ut|22≤−m02|ut|22+μ(0)2λ21m0∫∞0−μ′(s)‖ηt(s)‖20ds. | (3.16) |
Thus, combining with (3.13)–(3.15), then (3.11) holds.
Lemma 3.5. Assuming that (u(t),ut(t),ηt) is a sufficiently regular solution of (2.6), (2.7). Then the functional
N(t)=∫Ω(ut−Δut)u, |
fulfills the following control
|N(t)|≤kH(t). | (3.17) |
And we can obtain differential inequality
N′(t)≤ε−12‖u‖20+(ε−1)H(t)+(k1−ε−12)‖ut‖20+(m04ε−ε−12)‖ηt‖2μ,0+1−ε2|ut|22+|g|2|u|2. | (3.18) |
where k is a positive constant and ε∈(0,1).
Proof. Using H¨older inequality, Young inequality and Poincareˊ inequality, it's easy to get
\begin{align} |\mathcal{N}(t)|&\leq \frac{1}{2}\big(|u_t|_2^2+|u|_2^2\big)+\frac{1}{2}\big(\|u_t\|_0^2+\|u\|_0^2\big)\\ &\leq k\big(\|u_t\|_0^2+\|u\|_0^2\big) \leq kH(t). \end{align} | (3.19) |
Furthermore, taking the time-derivative for \mathcal{N}(t) and combining with the first equation (2.6), it follows that
\begin{align} \mathcal{N}'(t)+\int_{\Omega}f(u)udx &\leq -\int_0^{\infty}\mu(s)\langle\nabla u,\nabla \eta^t\rangle ds + \langle g,u\rangle - \|u\|_0^2 + k_1\|u_t\|_0^2, \end{align} | (3.20) |
where k_1\geq \frac{1}{\lambda_1}+1 . Next, we dispose each term on the right side of (3.20), it follows that
\begin{align} |-\int_0^{\infty}\mu(s)\langle\nabla u,\nabla \eta^t\rangle ds| &\leq \sqrt{m_0}\|u\|_0\int_0^{\infty}\mu(s)\|\eta^t(s)\|_0^2ds\\ &\leq \varepsilon \|u\|_0^2 + \frac{m_0}{4\varepsilon}\|\eta^t(s)\|_{\mu,0}^2, \end{align} | (3.21) |
and by (1.6)
\begin{align} \begin{split} &|\int_{\Omega}gu dx| \leq |g|_2|u|_2 ,\\ \end{split} \end{align} | (3.22) |
By (3.20)–(3.22) and the definition of H(t) , it yields
\begin{align*} &\mathcal{N}'(t)+\int_{\Omega}f(u)udx\\ &\leq \frac{\varepsilon-1}{2}\|u\|_0^2 + \frac{\varepsilon-1}{2}\big[2H(t)-|u_t|_2^2-\|u_t\|_0^2 - \|\eta^t\|_{\mu,0}^2\big]+\frac{m_0}{4\varepsilon}\|\eta^t\|_{\mu,0}^2+|g|_2|u|_2+k_1\|u_t\|_0^2 \\ &\leq \frac{1-\varepsilon}{2}|u_t|_2^2 + \frac{\varepsilon-1}{2}\|u\|_0^2 + ({\varepsilon-1})H(t) + \big(k_1-\frac{\varepsilon-1}{2}\big)\|u_t\|_0^2 + \big(\frac{m_0}{4\varepsilon} - \frac{\varepsilon-1}{2}\big)\|\eta^t\|_{\mu,0}^2+|g|_2|u|_2. \end{align*} |
Theorem 3.6. There exists a constant \mathcal{R}_0 , such that, for any T_0 = T_0(\|z_0\|_{\mathcal{M}_1}) > 0 , whenever
z_0\in \mathcal{M}_1, |
then for all t\geq T_0 , we have
\begin{align*} \|S(t)z_0\|_{\mathcal{M}_1} \leq \mathcal{R}_0. \end{align*} |
Proof. According to the definition of H(t) , we can obtain
\begin{align} H'(t)+\frac{d}{dt}\langle F(u),1\rangle+\frac{\delta}{4}\|\eta^t\|_{\mu,0}^2 \leq \frac{1}{4}\int_0^{\infty}\mu'(s)\|\eta^t(s)\|_0^2ds +\langle g,u_t\rangle. \end{align} | (3.23) |
In addition, the following functional can be defined
\mathcal{L}(t) = C{H}(t)+\epsilon\mathcal{N}(t)+\epsilon \langle F(u),1\rangle +\Lambda_0(t). |
By Lemma 3.4 and Lemma 3.5, we get
\begin{align} (C-\epsilon k - k_0) {H}(t) \leq \mathcal{L}(t)-\epsilon \langle F(u),1\rangle \leq (C+\epsilon k + k_0)H (t). \end{align} | (3.24) |
Let its perturbation \epsilon be small enough and C be sufficiently large, and combining with (H_2) , then it yields
\begin{align} \frac{C}{2}{H}(t)+\epsilon \langle F(u),1\rangle \leq \mathcal{L}(t) \leq \frac{3C}{2}{H}(t)+\epsilon \langle F(u),1\rangle. \end{align} | (3.25) |
However, combining with (H_2) , (3.11), (3.18) and (3.23), we have
\begin{align} &\mathcal{L}'(t)+\epsilon\langle f(u),u\rangle+C\frac{\delta}{4}\|\eta^t\|_{\mu,0}^2+\frac{m_0}{2}\big[|u_t|_2^2+\|u_t\|_0^2\big]\\ &\leq \big(\frac{m_0}{4}+\epsilon\frac{1-\varepsilon}{2}\big)|u_t|_2^2+ \big(\frac{C^2}{m_0}+\frac{1+4\epsilon}{2\lambda_1^2}\big)|g|_2^2 +\big[l-\frac{\epsilon(3-4\varepsilon)}{8}\big]\|u\|_0^2-\epsilon(1-\varepsilon)H(t)\\ &+\epsilon(k_1-\frac{\varepsilon-1}{2})\|u_t\|_0^2+\epsilon\big(\frac{m_0}{4\varepsilon}-\frac{\varepsilon-1}{2}+\frac{3m_0}{4l}+m_0\big)\|\eta^t\|_{\mu,0}^2 \\ & +\big[\frac{C}{4}-\frac{\mu(0)}{2m_0}\big(1+\frac{1}{\lambda_1^2}\big)\big]\int_0^{\infty}\mu'(s)\|\eta^t(s)\|_0^2ds. \end{align} | (3.26) |
i.e.
\begin{align} \begin{split} &\mathcal{L}'(t)+\epsilon\langle F(u),1\rangle+\epsilon(1-\varepsilon)H(t)\\ &\leq \big(-\frac{m_0}{4}+\epsilon\frac{1-\varepsilon}{2}\big)|u_t|_2^2+ \big(\frac{C^2}{m_0}+\frac{1+4\epsilon}{2\lambda_1^2}\big)|g|_2^2 +\big[l+\frac{\epsilon\lambda}{\lambda_1}-\frac{\epsilon(3-4\varepsilon)}{8}\big]\|u\|_0^2\\ &+\big[\epsilon(k_1-\frac{\varepsilon-1}{2})-\frac{m_0}{2}\big]\|u_t\|_0^2 +\big[\epsilon\big(\frac{m_0}{4\varepsilon}-\frac{\varepsilon-1}{2}+\frac{3m_0}{4l}+m_0\big)-C\frac{\delta}{4}\big]\|\eta^t\|_{\mu,0}^2 \\ & +\big[\frac{C}{4}-\frac{\mu(0)}{2m_0}\big(1+\frac{1}{\lambda_1^2}\big)\big]\int_0^{\infty}\mu'(s)\|\eta^t(s)\|_0^2ds+\epsilon c_f|\Omega|. \end{split} \end{align} | (3.27) |
Thus, when \delta is fixed, then we can choose appropriate l, \epsilon, C , such that
l+\frac{\epsilon\lambda}{\lambda_1}-\frac{\epsilon(3-4\varepsilon)}{8} < 0, \quad \epsilon(k_1-\frac{\varepsilon-1}{2})-\frac{m_0}{2} < 0,\quad -\frac{m_0}{4}+\epsilon\frac{1-\varepsilon}{2} < 0, |
and
\epsilon\big(\frac{m_0}{4\varepsilon}-\frac{\varepsilon-1}{2}\big)-C\frac{\delta}{4} < 0, \quad \frac{C}{4}-\frac{\mu(0)}{2m_0}\big(1+\frac{1}{\lambda_1^2}\big) > 0. |
Furthermore, let \gamma = \epsilon(1-\varepsilon), \gamma_0 = \max\{\frac{C^2}{m_0}+\frac{1+2\epsilon}{2\lambda_1^2}, \epsilon c_f|\Omega|\} , then by (3.27), we obtain
\begin{align} &\mathcal{L}'(t)\leq - \gamma (H(t)+\langle F(u),1\rangle)+\gamma_0(|g|_2^2+1). \end{align} | (3.28) |
Using (3.25), we have
\begin{align} &\mathcal{L}'(t)\leq - \frac{2\gamma}{3C} \mathcal{L}(t)+\gamma_0(|g|_2^2+1). \end{align} | (3.29) |
From Gronwall Lemma, it's easy to obtain
\begin{align} \mathcal{L}(t)\leq \mathcal{L}(0)e^{{- \frac{2\gamma}{3C}}t}+\frac{3\gamma_0 C}{2\gamma}(|g|_2^2+1). \end{align} | (3.30) |
Using (3.25) again, we have
\begin{align} {H}(t)\leq \frac{2\mathcal{L}(0)}{C}e^{{- \frac{2\gamma}{3C}}t}+\frac{3\gamma_0 }{\gamma}(|g|_2^2+1)+\frac{2\epsilon c_f}{C}|\Omega|. \end{align} | (3.31) |
Hence, for any t\geq T_0 = \frac{3C}{2\gamma}\ln \frac{2\gamma\mathcal{L}(0)}{3\gamma_0(|g|_2^2+1)+\frac{2\epsilon c_f}{C}|\Omega|} , we obtain
\begin{align*} \label{el3.4} \|S(t)z_0\|_{\mathcal{M}_1} \leq \mathcal{R}_0. \end{align*} |
where \mathcal{R}_0 = \frac{12\gamma_0 }{\gamma}(|g|_2^2+1)+\frac{8\epsilon c_f}{C}|\Omega| .
Therefore, we can know that the set
B_0 = \big\{(u,u_t,\eta^t)\in {\mathcal{M}_1} :\|z(t)\|_{\mathcal{M}_1}\leq \mathcal{R}_0\big\} |
is a bounded absorbing set for semigroup \{S(t)\}_{t\geq 0} on \mathcal{M}_1 .
Corollary 3.7. There exists a constant C_{\mathcal{R}_0} , such that, for all t\geq T_0 , we have
\begin{align} \int_t^{t+1}(|u_t(s)|_2^2+\|u(s)\|_0^2+\|u_t(s)\|_0^2)ds\leq C_{\mathcal{R}_0}. \end{align} | (3.32) |
Proof. Integrating (3.29) about t from t to t+1 , and combining with (3.25) and Lemma 3.7, the above estimate is easily obtained.
Lemma 3.8. For any T > 0 , there exists a constant \mathcal{R}_3 > 0 , such that, whenever
\|z(0)\|_{\mathcal{M}_{1}}\leq \mathcal{R}_1, |
it follows that
\begin{align*} |A^{\frac{\kappa}{2}}u_t(t)|^2_2+\|u_t(t)\|^2_{\kappa} + \|u(t)\|^2_{\kappa}+\|\eta^t\|^2_{\mu,{\kappa}} \leq \mathcal{R}_3\quad \forall t\in [0,T]. \end{align*} |
Proof. Multiplying the first equation of (2.6) by A^{\kappa}u_t , and integrating over \Omega , we obtain that
\begin{equation} \frac{d}{dt}E_1(t)+\langle f(u),A^{\kappa}u_t\rangle+\frac{\delta}{2}\|\eta^t\|^2_{\mu,\kappa}\leq \langle g,A^{\kappa}u_t\rangle. \end{equation} | (3.33) |
where E_1(t) = \frac{1}{2}\big[|A^{\frac{\kappa}{2}}u_t|^2_{2}+\|u_t\|^2_{\kappa} + \|u\|^2_{\kappa} +\|\eta^t\|^2_{\mu, {\kappa}}\big] .
Due to
\begin{equation} \langle g,A^{\kappa}u_t\rangle \leq h|A^{-{\frac{1}{2}}}g|_2|A^{\frac{1+\kappa}{2}}u_t|_2\leq h|g|_2^2 + h|A^{\frac{1+\kappa}{2}}u_t|_2^2, \end{equation} | (3.34) |
and by (H_2) and Lemma 3.2, we obtain
\begin{equation} \langle f(u),A^{\kappa}u_t\rangle \leq C(1+\|u_t\|_{\kappa}^2), \end{equation} | (3.35) |
Then by (3.33)–(3.35), we have
\begin{align} \frac{d}{dt}E_1(t) \leq h_1 E_1 + h|g|_2^2. \end{align} | (3.36) |
where h, h_1 are positive constant.
Hence, using Gronwall lemma, we can obtain that
\begin{align} E_{1}(t)\leq \mathcal{R}_4(\mathcal{R}_1)(1+|g|_2^2)e^{\ell t}. \end{align} | (3.37) |
holds for any t\in [0, T] . This proof is finished.
Lemma 3.9. For any t \in [0, T] , there exists a constant \mathcal{R}_5 > 0 , such that, whenever
\|z_0\|_{\mathcal{M}_{1}}\leq \mathcal{R}_1, |
it follows that
\begin{align*} \int_t^{t+1}\|u(s)\|^2_{\kappa}ds\leq \mathcal{R}_5. \end{align*} |
Proof. Firstly, the first equation of the system (2.6), it can be rewritten
\begin{align} u_{tt}+(1-\delta_1)Av+Av_t+(1-\delta_1+{\delta_1^2})Au-Au_t+\int_0^{\infty}\mu(s)A\eta^t(s)ds+f(u) = g. \end{align} | (3.38) |
Next, let v = u_t+\delta_1 u , and multiplying (3.38) by A^{\kappa}v , and integrating over \Omega , we obtain that
\begin{align} \begin{split} &\frac{1}{2}\frac{d}{dt}\big[\|v(t)\|^2_{\kappa}+(1-2\delta_1+\delta_1^2)\|u(t)\|^2_{\kappa}+\|\eta^t\|^2_{\mu,\kappa}\big] +(1-\delta_1)\|v(t)\|^2_{\kappa}+\frac{\delta}{2}\|\eta^t\|^2_{\mu,\kappa}\\ &+\delta_1(1-\delta_1+\delta_1^2)\|u(t)\|^2_{\kappa}+\langle f(u),A^{\kappa}v\rangle\\ &\leq \|u_t\|^2_{\kappa}+\langle g,A^{\kappa}v\rangle-\langle u_{tt},A^{\kappa}u_t \rangle - \delta_1\int_0^{\infty}\mu(s)\langle A\eta^t,A^{\kappa}u\rangle ds. \end{split} \end{align} | (3.39) |
In addition, we deal with each term on the right of (3.39), it yields by using Minkowski inequality
\begin{align} |\langle g,A^{\kappa}v\rangle|&\leq h_2|g|_2^2 +\frac{\delta_1}{2}\|u_t\|_{\kappa}^2 + \frac{\delta_1}{4}\|u\|_{\kappa}^2\\ &\leq h_2|g|_2^2 + \frac{\delta_1}{2}\|v\|_{\kappa}^2+\frac{2\delta_1^2+\delta_1}{4}\|u\|_{\kappa}^2, \end{align} | (3.40) |
and
\begin{align} |-\delta_1\int_0^{\infty}\mu(s)\langle A\eta^t,A^{\kappa}u\rangle ds| &\leq \delta_1 \sqrt{m_0}\|u\|_{\kappa}\big(\int_0^{\infty}\mu(s)\|\eta\|_{\kappa}^2ds\big)^{\frac{1}{2}}\\ &\leq \frac{\delta_1}{2}\|u\|_{\kappa}^2+\frac{m_0 \delta_1}{2}\|\eta\|_{\mu,\kappa}^2, \end{align} | (3.41) |
\begin{align} |-\langle u_{tt},A^{\kappa}u_t \rangle| \leq h_0(\|u_{tt}\|_0^2+\|u_t\|_0^2), \end{align} | (3.42) |
next, we deal with the nonlinear term by using Hölder inequality and Sobolev embedding theorem, it yields
\begin{align} \begin{split} |\langle f(u),A^{\kappa}v\rangle|&\leq c\int_{\Omega}(1+|u|^5)|A^{\kappa}v|dx\\ &\leq c\int_{\Omega}|A^{\kappa}v|dx+c\int_{\Omega}|u|^5|A^{\kappa}v|dx\\ &\leq C+\frac{\delta_1}{8}(\|u_t\|_{\kappa}^2+\|u\|_{\kappa}^2), \end{split} \end{align} | (3.43) |
which, together with (3.39)–(3.42), obtains
\begin{align} \begin{split} &\frac{1}{2}\frac{d}{dt}\big[\|v(t)\|^2_{\kappa}+(1-2\delta_1+\delta_1^2)\|u(t)\|^2_{\kappa}+\|\eta^t\|^2_{\mu,\kappa}\big] +(1-\frac{\delta_1}{3})\|v(t)\|^2_{\kappa}\\ &+\delta_1(\frac{1}{8}-\frac{3}{2}\delta_1+\delta_1^2)\|u(t)\|^2_{\kappa} +\frac{\delta-m_0 \delta_1}{2}\|\eta^t\|^2_{\mu,\kappa}\\ &\leq (1+\frac{\delta_1}{8})\|u_t\|^2_{\kappa}+h_2|g|_2^2+h_0(\|u_{tt}\|_0^2+\|u_t\|_0^2). \end{split} \end{align} | (3.44) |
Where h_0, h_2 are positive constant.
Let \delta_1 be small enough, such that
\begin{align*} \beta_1 = \min\{1,1-2\delta_1+\delta_1^2\} > 0 \quad and \quad \beta_0 = \min \{1-\frac{\delta_1}{3}, \delta_1(\frac{1}{8}-\frac{3}{2}\delta_1+\delta_1^2), \frac{\delta-m_0 \delta_1}{2}\} > 0. \end{align*} |
Then combining Lemma 3.1, Lemma 3.2, Lemma 3.8 and Gronwall lemma, we get
\|v(t)\|^2_{\kappa}+\|u(t)\|^2_{\kappa}+\|\eta^t\|^2_{\mu,\kappa}\leq \frac{Q(\|z_0\|_{\kappa})}{\beta_1}e^{-2\beta_0 t}+\frac{2}{\beta_0\beta_1}\big[(1+\frac{\delta_1}{8})\mathcal{R}_3+h_0(\mathcal{R}_1+\mathcal{K}_1)+h_2|g|_2^2\big]. |
Moreover, integrating (3.41) about t from t to t+1, then we have
\int_t^{t+1}\|v(s)\|^2_{\kappa}+\|u(s)\|^2_{\kappa}+\|\eta^s\|^2_{\mu,\kappa}ds\leq \mathcal{R}_5. |
where \mathcal{R}_5 = \mathcal{R}_5(Q(\|z_0\|_{\kappa}), \beta_0, {\beta_1}, \delta_1, \mathcal{R}_1, \mathcal{R}_3, \mathcal{K}_1, |g|_2) .
In order to prove the existence of global attractor for \{S(t)\}_{t\geq 0} on \mathcal{M}_1 , we have to verify some compactness for the semigroup \{S(t)\}_{t\ge 0} . For further purpose, we will give asymptotically compact theorem of the semigroup on \mathcal{M}_1 .
Theorem 3.10. The semigroup \{S(t)\}_{t\geq 0} associated with problem (2.6), (2.7) is asymptotically compact on \mathcal{M}_1 .
Proof. Firstly, Let z^1(t) = (u^1(t), u^1_t(t), \eta^t_1), z^2(t) = (u^2(t), u^2_t(t), \eta^t_2) are two solutions of (2.6) corresponding with the initial data z_0^1 = (u_0^1, u_1^1, \eta^0_1), z^2_0 = (u_0^2, u_1^2, \eta^0_2) respectively. Setting z(t) = (\omega(t), \omega_t(t), \theta^t) = (u^1(t)-u^2(t), u^1_t(t)-u^2_t(t), \eta^t_1-\eta^t_2) , then z(t) satisfies the following equation
\begin{equation} \left\{ \begin{aligned}\ &{\omega_{tt}} - \Delta \omega_{tt} - \Delta \omega - \int_0^{ + \infty } {\mu (s)\Delta {\theta ^t}(s)ds}+f(u^1)-f(u^2) = 0,\\ &\theta ^t_t+\theta ^t_s = \omega _t. \end{aligned} \right. \end{equation} | (3.45) |
with initial-boundary conditions
\begin{eqnarray} \left\{ \begin{aligned}\ &\omega(x,t)|_{\partial \Omega} = 0,\theta^{t}(x,s)|_{\partial \Omega\times \mathbb{R}^+} = 0, \\ &\omega(x,0) = u^1_0-u^2_0,\, \omega_t(x,0) = u_1^1-u^2_1,\,\theta^0(x,s) = \eta^0_1-\eta^0_2. \end{aligned} \right. \end{eqnarray} | (3.46) |
Similar to the definition of H(t) , we let \mathcal{H}_{\omega}(t) = \frac{1}{2}|\omega_t(t)|_2^2+\frac{1}{2}\|\omega(t)\|_0^2+\frac{1}{2}\|\omega_t(t)\|_0^2 + \frac{1}{2}\|\theta^t\|_{\mu, 0}^2 , then according to Lemma 3.4 and Lemma 3.5, we obtain
(i) Let \Lambda_{\omega}(t) = -\langle\theta^t, \omega_t\rangle_{\mathcal{M}_1}-\int_{0}^{\infty}\mu(s)\langle\theta^t, \omega_t\rangle ds , we have
\begin{align} \frac{d}{dt}\Lambda_{\omega}(t)+\frac{m_0}{2}[|{\omega}_t(t)|_2^2+\|{\omega}_t(t)\|_0^2]&\leq C\|{\omega}(t)\|_0^2+2m_0\|\theta^t\|_{\mu,0}^2 \\ &+\frac{\mu(0)}{2m_0}(1+\frac{1}{\lambda_1^2}) \int_0^{\infty}{-\mu'(s)\|\theta^t(s)\|_0^2}ds. \end{align} | (3.47) |
and
\begin{align} |\Lambda_{\omega}(t)|\leq {k_0}\mathcal{H}_{\omega}(t). \end{align} | (3.48) |
(ii) Assuming that \mathcal{N}_{\omega}(t) = \int_{\Omega}{\omega_t}\omega dx+\int_{\Omega}\nabla \omega_t \nabla \omega dx , we can also obtain that
\begin{align} \mathcal{N}_{\omega}'(t) \leq & \frac{\varepsilon-1}{2} \|{\omega} \|_0^2 + \frac{1-\varepsilon}{2}|\omega_t|+ ({\varepsilon-1})H_{\omega}(t)+\frac{1-\varepsilon}{2}|\omega_t|_2^2 \\ &+ \big(k_1-\frac{\varepsilon-1}{2}\big)\|{\omega}_t\|_0^2 + \big(\frac{m_0}{4\varepsilon} - \frac{\varepsilon-1}{2}\big)\|\theta^t\|_{\mu,0}^2. \end{align} | (3.49) |
and
\begin{align} |\mathcal{N}_{\omega}(t)|\leq k\mathcal{H}_{\omega}(t). \end{align} | (3.50) |
(iii) Obviously, we can get it easily
\begin{align} \mathcal{H}_{\omega}'(t)+\langle f(u^1)-f(u^2),\omega_t\rangle+ \frac{\delta}{4}\|\theta^t(s)\|_{\mu,0}^2\leq & \frac{1}{4}\int_0^{\infty}{\mu'(s)\|\theta^t(s)\|_0^2}ds. \end{align} | (3.51) |
By (H_2) , it's easy to obtain
\begin{align} \begin{split} |\langle f(u^1)-f(u^2),\omega_t\rangle| &\leq C\int_{\Omega}(1+|u_1|^4+|u|^4)|\omega||\omega_t|dx\\ &\leq \epsilon Q(\frac{1}{\lambda})\|\omega_t\|_0^2+Q(\frac{1}{\lambda\epsilon})\|\omega\|_0^2, \end{split} \end{align} | (3.52) |
where Q(\cdot) denotes monotonically increasing function.
Combining with (3.51) and (3.52), we have
\begin{align} \mathcal{H}_{\omega}'(t)+ \frac{\delta}{4}\|\theta^t(s)\|_{\mu,0}^2\leq & \frac{1}{4}\int_0^{\infty}{\mu'(s)\|\theta^t(s)\|_0^2}ds+\epsilon Q(\frac{1}{\lambda})\|\omega_t\|_0^2+Q(\frac{1}{\lambda\epsilon})\|\omega\|_0^2. \end{align} | (3.53) |
Secondly, we can define the following functional
\mathcal{L}_{\omega}(t) = C_1\mathcal{H}_{\omega}(t)+\epsilon\mathcal{N}_{\omega}(t)+\Lambda_{\omega}(t). |
By (3.48) and (3.50), we get
\begin{align} (C_1-\epsilon k - k_0) \mathcal{H}_{\omega}(t) \leq \mathcal{L}_{\omega}(t) \leq (C_1+\epsilon k + k_0) \mathcal{H}_{\omega}(t). \end{align} | (3.54) |
Next, let its perturbation \epsilon be small enough and C_1 be sufficiently large, then yields
\begin{align} \frac{C_1}{2}\mathcal{H}_{\omega}(t) \leq \mathcal{L}_{\omega}(t) \leq \frac{3C_1}{2} \mathcal{H}_{\omega}(t). \end{align} | (3.55) |
Therefore, we can also deduce easily that
\begin{align} \begin{split} \mathcal{L}'_{\omega}(t)&\leq\epsilon(\varepsilon-1)\mathcal{H}_{\omega}(t)-\big[\frac{\delta C_1}{4}-\frac{5m_0}{4}-\epsilon\big(\frac{m_0}{4\varepsilon}-\frac{\varepsilon-1}{2}\big)\big]\|\theta^t(s)\|_{\mu,0}^2 \\ &+ \frac{\epsilon(\varepsilon-1)}{2}\|\omega\|_0^2+Q(\frac{1}{\epsilon\lambda})\|\omega\|_0^2 +\big[\epsilon\big(k_1-\frac{\varepsilon-1}{2}+Q(\frac{1}{\lambda})\big)-\frac{m_0}{2}\big]\|\omega_t\|_0^2 \\ &-\big(\frac{m_0}{2}-\epsilon\frac{1-\varepsilon}{2}\big)|\omega_t|_2^2+\big[\frac{C_1}{4}-\frac{\mu(0)}{2m_0}\big(1+\frac{1}{\lambda_1^2}\big)\big] \int_0^{\infty}\mu'(s)\|\theta^t(s)\|_0^2ds. \end{split} \end{align} | (3.56) |
In the same way, let \varepsilon > 0 be small enough and C_1 is sufficiently large, such that
\epsilon\big(k_1-\frac{\varepsilon-1}{2}+Q(\frac{1}{\lambda})\big)-\frac{m_0}{2} < 0,\qquad \frac{C_1}{4}-\frac{\mu(0)}{2m_0}\big(1+\frac{1}{\lambda_1^2}\big) > 0. |
and
\frac{\delta C_1}{4}-\frac{5m_0}{4}-\epsilon\big(\frac{m_0}{4\varepsilon}-\frac{\varepsilon-1}{2}\big) > 0,\qquad \frac{m_0}{2}-\epsilon\frac{1-\varepsilon}{2} > 0. |
and let \alpha_0 = \epsilon(1-\varepsilon) , then (3.56) becomes
\begin{align} \mathcal{L}'_{\omega}(t)&\leq-\alpha_0\mathcal{H}_{\omega}(t)+ Q(\frac{1}{\epsilon\lambda})\|\omega\|_0^2\\ &\leq -\frac{2\beta}{3C}\mathcal{L}_{\omega}(t)+Q(\frac{1}{\epsilon\lambda})\|\omega\|_0^2. \end{align} | (3.57) |
Using Gronwall lemma, we can deduce that
\begin{align} \mathcal{L}_{\omega}(T)\leq \mathcal{L}_{\omega}(0)e^{{-\frac{2\beta}{3C}}T}+\frac{2\beta\alpha_1}{3C}Q(\frac{1}{\epsilon\lambda})\int_0^T \|\omega(s)\|_0^2 ds, \end{align} | (3.58) |
holds for any T > \frac{3C}{2\beta}\ln{\frac{2\mathcal{L}_\omega(0)}{C\varepsilon}} .
Combining with (3.55) and (3.58), then we have
\begin{align} \mathcal{H}_{\omega}(T)\leq \varepsilon+\phi^T(z^1,z^2). \end{align} | (3.59) |
where
\phi^T(z^1,z^2) = \frac{4\beta\alpha_1}{3C^2}Q(\frac{1}{\epsilon\lambda})\int_{T_1}^T \|\omega(s)\|_0^2 ds. |
Next, for all T\geq T_1 > 0 , we prove \phi^T(z^1, z^2) \in \mathfrak{E}(B) .
Indeed, let z_n(t) = (u_n(t), u_{nt}(t), \eta_n^{t}) \in B_0 be the solution with initial value z_n(0) = z^n_0 = (u^n_0, u^n_1, \eta_n^0)\in B_0 . According to Corollary 3.11 and Lemma 3.8, we know that the sequence \{(u_n(t), u_{nt}(t), \eta_n^{t})\} is uniformly bounded in \mathcal{M}_1 . That is
\begin{aligned} &u_{n} \text { is uniformly bounded in } L^{2}\left(0, T ; D\left(A^{\frac{1+\kappa}{2}}\right)\right),\\ &\left.u_{n t} \text { is uniformly bounded in } L^{2}\left(0, T ; L^{2}(\Omega)\right)\right). \end{aligned} |
Because we know that the embedding D(A^{\frac{1+\kappa}{2}})\hookrightarrow D(A^{\frac{1}{2}}) is compact by (2.8) and D(A^{\frac{1}{2}})\hookrightarrow L^{2}(\Omega) is continuous, then combining with Lemma 2.5, it's easy to get that there exists subsequence (still note \{(u_n(t), u_{nt}(t), \eta_n^{t})\} ) of \{(u_n(t), u_{nt}(t), \eta_n^{t})\} such that
\lim\limits_{n\rightarrow \infty}\lim\limits_{m\rightarrow \infty}\int_{T_1}^T \|u_n(s)-u_m(s)\|_0^2ds = 0. |
Thanks to Theorem 3.7 and Theorem 3.10, we can deduce the main result of this paper as the following theorem:
Theorem 3.11. The semigroup \{S(t)\}_{t\geq 0} for the problem (2.6), (2.7) possesses a global attractor \mathcal{A} in \mathcal{M}_1 ; and \mathcal{A} is non-empty, compact, invariant in \mathcal{M}_1 and attracts any bounded set of \mathcal{M}_1 with respect to \mathcal{M}_1 -norm.
Let's consider the following equations
\begin{eqnarray} \left\{ \begin{aligned}\ &v_{tt}-\Delta v_{tt}-\Delta v+\omega v_t-\int_{0}^{\infty}\mu(s)\Delta\xi^t(s)ds+f(v) = g(x), \\ &\xi_t^t = -\xi_s^t+v_t. \end{aligned} \right. \end{eqnarray} | (4.1) |
with initial-boundary condition
\begin{eqnarray} \left\{ \begin{aligned}\ &v(x,t)|_{\partial \Omega} = 0,\xi^{t}(x,s)|_{\partial \Omega\times \mathbb{R}^+} = 0, \quad t\geq0, \\ &v(x,0) = v_{0}(x),\,v_t(x,0) = v_{1}(x),\,\xi^{0}(x,s) = \int_{0}^{s}v_{0}(x,-r)dr, \quad (x,s)\in\Omega\times \mathbb{R}^+, \end{aligned} \right. \end{eqnarray} | (4.2) |
where \omega\in [0, 1] is a disturbance parameter.
Let \omega = 0 , then the above equation is transformed into Eq (2.6) with (2.7). Using the proof method of above section word by word, we have the following lemma:
Lemma 4.1. The semigroup \{S_{\omega}(t)\}_{t\ge 0} associated with Eq \rm (4.1) with \rm(4.2) possesses a compact global attractor \mathcal{A}_{\omega} for any \omega \ge 0 .
Then \mathcal{A}_{0} = \mathcal{A} ( \mathcal{A} from Theorem 3.11).
Lemma 4.2. For any T\ge 0 and z_0\in \mathcal{A}_{\omega} , then we have
\begin{align*} \|S_{\omega}(t)z_0-S_{0}(t)z_0\|_{\mathcal{M}_1} \leq C \omega, \end{align*} |
for 0\leq t\leq T holds, where C is independently of \omega .
Proof. Let z = (u, u_t, \eta^t) and z^{\omega} = (v, v_t, \xi^t) are unique solutions of Eqs (2.6) and (4.1) with initial value z_0\in \mathcal{A}_{\omega} respectively. Setting w = u-v, \zeta^t = \eta^t-\xi^t , then (w, w_t, \zeta^t) is a unique solution of the following equations
\begin{eqnarray} \left\{ \begin{aligned}\ &w_{tt}-\Delta w_{tt}-\Delta w-\int_{0}^{\infty}\mu(s)\Delta\zeta^t(s)ds+f(u)-f(v) = \omega v_t, \\ &\zeta_t^t = -\zeta_s^t+w_t. \end{aligned} \right. \end{eqnarray} | (4.3) |
with initial-boundary condition
\begin{eqnarray} \left\{ \begin{aligned}\ &w(x,t)|_{\partial \Omega} = 0,\zeta^{t}(x,s)|_{\partial \Omega\times \mathbb{R}^+} = 0, \quad t\geq0, \\ &w(x,0) = 0,\,w_t(x,0) = 0,\,\zeta^{0}(x,s) = 0, \quad (x,s)\in\Omega\times \mathbb{R}^+. \end{aligned} \right. \end{eqnarray} | (4.4) |
Multiplying the first equation of (4.3) by w_{t} in L^2(\Omega) , we obtain
\begin{equation*} \label{e4.11} \frac{1}{2}\frac{d}{dt}\left( |w_t|_2^2 +\|w_{t}\|_0^2 +\|\zeta^t\|_{\mu,0}^2\right)+\delta \|\zeta^t\|_{\mu,0}^2\leq \int_{\Omega}|f(u)-f(v)||w_t|+ \omega\int_{\Omega}|v_t||w_t| \end{equation*} |
According to Hölder inequality, z^{\omega}\in \mathcal{A}_{\omega} and Lemma 3.2, there exist a constant \alpha > 0 such that
\begin{align} \frac{d}{dt}\left( |w_t|_2^2 +\|w_{t}\|_0^2 +\|\zeta^t\|_{\mu,0}^2\right)-\alpha\left( |w_t|_2^2 +\|w_{t}\|_0^2 +\|\zeta^t\|_{\mu,0}^2\right)\leq Q_{\mathcal{R}_0} \omega, \end{align} | (4.5) |
where Q_{\mathcal{R}_0} = Q_{\mathcal{R}_0}(\mathcal{R}_0) is independently \omega .
Let C = \frac{Q_{\mathcal{R}_0}}{\alpha} and applying Gronwall Lemma, we have
\begin{align} |w_t|_2^2 +\|w_{t}\|_0^2 +\|\zeta^t\|_{\mu,0}^2\leq C\omega. \end{align} | (4.6) |
Theorem 4.3. Let \Omega\subset \mathbb{R}^3 be a bounded domain with smooth boundary, and we assume that f satisfies \rm(1.4) – \rm(1.7) and \rm(1.2) , \rm(1.3) holds, given g\in L^2(\Omega) , then
\begin{equation*} \lim\limits_{\omega\rightarrow 0}dist_{\mathcal{M}_1}(\mathcal{A}_{\omega},\mathcal{A}) = 0. \end{equation*} |
Proof. For any \varepsilon > 0 , since \mathcal{A}_{\omega} is an universal bounded subset of \mathcal{M}_1 for any \omega\in [0, 1] , and \mathcal{A} is a compact attracting set for \{S(t)\}_{t\geq 0} on \mathcal{M}_1 . So there exists T > 0 such that S(t)(T)\mathcal{A}_{\omega} \subset N(\mathcal{A}, \frac{\varepsilon}{2}) . On the other hand, associating with the invariance of \mathcal{A}_{\omega} and Lemma (4.2), for any t \geq T , we have
\begin{equation*} \mathcal{A}_{\omega} = S_{\omega}(t)\mathcal{A}_{\omega} \subset N (S(t)\mathcal{A}_{\omega}, \frac{\varepsilon}{2}), \end{equation*} |
as \omega small enough. Setting \varepsilon = \frac{\omega}{C} , so we have
\begin{equation*} \mathcal{A}_{\omega} \subset N (\mathcal{A}, \frac{\omega}{\nu}) \end{equation*} |
here \nu \geq C is a constant, which completes the proof of the desired results.
The authors would like to thank the referees for their many helpful comments and suggestions. The research is financially supported by Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering (Changsha University of Science and Technology), National Natural Science Foundation of China (Nos. 11101053, 71471020).
The authors declare that they have no competing interests.
[1] |
S. Zang, W. Zhuang, The strain solitary waves in a nonlinear elastic rod, Acta. Mech. Sinica, 3 (1987), 62–72. doi: 10.1007/BF02486784
![]() |
[2] |
C. Sayler, D. Fonstermacher, A symmetric regularized-long-wave equation, Phys. Fluids, 27 (1984), 4–7. doi: 10.1063/1.864487
![]() |
[3] |
I. L. Bogolubsky, Some examples of inelastic soliton interaction, Comput. Phys. Commun., 13 (1977), 149–155. doi: 10.1016/0010-4655(77)90009-1
![]() |
[4] |
G. Barenblatt, I. Zheltov, I. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286–1303. doi: 10.1016/0021-8928(60)90107-6
![]() |
[5] |
S. Messaoudi, N. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem, Math. Methods Appl. Sci., 30 (2007), 665–680. doi: 10.1002/mma.804
![]() |
[6] |
M. Cavalcanti, V. Domingos Cavalcanti, J. Ferreira, Existence and uniform decay for a non-linear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24 (2001), 1043–1053. doi: 10.1002/mma.250
![]() |
[7] | M. Cavalcanti, V. Domingos Cavalcanti, T. F. Ma, J. A. Soriano, Global existence and asymptotic stability for viscoelastic problems, Differ. Integral Equ., 15 (2002), 731–748. |
[8] |
M. Cavalcanti, V. Domingos Cavalcanti, P. Martinez, General decay rate estimates for viscoelastic dissipative systems, Nonlinear Anal., 68 (2008), 177–193. doi: 10.1016/j.na.2006.10.040
![]() |
[9] | J. Robinson, Infinite-dimensional dynamical systems, Cambridge University Press, Cambridge, 2001. |
[10] |
S. Messaoudi, Blow-up and global existence in a nonlinear viscoelastic wave equation, Math. Nachr., 260 (2003), 58–66. doi: 10.1002/mana.200310104
![]() |
[11] |
S. Messaoudi, Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl., 320 (2006), 902–915. doi: 10.1016/j.jmaa.2005.07.022
![]() |
[12] |
S. Messaoudi, N. Tatar, Global existence and uniform decay of solutions for a quasilinear viscoelastic problem, Math. Methods Appl. Sci., 30 (2007), 665–680. doi: 10.1002/mma.804
![]() |
[13] |
S. Messaoudi, N. Tatar, Exponential decay for a quasilinear viscoelastic equation, Math. Nachr., 282 (2009), 1443–1450. doi: 10.1002/mana.200610800
![]() |
[14] |
C. Sun, D. Cao, J. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645–2665. doi: 10.1088/0951-7715/19/11/008
![]() |
[15] |
X. Han, M. Wang, General decay of energy for a viscoelastic equation with nonlinear damping, Math. Methods Appl. Sci., 32 (2009), 346–358. doi: 10.1002/mma.1041
![]() |
[16] |
X. Han, M. Wang, Global existence and uniform decay for a nonlinar viscoelastic equation with damping, Nonlinear Anal.: Theory Methods Appl., 70 (2009), 3090–3098. doi: 10.1016/j.na.2008.04.011
![]() |
[17] | J. Park, S. Park, General decay for quasiliear viscoelastic equations with nonlinear weak damping, J. Math. Phys., 50 (2009), 1–10. |
[18] |
R. Araújo, T. Ma, Y. Qin, Long-time behavior of a quasilinear viscoelastic equation with past history, J. Differ. Equ., 254 (2013), 4066–4087. doi: 10.1016/j.jde.2013.02.010
![]() |
[19] |
Y. Qin, B. Feng, M. Zhang, Uniform attractors for a non-autonomous viscoelastic equation with a past history, Nonlinear Anal.: Theory Methods Appl., 101 (2014), 1–15. doi: 10.1016/j.na.2014.01.006
![]() |
[20] |
M. Conti, T. F. Ma, E. M. Marchini, P. N. Seminario Huertas, Asymptotics of viscoelastic materials with nonlinear density and memory effects, J. Differ. Equ., 264 (2018), 4235–4259. doi: 10.1016/j.jde.2017.12.010
![]() |
[21] |
C. Sun, M. Yang, Dynamics of the nonclassical diffusion equation, Asymptotic Anal., 59 (2008), 51–81. doi: 10.3233/ASY-2008-0886
![]() |
[22] |
M. Conti, F. DellOro, V. Pata, Nonclassical diffusion equation with memory lacking instantaneous damping, Commun. Pure Appl. Anal., 19 (2020), 2035–2050. doi: 10.3934/cpaa.2020090
![]() |
[23] | Y. Xie, Y. Li, Y. Zeng, Uniform attractors for nonclassical diffusion equations with memory, J. Funct. Spaces Appl., 2016 (2016), 1–11. |
[24] |
Y. Xie, Q. Li, K. Zhu, Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, Nonlinear Anal.: Real Word Appl., 31 (2016), 23–37. doi: 10.1016/j.nonrwa.2016.01.004
![]() |
[25] |
C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297–308. doi: 10.1007/BF00251609
![]() |
[26] |
J. Zhang, Y. Xie, Q. Luo, Z. Tang, Asymptotic behavior for the semilinear reaction-diffusion equations with memory, Adv. Differ. Equ., 2019 (2019), 1–19. doi: 10.1186/s13662-018-1939-6
![]() |
1. | Jianbo Yuan, Shixuan Zhang, Yongqin Xie, Jiangwei Zhang, Exponential attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, 2021, 6, 2473-6988, 11778, 10.3934/math.2021684 | |
2. | Zhe Xie, Jiangwei Zhang, Yongqin Xie, Asymptotic behavior of quasi-linear evolution equations on time-dependent product spaces, 2023, 28, 1531-3492, 2316, 10.3934/dcdsb.2022171 | |
3. | 玉晶 任, Random Attractors of Viscoelastic Equation with Strong Damping, 2022, 12, 2160-7583, 1597, 10.12677/PM.2022.1210174 | |
4. | Jiangwei Zhang, Zhiming Liu, Jianhua Huang, Upper semicontinuity of optimal attractors for viscoelastic equations lacking strong damping, 2022, 0003-6811, 1, 10.1080/00036811.2022.2088532 | |
5. | Ke Li, Yongqin Xie, Yong Ren, Jun Li, Pullback attractors for the nonclassical diffusion equations with memory in time-dependent spaces, 2023, 8, 2473-6988, 30537, 10.3934/math.20231561 | |
6. | Shixuan Zhang, Qingsong Li, Jiangwei Zhang, Dynamical behavior of nonclassical diffusion equations with the driving delay in time-dependent spaces, 2024, 0, 1531-3492, 0, 10.3934/dcdsb.2024177 | |
7. | Yadan Shi, Yongqin Xie, Ke Li, Zhipiao Tang, Attractors for the nonclassical diffusion equations with the driving delay term in time-dependent spaces, 2024, 32, 2688-1594, 6847, 10.3934/era.2024320 |