In this paper, we establish a new (p,q)-integral identity. Then, the obtained result is employed to derive (p,q)-integral Simpson type inequalities involving generalized strongly preinvex functions. Moreover, our results are also used to study some special cases and some examples are given to illustrate the investigated results.
Citation: Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sortiris K. Ntouyas. On Simpson type inequalities for generalized strongly preinvex functions via (p,q)-calculus and applications[J]. AIMS Mathematics, 2021, 6(9): 9236-9261. doi: 10.3934/math.2021537
[1] | Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh . Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769 |
[2] | Xue-Xiao You, Muhammad Aamir Ali, Ghulam Murtaza, Saowaluck Chasreechai, Sotiris K. Ntouyas, Thanin Sitthiwirattham . Post-quantum Simpson's type inequalities for coordinated convex functions. AIMS Mathematics, 2022, 7(2): 3097-3132. doi: 10.3934/math.2022172 |
[3] | Chunhong Li, Dandan Yang, Chuanzhi Bai . Some Opial type inequalities in (p, q)-calculus. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377 |
[4] | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Ibrahim Slimane, Kamsing Nonlaopon, Y. S. Hamed . Some new (p, q)-Dragomir–Agarwal and Iyengar type integral inequalities and their applications. AIMS Mathematics, 2022, 7(4): 5728-5751. doi: 10.3934/math.2022317 |
[5] | Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814 |
[6] | Da Shi, Ghulam Farid, Abd Elmotaleb A. M. A. Elamin, Wajida Akram, Abdullah A. Alahmari, B. A. Younis . Generalizations of some $ q $-integral inequalities of Hölder, Ostrowski and Grüss type. AIMS Mathematics, 2023, 8(10): 23459-23471. doi: 10.3934/math.20231192 |
[7] | Kamsing Nonlaopon, Muhammad Uzair Awan, Sadia Talib, Hüseyin Budak . Parametric generalized $ (p, q) $-integral inequalities and applications. AIMS Mathematics, 2022, 7(7): 12437-12457. doi: 10.3934/math.2022690 |
[8] | Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Artion Kashuri, Taher A. Nofal, Ching-Hsien Hsu . Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Mathematics, 2022, 7(8): 15159-15181. doi: 10.3934/math.2022831 |
[9] | Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306 |
[10] | Muhammad Umar, Saad Ihsan Butt, Youngsoo Seol . Milne and Hermite-Hadamard's type inequalities for strongly multiplicative convex function via multiplicative calculus. AIMS Mathematics, 2024, 9(12): 34090-34108. doi: 10.3934/math.20241625 |
In this paper, we establish a new (p,q)-integral identity. Then, the obtained result is employed to derive (p,q)-integral Simpson type inequalities involving generalized strongly preinvex functions. Moreover, our results are also used to study some special cases and some examples are given to illustrate the investigated results.
Colon cancer is one of the leading causes of mortality and morbidity worldwide [1], with a dramatic rise in incidence and mortality rates over the past 3 decades, both worldwide and in China [2]. Surgery is the principal therapy for early-stage colon cancer because it offers the only method for complete tumor removal, thereby chance for cure [3]. However, there is still proportions of colon cancer patients that develop recurrence even after radical resection [4]. Unfortunately, long term control of the recurrent colon cancer has been a difficult dilemma to tackle and the clinical outcomes of these patients are poor [5],[6]. Adjuvant chemotherapy in colon cancer is able to complement curative surgery to reduce the risk of recurrence and death from relapsed or metastatic disease [7],[8]. However, patient willingness to be adjuvantly treated has been limited due to its associated financial burden, treatment toxicity and debatable prolongation of survival that need to be carefully balanced against the associated-toxicity. Therefore, the identification of robust biomarkers to assess the risk of postoperative recurrence in colon cancer has been a longing need.
Circular RNAs (circRNAs), a recently discovered type of noncoding RNA, have a special circular structure formed by 3′- and 5′-ends linking covalently [9]. Because they do not have 5′ or 3′ ends, they are resistant to exonuclease-mediated degradation [10]. Therefore, circRNAs are characterized by their high stability, expression level, and evolutionary conservation. Recent literatures [11]–[13] have confirmed circRNAs as playing an important role in cancer initiation and progression. Additionally, they are differentially expressed in cancer tissues and circulation of cancer patients. Due to these characteristics, circRNAs have gained recognition as a promising novel biomarker for cancer [14]. However, till now little is known about circRNAs and their relationship with colon cancer. In a recent study published in EMBO Molecular Medicine, entitled “A circRNA signature predicts postoperative recurrence in stage II/III colon cancer”, Ju et al. [15] identified and validated a circRNA-based signature that could improve postoperative prognostic stratification of patients with stage II/III colon cancer.
In that study, 437 colon cancer circRNAs were examined in tumoral and adjacent normal tissues. The authors found that 103 circRNAs were differentially expressed in recurrent colon cancer patients as compared to non-recurrent counterparts. Among them, 100 up-regulated circRNAs were validated in patients with stage II/III colon cancer to test whether they could be used as prognostic biomarkers. Four circRNAs, including hsa_circ_0122319, hsa_circ_0087391, hsa_circ_0079480, and hsa_circ_0008039, showed strong predictive values for disease-free survival (DFS) in the validation cohort. The following circRNA-based prognostic model was thereby generated:
After adjusting for baseline clinicopathological factors, the cirScore was found suitable for serving as predictive biomarkers of postoperative recurrence in stage II/III colon cancer. Patients in the high-risk group (cirScore ≥ −0.323) had poorer DFS (hazard ratio [HR], 2.89, 95% confidence interval [CI], 1.37–6.09, P < 0.001) and overall survival (OS; HR, 4.22, 95% CI, 1.61–11.03, P < 0.001) than those in the low-risk group (cirScore < −0.323). Based on this circRNA-based prognostic model, the authors further established a nomogram which exhibited good performance for estimating the 3- or 5-year DFS and OS.
To further explore the biological functions of hsa_circ_0122319, hsa_circ_0087391, and hsa_circ_0079480 (the abundance of hsa_circ_0008039 was found to be low in colon cancer cell line was therefore not further explored), the authors performed a series of functional in vitro and in vivo experiments. They found that suppression of these three circRNAs in colon cancer cells could significantly alter in vitro migration capacity. Additionally, the knockdown of hsa_circ_0079480 in colon cancer cells could both inhibit in vivo lung and liver metastasis.
The strengths of this study include the well-designed identification approaches, mature clinical data with clinical outcome and long-term follow-up, and well-characterized tissue samples for colon cancer. Limitations included that the prognostic model was only applicable for the patients with stage II/III colon cancer. In summary, this study identified a 4-circRNA-based expression signature as highly predictive for cancer recurrence in stage II/III colon cancer, with the potential of identification of high-risk early-stage colon cancer individuals who would benefit most from adjuvant chemotherapy.
[1] | F. H. Jackson, On a q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
[2] | H. Exton, q-Hypergeometric functions and applications, New York: Halstead Press, 1983. |
[3] |
P. P. Raychev, R. P. Roussev, Yu. F. Smirnov, The quantum algebra SUq(2) and rotational spectra of deformed nuclei, J. Phys. G: Nucl. Part. Phys., 16 (1990), 137–141. doi: 10.1088/0954-3899/16/8/006
![]() |
[4] |
D. N. Page, Information in black hole radiation, Phys. Rev. Lett., 71 (1993), 3743–3746. doi: 10.1103/PhysRevLett.71.3743
![]() |
[5] |
A. M. Gavrilik, q-Serre relations in Uq(un) and q-deformed meson mass sum rules, J. Phys. A: Math. Gen., 27 (1994), L91–L94. doi: 10.1088/0305-4470/27/3/006
![]() |
[6] | H. Gauchman, Integral inequalities in q-calculus, J. Comput. Appl. Math., 47 (2002), 281–300. |
[7] |
T. Ernst, A method for q-calculus, J. Nonlinear Math. Phys., 10 (2003), 487–525. doi: 10.2991/jnmp.2003.10.4.5
![]() |
[8] | G. Bangerezako, Variational q-calculus, J. Math. Anal. Appl., 289 (2004), 650–665. |
[9] |
B. Ahmad, S. K. Ntouyas, I. K. Purnaras, Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations, Adv. Differ. Equations, 2012 (2012), 140. doi: 10.1186/1687-1847-2012-140
![]() |
[10] |
A. Dobrogowska, A. Odzijewicz, Second order q-difference equation solvable by factorization method, J. Comput. Appl. Math., 193 (2006), 319–346. doi: 10.1016/j.cam.2005.06.009
![]() |
[11] |
M. E. H. Ismail, P. Simeonov, q-difference operators for orthogonal polynomials, J. Comput. Appl. Math., 233 (2009), 749–761. doi: 10.1016/j.cam.2009.02.044
![]() |
[12] | Y. Miao, F. Qi, Several q-integral inequalities, J. Math. Inequal., 3 (2009), 115–121. |
[13] | M. El-Shahed, H. A. Hassan, Positive solutions of q-difference equation, Proc. Am. Math. Soc., 138 (2010), 1733–1738. |
[14] | B. Ahmad, Boundary-value problems for nonlinear third-order q-difference equations, Electron. J. Differ. Equations, 2011 (2011), 1–7. |
[15] | T. Ernst, A Comprehensive treatment of q-Calculus, Springer: Basel, 2012. |
[16] | A. Aral, V. Gupta, R. P. Agarwal, Applications of q-calculus in operator theory, Springer: Science+Business Media, 2013. |
[17] | V. Kac, P. Cheung, Quantum calculus, Springer: New York, 2002. |
[18] |
J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equations, 2013 (2013), 282. doi: 10.1186/1687-1847-2013-282
![]() |
[19] |
H. Kalsoom, J. D. Wu, S. Hussain, M. A. Latif, Simpson's type inequalities for co-ordinated convex functions on quantum calculus, Symmetry, 11 (2019), 768. doi: 10.3390/sym11060768
![]() |
[20] |
M. Vivas-Cortez, M. Aamir Ali, A. Kashuri, I. Bashir Sial, Z. Zhang, Some new Newton's type Integral inequalities for co-ordinated convex functions in quantum calculus, Symmetry, 12 (2020), 1476. doi: 10.3390/sym12091476
![]() |
[21] |
S. Jhanthanam, J. Tariboon, S. K. Ntouyas, K. Nonlaopon, On q-Hermite-Hadamard inequalities for differentiable convex functions, Mathematics, 7 (2019), 632. doi: 10.3390/math7070632
![]() |
[22] | J. Prabseang, K. Nonlaopon, S. K. Ntouyas, On the refinement of quantum Hermite-Hadamard inequalities for convex functions, J. Math. Inequal., 14 (2020), 875–885. |
[23] | J. Prabseang, K. Nonlaopon, J. Tariboon, Quantum Hermite-Hadamard inequalities for double integral and q-differentiable convex functions, J. Math. Inequal., 13 (2019), 675–686. |
[24] | M. A. Noor, M. U. Awan, K. I. Noor, Quantum Ostrowski inequalities for q-differentiabble convex functions, J. Math. Inequal., 10 (2016), 1013–1018. |
[25] |
W. Yang, Some new Fejér type inequalities via quantum calculus on finite intervals, ScienceAsia, 43 (2017), 123–134. doi: 10.2306/scienceasia1513-1874.2017.43.123
![]() |
[26] |
R. Chakrabarti, R. Jagannathan, A (p,q)-oscillator realization of two-paramenter quantum algebras, J. Phys. A: Math. Gen., 24 (1991), L711–L718. doi: 10.1088/0305-4470/24/13/002
![]() |
[27] | M. Tunç, E. Göv, (p,q)-Integral inequalities, RGMIA Res. Rep. Coll., 19 (2016), 1–13. |
[28] | M. Tunç, E. Göv, Some integral inequalities via (p,q)-calculus on finite intervals, RGMIA Res. Rep. Coll., 19 (2016), 1–12. |
[29] | M. Kunt, Î. Îșcan, N. Alp, M. Z. Sarakaya, (p,q)-Hermite-Hadamard inequalities and (p,q)-estimates for midpoint type inequalities via convex and quasi-convex functions, Rev. R. Acad. Cienc., 112 (2018), 969–992. |
[30] | U. Duran, M. Acikgoz, A. Esi, S. Araci, A note on the (p,q)-Hermite polynomials, Appl. Math. Inf. Sci., 12 (2018), 227–231. |
[31] |
H. Kalsoom, M. Amer, M.-u.-D. Junjua, S. Hussain, G. Shahzadi, Some (p,q)-estimates of Hermite-Hadamard-type inequalities for coordinated convex and quasi-convex functions, Mathematics, 7 (2019), 683. doi: 10.3390/math7080683
![]() |
[32] |
S. Araci, U. Duran, M. Acikgoz, H. M. Srivastava, A certain (p,q)-derivative operator and associated divided differences, J. Inequal. Appl., 2016 (2016), 301. doi: 10.1186/s13660-016-1240-8
![]() |
[33] |
P. N. Sadjang, On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas, Results Math., 73 (2018), 1–21. doi: 10.1007/s00025-018-0773-1
![]() |
[34] |
M. Nasiruzzaman, A. Mukheimer, M. Mursaleen, Some opial-type integral inequalities via (p,q)-calculus, J. Inequal. Appl., 2019 (2019), 295. doi: 10.1186/s13660-019-2247-8
![]() |
[35] |
J. Prabseang, K. Nonlaopon, J. Tariboon, (p,q)-Hermite-Hadamard inequalities for double integral and (p,q)-differentiable convex functions, Axioms, 8 (2019), 68. doi: 10.3390/axioms8020068
![]() |
[36] |
M. A. Latif, M. Kunt, S. S. Dragomir, Î. Îșcan, Post-quantum trapezoid type inequalities, AIMS Math., 5 (2020), 4011–4026. doi: 10.3934/math.2020258
![]() |
[37] | J. Soontharanon, T. Sitthiwirattham, On fractional (p,q)-calculus, Adv. Differ. Equations, 2020 (2020), 35. |
[38] | S. Thongjob, K. Nonlaopon, S. K. Ntouyas, Some (p,q)-Hardy type inequalities for (p,q)-integrable functions, AIMS Math., 6 (2020), 77–89. |
[39] |
F. Wannalookkhee, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, On Hermite-Hadamard type inequalities for coordinated convex functions via (p,q)-calculus, Mathematics, 9 (2021), 698. doi: 10.3390/math9070698
![]() |
[40] |
M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545–550. doi: 10.1016/0022-247X(81)90123-2
![]() |
[41] | J. Lee, G. E. Vîlcu, Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in quaternionic space forms, Taiwan J. Math., 19 (2015), 691–702. |
[42] |
G. E. Vîlcu, An optimal inequality for lagrangian submanifolds in complex space forms involving casorati curvature, J. Math. Anal. Appl., 465 (2018), 1209–1222. doi: 10.1016/j.jmaa.2018.05.060
![]() |
[43] |
M. Aquib, J. E. Lee, G. E. Vîlcu, D. W. Yoon, Classification of casorati ideal lagrangian submanifolds in complex space forms, Differ. Geom. Appl., 63 (2019), 30–49. doi: 10.1016/j.difgeo.2018.12.006
![]() |
[44] |
A. D. Vîlcu, G. E. Vîlcu, On quasi-homogeneous production functions, Symmetry, 11 (2019), 976. doi: 10.3390/sym11080976
![]() |
[45] | A. Ben-Israel, B. Mond, What is invexity? J. Aust. Math. Soc. Ser. B., 28 (1986), 1–9. |
[46] |
T. Weir, B. Mond, Preinvex functions in multiobjective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. doi: 10.1016/0022-247X(88)90113-8
![]() |
[47] | M. A. Noor, Generalized convex functions, Pan-Am. Math. J., 4 (1994), 73–89. |
[48] |
S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. doi: 10.1006/jmaa.1995.1057
![]() |
[49] | X. J. Long, J. W. Peng, Semi-B-preinvex functions, J. Optim. Theory Appl., 131 (2006), 301–305. |
[50] |
G. Cristescu, M. A. Noor, M. U. Awan, Bounds of the second degree cumulative frontier gaps of functions with generalized convexity, Carpath. J. Math., 31 (2015), 173–180. doi: 10.37193/CJM.2015.02.04
![]() |
[51] |
A. Kiliçman, W. Saleh, Generalized preinvex functions and their applications, Symmetry, 10 (2018), 493. doi: 10.3390/sym10100493
![]() |
[52] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242–251. |
[53] | M. U. Awan, G. Cristescu, M. A. Noor, L. Riahi, Upper and lower bounds for Riemann type quantum integrals of preinvex and preinvex dominated functions, UPB Sci. Bull. Ser. A., 79 (2017), 33–44. |
[54] | M. U. Awan, M. A. Noor, K. I. Noor, Some integral inequalities using quantum calculus approach, Int. J. Anal. Appl., 15 (2017), 125–137. |
[55] | M. A. Noor, G. Cristescu, M. U. Awan, Bounds having Riemann type quantum integrals via strongly convex functions, Studia Sci. Math. Hung., 54 (2017), 221–240. |
[56] |
M. Vivas-Cortez, A. Kashuri, R. Liko, J. E. H. Hernández, Some new q-integral Inequalities using generalized quantum montgomery identity via preinvex functions, Symmetry, 12 (2020), 553. doi: 10.3390/sym12040553
![]() |
[57] | T. S. Du, C. Y. Luo, B. Yu, Certain quantum estimates on the parameterized integral inequalities and their applications, J. Math. Inequal., 15 (2021), 201–228. |
[58] |
M. A. Noor, K. I. Noor, Some characterizations of strongly preinvex functions, J. Math. Anal. Appl., 316 (2006), 697–706. doi: 10.1016/j.jmaa.2005.05.014
![]() |
[59] |
Y. Deng, M. U. Awan, S. Wu, Quantum integral inequalities of Simpson-type for strongly preinvex functions, Mathematics, 7 (2019), 751. doi: 10.3390/math7080751
![]() |
[60] | L. Akin, New principles of non-linear integral inequalities on time scales, Appl. Math. Nonlinear Sci., 6 (2021), 535–555. |
[61] |
S. Kabra, H. Nagar, K. S. Nisar, D. L. Suthar, The Marichev-Saigo-Maeda fractional calculus operators pertaining to the generalized K-Struve function, Appl. Math. Nonlinear Sci., 5 (2020), 593–602. doi: 10.2478/amns.2020.2.00064
![]() |
[62] |
D. Kaur, P. Agarwal, M. Rakshit, M. Chand, Fractional calculus involving (p,q)-Mathieu type series, Appl. Math. Nonlinear Sci., 5 (2020), 15–34. doi: 10.2478/amns.2020.2.00011
![]() |
[63] | M. Alomari, M. Darus, S. S. Dragomir, New inequalities of Simpson's type for s-convex functions with applications, RGMIA Res. Rep. Coll., 12 (2009). |
[64] |
S. Hussain, J. Khalid, Y. M. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Math., 5 (2020), 5859–5883. doi: 10.3934/math.2020375
![]() |
[65] |
M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl., 60 (2010), 2191–2199. doi: 10.1016/j.camwa.2010.07.033
![]() |
[66] | J. Park, Hermite and Simpson-like type inequalities for functions whose second derivatives in absolute values at certain power are s-convex, Int. J. Pure Appl. Math., 78 (2012), 587–604. |
[67] | A. Kashuri, P. O. Mohammed, T. Abdeljawad, F. Hamasalh, Y. Chu, New Simpson type integral inequalities for s-convex functions and their applications, Math. Probl. Eng., 2020 (2020), 1–12. |
[68] | M. Z. Sarıkaya, S. Bardak, Generalized Simpson type integral inequalities, Konuralp J. Math., 7 (2019), 186–191. |
[69] |
Y. Li, T. Du, Some Simpson type integral inequalities for functions whose third derivatives are (α,m)-GA-convex functions, J. Egyptian Math. Soc., 24 (2016), 175–180. doi: 10.1016/j.joems.2015.05.009
![]() |
[70] | M. A. Ali, H. Budak, Z. Zhang, H. Yildirim, Some new Simpson's type inequalities for coordinated convex functions in quantum calculus, Math. Math. Appl. Sci., 44 (2020), 4515–4540. |
[71] | M. A. Ali, M. Abbas, H. Buda, P. Agarwal, G. Murtaza, Y. M. Chu, New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions. Adv. Differ. Equations, 2021 (2021), 64. |
[72] | S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 5 (2000), 533–579. |
[73] |
M. Adil Khan, M. Hanif, Z. A. Khan, K. Ahmad, Y. M. Chu, Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 162. doi: 10.1186/s13660-019-2112-9
![]() |
[74] |
S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 291. doi: 10.1186/s13660-019-2242-0
![]() |
[75] | W. Liu, H. Zhuang, Some quantum estimates of Hermite-Hadamard inequalities for convex functions, J. Appl. Anal. Comput., 7 (2017), 501–522. |
[76] | M. A. Noor, K. I. Noor, S. Iftikhar, Newton's inequalities for p-harmonic convex functions, Honam Math. J., 40 (2018), 239–250. |
[77] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679. |
[78] | W. Sudsutad, S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781–793. |
[79] |
J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 121. doi: 10.1186/1029-242X-2014-121
![]() |
[80] |
Y. Zhang, T. S. Du, H. Wang, Y. J. Shen, Different types of quantum integral inequalities via α,m-convexity, J. Inequal. Appl., 2018 (2018), 264. doi: 10.1186/s13660-018-1860-2
![]() |
[81] |
M. Tunç, E. Göv, S. Balgeçti, Simpson type quantum integral inequalities for convex functions, Miskolc Math. Notes, 19 (2018), 649–664. doi: 10.18514/MMN.2018.1661
![]() |
1. | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sina Etemad, Shahram Rezapour, A new version of $( p,q ) $-Hermite–Hadamard’s midpoint and trapezoidal inequalities via special operators in $( p,q ) $-calculus, 2022, 2022, 1687-2770, 10.1186/s13661-022-01665-3 | |
2. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Hüseyin Budak, Some (p, q)-Integral Inequalities of Hermite–Hadamard Inequalities for (p, q)-Differentiable Convex Functions, 2022, 10, 2227-7390, 826, 10.3390/math10050826 | |
3. | Yonghong Liu, Ghulam Farid, Dina Abuzaid, Kamsing Nonlaopon, On q-Hermite-Hadamard Inequalities via q − h-Integrals, 2022, 14, 2073-8994, 2648, 10.3390/sym14122648 |