Z | Zj−3 | Zj−2 | Zj−1 | Zj | Zj+1 | Zj+2 | Zj+3 |
Gj(Z) | 0 | P1 | P2 | P3 | P2 | P1 | 0 |
G′j(Z) | 0 | −P4 | −P5 | 0 | P5 | P4 | 0 |
G″j(Z) | 0 | P6 | P7 | P8 | P7 | P6 | 0 |
G‴j(Z) | 0 | P9 | P10 | 0 | P10 | P9 | 0 |
G⁗j(Z) | 0 | P11 | P12 | P13 | P12 | P11 | 0 |
In this manuscript, two recent numerical schemes (the trigonometric quintic and exponential cubic B-spline schemes) are employed for evaluating the approximate solutions of the nonlinear Klein-Gordon-Zakharov model. This model describes the interaction between the Langmuir wave and the ion-acoustic wave in a high-frequency plasma. The initial and boundary conditions are constructed via a novel general computational scheme. [
Citation: Mostafa M. A. Khater, A. El-Sayed Ahmed. Strong Langmuir turbulence dynamics through the trigonometric quintic and exponential B-spline schemes[J]. AIMS Mathematics, 2021, 6(6): 5896-5908. doi: 10.3934/math.2021349
[1] | Shanshan Wang . Split-step quintic B-spline collocation methods for nonlinear Schrödinger equations. AIMS Mathematics, 2023, 8(8): 19794-19815. doi: 10.3934/math.20231009 |
[2] | Shafeeq Rahman Thottoli, Mohammad Tamsir, Mutum Zico Meetei, Ahmed H. Msmali . Numerical investigation of nonlinear extended Fisher-Kolmogorov equation via quintic trigonometric B-spline collocation technique. AIMS Mathematics, 2024, 9(7): 17339-17358. doi: 10.3934/math.2024843 |
[3] | Mei Li, Wanqiang Shen . Integral method from even to odd order for trigonometric B-spline basis. AIMS Mathematics, 2024, 9(12): 36470-36492. doi: 10.3934/math.20241729 |
[4] | Rabia Noureen, Muhammad Nawaz Naeem, Dumitru Baleanu, Pshtiwan Othman Mohammed, Musawa Yahya Almusawa . Application of trigonometric B-spline functions for solving Caputo time fractional gas dynamics equation. AIMS Mathematics, 2023, 8(11): 25343-25370. doi: 10.3934/math.20231293 |
[5] | Abdul Majeed, Muhammad Abbas, Amna Abdul Sittar, Md Yushalify Misro, Mohsin Kamran . Airplane designing using Quadratic Trigonometric B-spline with shape parameters. AIMS Mathematics, 2021, 6(7): 7669-7683. doi: 10.3934/math.2021445 |
[6] | Majeed A. Yousif, Juan L. G. Guirao, Pshtiwan Othman Mohammed, Nejmeddine Chorfi, Dumitru Baleanu . A computational study of time-fractional gas dynamics models by means of conformable finite difference method. AIMS Mathematics, 2024, 9(7): 19843-19858. doi: 10.3934/math.2024969 |
[7] | Emre Kırlı . A novel B-spline collocation method for Hyperbolic Telegraph equation. AIMS Mathematics, 2023, 8(5): 11015-11036. doi: 10.3934/math.2023558 |
[8] | Ram Kishun Lodhi, Saud Fahad Aldosary, Kottakkaran Sooppy Nisar, Ateq Alsaadi . Numerical solution of non-linear Bratu-type boundary value problems via quintic B-spline collocation method. AIMS Mathematics, 2022, 7(4): 7257-7273. doi: 10.3934/math.2022405 |
[9] | Mustafa Inc, Hadi Rezazadeh, Javad Vahidi, Mostafa Eslami, Mehmet Ali Akinlar, Muhammad Nasir Ali, Yu-Ming Chu . New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity. AIMS Mathematics, 2020, 5(6): 6972-6984. doi: 10.3934/math.2020447 |
[10] | Seherish Naz Khalid Ali Khan, Md Yushalify Misro . Hybrid B-spline collocation method with particle swarm optimization for solving linear differential problems. AIMS Mathematics, 2025, 10(3): 5399-5420. doi: 10.3934/math.2025249 |
In this manuscript, two recent numerical schemes (the trigonometric quintic and exponential cubic B-spline schemes) are employed for evaluating the approximate solutions of the nonlinear Klein-Gordon-Zakharov model. This model describes the interaction between the Langmuir wave and the ion-acoustic wave in a high-frequency plasma. The initial and boundary conditions are constructed via a novel general computational scheme. [
Plasma physics is one of the most attractive branches of science where many scientists have been focusing their attention on discovering more properties of this field [2]. Plasma or cytoplasm is a distinct state of matter that can be described as an ionized gas in which the electrons are free and are not bound to an atom or a molecule [3]. If the substance is present in nature in three states: solid, liquid, and gas, then plasma can be classified as the fourth state in which the substance can exist [4]. Recently, investigating the heavy Langmuir turbulence's characterization becomes a very important tool for providing a good opportunity to overcome the Langmuir condensation problem [5,6]. Moreover, this investigation aims to raise the amount of long-wave disturbances through the condensation paradox in Langmuir [7]. At that condensation, the radiation can not dampen the vibration where at severe periods, the coulomb relation is unable to dampen the variations in the pulses because of their frequency [8]. Recently, these radiations with its distinct variations and interactions have been mathematically formulated by some nonlinear evolution equations such as KGZ model [9,10,11,12].
The ability of nonlinear partial differential equations with integer or fractional order for formulating different complicated phenomena in various fields including genetics, engineering, quantum mechanics, electro chemistry, chemistry, mechanical engineering, biology, mechanics, etc, makes it the ideal and direct way for discovering the indiscoverable properties of these phenomena [13,14,15,16,17,18,19]. Thus, many mathematicians and physics pay complete attention to derive computational, semi-analytical, numerical techniques for solving these equations such as the Adomian decomposition method, Elkalla expansion method, B-spline schemes, extended simplest equation method, modified Khater method, generalized Khater method, exponential expansion method, auxiliary equation method, direct algebraic expansion method, and so no [20,21,22,23,24,25,26,27,28]. These methods have been employed on several models but until now, there is no unified method can be applied to all the nonlinear evolution equation [29,30,31,32].
In this context, this paper investigate the numerical solutions of the nonlinear KGZ model. This model is formulates as follows [33,34,35]:
{Gtt−Gxx+G+υ0QG=0,Qtt−Qxx−υ1(|G|2)xx,=0, | (1.1) |
where υ0,υ1 are nonzero real parameters describing the consistency of the initial data of the KGZ system while Q=Q(x,t),G=G(x,t) are receptively real and complex functions which represent the fast time scale component of the electric field raised by electrons and the derivation of ion density from its equilibrium. Eq (1.1) describes the interaction and contact between the Langmuir wave and the acoustic wave of the ions in a high frequency plasma. [1] have employed the generalized Khater method to Eq (1.1) and converted it into the following ordinary differential equation with the following initial and boundary conditions
{P″+L1P+L2P3=0,,P(0)=F(Z),PZ(0)=E(Z). | (1.2) |
The generalized Khater method have been constructed the values of F,E under the following value of the above-mentioned parameters L0=12,L1=−22532 as follows [1]:
{F(Z)=115(−4)tanh(Z2),E(Z)=−215.. | (1.3) |
This model can be used to calculate from Euler's equations for electrons and ions, with Maxwell's electromagnetic field law for ions, by disregarding the influence of magnetic fields [36,37]. The nonlinear KGZ model has numerically studied through some recent approximate schemes such as a finite difference method [38] where Chunmei Su and Wenfan Yi have investigated the numerical solutions and established the error estimates of a conservative finite difference method for the considered model with a dimensionless parameter 0<ε≪1, which is inversely proportional to the speed of sound. While [39] has compared the obtained numerical solutions that have been obtained through applying Finite difference time domain (FDTD) methods, Exponential wave integrator (EWI) and Time-splitting (TS) method, Uniformly and optimally accurate (UOA) methods and Uniformly accurate (UA) methods that have been applied in [40,41] of the same model that give a precision, computational sophistication, and other properties are also addressed. [15] has employed the well-known Chebyshev Cardinal Functions for investigating the numerical solutions of the nonlinear KGZ model where operational matrices of derivatives have been used to convert partial differential equations into nonlinear algebraic equations. [16] has used a new conservative finite difference scheme with a parameter θ has been employed for obtaining the numerical solutions of the considered model. Moreover, Convergence of the numerical solutions has been investigated. For further information of the numerical solutions of the nonlinear KGZ model, you can see [17,18].
The rest sections in this manuscript is organized as follows; Section 2 applies the above-mentioned numerical schemes to the nonlinear KGZ equation for estimating the numerical solutions. Section 3 discusses the obtained numerical solutions. Section 4 gives the conclusion of the whole paper.
Here, we give the headline of the used methods they we give the obtained results along with these approximate schemes
Using the trigonometric Quintic B-spline scheme supposes the solutions of Eq (1.2) is formulated as following
P(Z)=r+2∑j=−2CjGj(Z),j=(0,1,⋯,r), | (2.1) |
where Cj are be determined form the collocation points Zj and Gj(Z) satisfies the following values
Gj(Z)={ψ5(Zj−3),Z∈[Zj−3,Zj−2]ψ4(Zj−3)Ψ(Zj−1)+⋯+Ψ(Zj+3)ψ4(Zj−2)Z∈[Zj−2,Zj−1]ψ3(Zj−3)Ψ2(Zj)+⋯+Ψ2(Zj+3)ψ3(Zj−1)Z∈[Zj−1,Zj]ψ2(Zj−3)Ψ3(Zj+1)+⋯+Ψ3(Zj+3)ψ2(Zj)Z∈[Zj,Zj+1]ψ(Zj−1)Ψ2(j+2)+⋯+Ψ4(Zj+3)ψ(Zj+1),Z∈[Zj+1,Zj+2]Ψ5(Zj+3)Z∈[Zj+2,Zj+3]0,otherwise | (2.2) |
where ψ(Zj)=sin(Z−Zj2),Ψ(Zj)=sin(Zj−Z2). Consequently, we can find the values of Gj(Z) as shown in the next Table 1 where the values of PL,L=1,⋯,13.
P1=sin5(h2)sin(5h2)sin(2h)sin(3h2)sin(h)sin(h2), | (2.3) |
P2=2sin5(h2)cos(h2)(16cos2(h2)−3)sin(5h2)sin(2h)sin(3h2)sin(h)sin(h2), | (2.4) |
P3=2sin5(h2)(48cos4(h2)−16cos2(h2)+1)sin(5h2)sin(2h)sin(3h2)sin(h)sin(h2), | (2.5) |
P4=5sin4(h2)cos(h2)2(sin(5h2)sin(2h)sin(3h2)sin(h)sin(h2)), | (2.6) |
P5=5sin4(h2)cos2(h2)(8cos2(h2)−3)sin(5h2)sin(2h)sin(3h2)sin(h)sin(h2), | (2.7) |
P6=5sin3(h2)(5cos2(h2)−1)4(sin(5h2)sin(2h)sin(3h2)sin(h)sin(h2)), | (2.8) |
P7=5sin3(h2)cos(h2)(16cos4(h2)−15cos2(h2)+3)2(sin(5h2)sin(2h)sin(3h2)sin(h)sin(h2)), | (2.9) |
P8=−5sin3(h2)(16cos6(h2)−5cos2(h2)+1)2(sin(5h2)sin(2h)sin(3h2)sin(h)sin(h2)), | (2.10) |
P9=5sin2(h2)cos(h2)(25cos(h)−1)16(sin(5h2)sin(2h)sin(3h2)sin(h)sin(h2)), | (2.11) |
P10=−5sin2(h)(−27cos(h)+2cos(2h)+1)32(sin(5h2)sin(2h)sin(3h2)sin(h)sin(h2)), | (2.12) |
P11=5sin(h2)(44cos(h)+125cos(2h)+23)128(sin(5h2)sin(2h)sin(3h2)sin(h)sin(h2)), | (2.13) |
P12=−5sin(h)(88cos(h)+127cos(2h)+44cos(3h)+125)128(sin(5h2)sin(2h)sin(3h2)sin(h)sin(h2)), | (2.14) |
P13=5sin(h2)(2cos(h)+1)(125cos(h)+21cos(2h)+23cos(3h)+23)64(sin(5h2)sin(2h)sin(3h2)sin(h)sin(h2)), | (2.15) |
Z | Zj−3 | Zj−2 | Zj−1 | Zj | Zj+1 | Zj+2 | Zj+3 |
Gj(Z) | 0 | P1 | P2 | P3 | P2 | P1 | 0 |
G′j(Z) | 0 | −P4 | −P5 | 0 | P5 | P4 | 0 |
G″j(Z) | 0 | P6 | P7 | P8 | P7 | P6 | 0 |
G‴j(Z) | 0 | P9 | P10 | 0 | P10 | P9 | 0 |
G⁗j(Z) | 0 | P11 | P12 | P13 | P12 | P11 | 0 |
where h=q−pr,q>p such that [p,q] is the problem's domain.
Employing the exponential cubic spline technique to considered model with the above conditions, yields elicit its numerical solutions as following
P(Z)=M+1∑T=−1CTET, | (2.16) |
where CT,ET follow the next conditions, respectively:
LB(Z)=F(ZT,B(ZT))where(T=0,1,...,n) |
and
ET(Z)=16H3{(Z−ZT−2)3,Z∈[ZT−2,ZT−1],−3(Z−ZT−1)3+3H(Z−ZT−1)2+3H2(Z−ZT−1)+H3,Z∈[ZT−1,Zi],−3(ZT+1−Z)3+3H(ZT+1−Z)2+3H2(ZT+1−Z)+H3,Z∈[ZT,ZT+1],(ZT+2−Z)3,Z∈[ZT+1,ZT+2],0,otherwise. | (2.17) |
For T∈[−2,M+2], we obtain
BT(Z)=CT−1+4CT+CT+1. | (2.18) |
Here, we apply the TQBS and ECBS schemes to Eq (1.1) with the evaluated initial and boundary conditions (1.3) as following.
Applying the TQBS scheme to Eq (1.2) with above-conditions (1.3), gets the following numerical values in Tables 2, 3, and Figure 1.
Value of Z | Analytica | Numerical | Absolute Error | Value of Z | Analytical | Numerical | Absolute Error | |
0 | 0 | -2.71051E-20 | 2.71051E-20 | 0.2578125 | -0.034185856 | -0.034185856 | 4.37705E-14 | |
0.0078125 | -0.001041661 | -0.001041661 | 1.00159E-15 | 0.265625 | -0.035209885 | -0.035209885 | 4.49224E-14 | |
0.015625 | -0.002083291 | -0.002083291 | 2.52879E-15 | 0.2734375 | -0.036232859 | -0.036232859 | 4.60743E-14 | |
0.0234375 | -0.003124857 | -0.003124857 | 3.91484E-15 | 0.28125 | -0.037254747 | -0.037254747 | 4.72261E-14 | |
0.03125 | -0.004166328 | -0.004166328 | 5.33774E-15 | 0.2890625 | -0.038275521 | -0.038275521 | 4.83363E-14 | |
0.0390625 | -0.005207671 | -0.005207671 | 6.74634E-15 | 0.296875 | -0.039295151 | -0.039295151 | 4.94466E-14 | |
0.046875 | -0.006248856 | -0.006248856 | 8.1584E-15 | 0.3046875 | -0.040313607 | -0.040313607 | 5.05221E-14 | |
0.0546875 | -0.00728985 | -0.00728985 | 9.56613E-15 | 0.3125 | -0.041330861 | -0.041330861 | 5.15907E-14 | |
0.0625 | -0.008330622 | -0.008330622 | 1.09721E-14 | 0.3203125 | -0.042346885 | -0.042346885 | 5.26246E-14 | |
0.0703125 | -0.00937114 | -0.00937114 | 1.23738E-14 | 0.328125 | -0.043361648 | -0.043361648 | 5.36515E-14 | |
0.078125 | -0.010411372 | -0.010411372 | 1.37685E-14 | 0.3359375 | -0.044375124 | -0.044375124 | 5.46438E-14 | |
0.0859375 | -0.011451287 | -0.011451287 | 1.51632E-14 | 0.34375 | -0.045387282 | -0.045387282 | 5.56291E-14 | |
0.09375 | -0.012490853 | -0.012490853 | 1.65527E-14 | 0.3515625 | -0.046398096 | -0.046398096 | 5.65936E-14 | |
0.1015625 | -0.013530039 | -0.013530039 | 1.7937E-14 | 0.359375 | -0.047407536 | -0.047407536 | 5.75304E-14 | |
0.109375 | -0.014568812 | -0.014568812 | 1.93196E-14 | 0.3671875 | -0.048415576 | -0.048415576 | 5.84324E-14 | |
0.1171875 | -0.015607143 | -0.015607143 | 2.06935E-14 | 0.375 | -0.049422187 | -0.049422187 | 5.93275E-14 | |
0.125 | -0.016644999 | -0.016644999 | 2.20587E-14 | 0.3828125 | -0.050427341 | -0.050427341 | 6.02018E-14 | |
0.1328125 | -0.017682349 | -0.017682349 | 2.34222E-14 | 0.390625 | -0.051431011 | -0.051431011 | 6.10553E-14 | |
0.140625 | -0.018719162 | -0.018719162 | 2.47719E-14 | 0.3984375 | -0.052433171 | -0.052433171 | 6.1888E-14 | |
0.1484375 | -0.019755406 | -0.019755406 | 2.6118E-14 | 0.40625 | -0.053433792 | -0.053433792 | 6.2686E-14 | |
0.15625 | -0.020791051 | -0.020791051 | 2.74503E-14 | 0.4140625 | -0.054432847 | -0.054432847 | 6.34492E-14 | |
0.1640625 | -0.021826065 | -0.021826065 | 2.87825E-14 | 0.421875 | -0.055430311 | -0.055430311 | 6.41917E-14 | |
0.171875 | -0.022860418 | -0.022860418 | 3.01044E-14 | 0.4296875 | -0.056426157 | -0.056426157 | 6.48925E-14 | |
0.1796875 | -0.023894078 | -0.023894078 | 3.14124E-14 | 0.4375 | -0.057420357 | -0.057420357 | 6.56003E-14 | |
0.1875 | -0.024927014 | -0.024927014 | 3.26926E-14 | 0.4453125 | -0.058412887 | -0.058412887 | 6.62456E-14 | |
0.1953125 | -0.025959197 | -0.025959197 | 3.39763E-14 | 0.453125 | -0.059403719 | -0.059403719 | 6.68632E-14 | |
0.203125 | -0.026990595 | -0.026990595 | 3.52322E-14 | 0.4609375 | -0.060392829 | -0.060392829 | 6.74669E-14 | |
0.2109375 | -0.028021178 | -0.028021178 | 3.64916E-14 | 0.46875 | -0.06138019 | -0.06138019 | 6.80359E-14 | |
0.21875 | -0.029050915 | -0.029050915 | 3.77406E-14 | 0.4765625 | -0.062365777 | -0.062365777 | 6.8591E-14 | |
0.2265625 | -0.030079776 | -0.030079776 | 3.89688E-14 | 0.484375 | -0.063349565 | -0.063349565 | 6.91253E-14 | |
0.234375 | -0.03110773 | -0.03110773 | 4.01866E-14 | 0.4921875 | -0.064331528 | -0.064331528 | 6.95971E-14 | |
0.2421875 | -0.032134749 | -0.032134749 | 4.13905E-14 | 0.5 | -0.065311643 | -0.065311643 | 7.00412E-14 | |
0.25 | -0.0331608 | -0.0331608 | 4.25909E-14 | 0.5078125 | -0.066289885 | -0.066289885 | 7.04575E-14 |
Value of Z | Analytical | Numerical | Absolute error | Value of Z | Analytical | Numerical | Absolute error | |
0.515625 | -0.067266228 | -0.067266228 | 7.08461E-14 | 0.7578125 | -0.096468595 | -0.096468595 | 6.22696E-14 | |
0.5234375 | -0.068240649 | -0.068240649 | 7.11931E-14 | 0.765625 | -0.097372658 | -0.097372658 | 6.1201E-14 | |
e 0.53125 | -0.069213124 | -0.069213124 | 7.14984E-14 | 0.7734375 | -0.098274146 | -0.098274146 | 6.00908E-14 | |
0.5390625 | -0.070183629 | -0.070183629 | 7.18037E-14 | 0.78125 | -0.099173043 | -0.099173043 | 5.88973E-14 | |
0.546875 | -0.071152141 | -0.071152141 | 7.20674E-14 | 0.7890625 | -0.100069331 | -0.100069331 | 5.76483E-14 | |
0.5546875 | -0.072118635 | -0.072118635 | 7.22755E-14 | 0.796875 | -0.100962996 | -0.100962996 | 5.63855E-14 | |
0.5625 | -0.07308309 | -0.07308309 | 7.24559E-14 | 0.8046875 | -0.101854021 | -0.101854021 | 5.50393E-14 | |
0.5703125 | -0.074045483 | -0.074045483 | 7.25808E-14 | 0.8125 | -0.102742391 | -0.102742391 | 5.36515E-14 | |
0.578125 | -0.075005789 | -0.075005789 | 7.2678E-14 | 0.8203125 | -0.103628091 | -0.103628091 | 5.21666E-14 | |
0.5859375 | -0.075963988 | -0.075963988 | 7.27196E-14 | 0.828125 | -0.104511107 | -0.104511107 | 5.06262E-14 | |
0.59375 | -0.076920057 | -0.076920057 | 7.27474E-14 | 0.8359375 | -0.105391423 | -0.105391423 | 4.89747E-14 | |
0.6015625 | -0.077873973 | -0.077873973 | 7.27057E-14 | 0.84375 | -0.106269025 | -0.106269025 | 4.72677E-14 | |
0.609375 | -0.078825716 | -0.078825716 | 7.26502E-14 | 0.8515625 | -0.107143899 | -0.107143899 | 4.55053E-14 | |
0.6171875 | -0.079775264 | -0.079775264 | 7.25253E-14 | 0.859375 | -0.108016031 | -0.108016031 | 4.36595E-14 | |
0.625 | -0.080722594 | -0.080722594 | 7.23588E-14 | 0.8671875 | -0.108885407 | -0.108885407 | 4.17999E-14 | |
0.6328125 | -0.081667688 | -0.081667688 | 7.21367E-14 | 0.875 | -0.109752015 | -0.109752015 | 3.98431E-14 | |
0.640625 | -0.082610522 | -0.082610522 | 7.18869E-14 | 0.8828125 | -0.110615841 | -0.110615841 | 3.78308E-14 | |
0.6484375 | -0.083551078 | -0.083551078 | 7.15816E-14 | 0.890625 | -0.111476871 | -0.111476871 | 3.57908E-14 | |
0.65625 | -0.084489334 | -0.084489334 | 7.12486E-14 | 0.8984375 | -0.112335095 | -0.112335095 | 3.36675E-14 | |
0.6640625 | -0.08542527 | -0.08542527 | 7.086E-14 | 0.90625 | -0.113190498 | -0.113190498 | 3.14748E-14 | |
0.671875 | -0.086358867 | -0.086358867 | 7.04575E-14 | 0.9140625 | -0.11404307 | -0.11404307 | 2.92405E-14 | |
0.6796875 | -0.087290105 | -0.087290105 | 6.99718E-14 | 0.921875 | -0.114892798 | -0.114892798 | 2.68674E-14 | |
0.6875 | -0.088218965 | -0.088218965 | 6.94583E-14 | 0.9296875 | -0.11573967 | -0.11573967 | 2.44249E-14 | |
0.6953125 | -0.089145427 | -0.089145427 | 6.88755E-14 | 0.9375 | -0.116583676 | -0.116583676 | 2.18991E-14 | |
0.703125 | -0.090069472 | -0.090069472 | 6.82371E-14 | 0.9453125 | -0.117424804 | -0.117424804 | 1.92901E-14 | |
0.7109375 | -0.090991083 | -0.090991083 | 6.75571E-14 | 0.953125 | -0.118263043 | -0.118263043 | 1.66117E-14 | |
0.71875 | -0.09191024 | -0.09191024 | 6.68215E-14 | 0.9609375 | -0.119098383 | -0.119098383 | 1.38639E-14 | |
0.7265625 | -0.092826925 | -0.092826925 | 6.60166E-14 | 0.96875 | -0.119930814 | -0.119930814 | 1.10745E-14 | |
0.734375 | -0.093741121 | -0.093741121 | 6.51562E-14 | 0.9765625 | -0.120760325 | -0.120760325 | 8.18789E-15 | |
0.7421875 | -0.094652809 | -0.094652809 | 6.42403E-14 | 0.984375 | -0.121586906 | -0.121586906 | 5.31519E-15 | |
0.75 | -0.095561973 | -0.095561973 | 6.32688E-14 | 0.9921875 | -0.122410548 | -0.122410548 | 2.13718E-15 |
Applying the ECBS scheme to Eq (1.2) with above-conditions (1.3), gets the following numerical values in Table 4, and Figure 2.
Value of Z | Analytical | Numerical | Absolute error |
0 | 0 | 0 | 0 |
0.001 | -0.000133333 | -0.000133333 | 2.75062E-16 |
0.002 | -0.000266667 | -0.000266667 | 5.33482E-16 |
0.003 | -0.0004 | -0.0004 | 7.58508E-16 |
0.004 | -0.000533333 | -0.000533333 | 9.33498E-16 |
0.005 | -0.000666665 | -0.000666665 | 1.04181E-15 |
0.006 | -0.000799998 | -0.000799998 | 1.06685E-15 |
0.007 | -0.00093333 | -0.00093333 | 9.9172E-16 |
0.008 | -0.001066661 | -0.001066661 | 7.99924E-16 |
0.009 | -0.001199992 | -0.001199992 | 4.75097E-16 |
0.01 | -0.001333322 | -0.001333322 | 0 |
Here, we explain the accuracy and novelty of the obtained numerical result in this research paper by comparing them with the previously calculated in [42] through four-different schemes (Adomian decomposition (AD), El-kalla (EK), cubic B-spline (CB), and extended cubic B-spline (ECB) schemes)) and one common scheme (exponential cubic B-spline (ExCB) scheme). Although, comparing our obtained result with each other, shows the accuracy of the ECBS scheme over the TQBS scheme where the absolute error is smaller than that have been obtained by the TQBS scheme which have been shown in Figures 1, 2 and Tables 2–4. Now, comparing the accuracy between our solutions and that have been evaluated in [42], shows our solution is more accurate than their solutions that have been explained in Table 5, and Figure 3.
Value of Z | AD | EK | CBS | EtCBS | ECBS | ECBS | TQBS |
0 | 0 | 0 | 0 | 0 | 5.45828E-18 | 0 | 2.71E-20 |
0.001 | 2.71051E-20 | 2.71051E-20 | 1.83257E-16 | 3.29993E-09 | 1.10002E-09 | 2.75E-16 | |
0.002 | 5.42101E-20 | 5.42101E-20 | 3.55401E-16 | 6.39986E-09 | 2.13337E-09 | 5.33E-16 | |
0.003 | 0 | 0 | 5.05455E-16 | 9.0998E-09 | 3.03339E-09 | 7.59E-16 | |
0.004 | 0 | 0 | 6.22007E-16 | 1.11997E-08 | 3.7334E-09 | 9.33E-16 | |
0.005 | 0 | 0 | 6.94215E-16 | 1.24997E-08 | 4.16674E-09 | 1.04E-15 | |
0.006 | 1.0842E-19 | 1.0842E-19 | 7.10695E-16 | 1.27997E-08 | 4.26674E-09 | 1.07E-15 | |
0.007 | 1.0842E-19 | 1.0842E-19 | 6.60821E-16 | 1.18997E-08 | 3.96674E-09 | 9.92E-16 | |
0.008 | 0 | 0 | 5.32994E-16 | 9.59976E-09 | 3.20006E-09 | 8E-16 | |
0.009 | 2.1684E-19 | 0 | 3.1637E-16 | 5.69985E-09 | 1.90003E-09 | 4.75E-16 | |
0.01 | 0 | 2.1684E-19 | 0 | 0 | 2.1684E-19 | 0 | 2.53E-15 |
This manuscript has employed the TQBS and ECBS numerical schemes for evaluating the numerical solutions of the nonlinear KGZ model. The matching between analytical and numerical solutions has been explained through the shown tables and figures. The accuracy of the modified Khater method has been proved through six numerical schemes. The novelty and originality of our obtained solutions have been explained. the powerful and effectiveness of the used techniques are also explained and verified.
The authors would like to thank Taif University Researchers supporting Project number (TURSP-2020/159), Taif University-Saudi Arabia.
There is no conflict of interest.
[1] | M. M. Khater, D. Lu, On the dynamics of strong Langmuir turbulence through the generalized khater method in the plasma physics, Eur. Phys. J. Plus, 2021. Accepted. |
[2] | M. M. Khater, M. Inc, K. Nisar, R. A. Attia, Multi-solitons, lumps, and breath solutions of the water wave propagation with surface tension via four recent computational schemes, Ain Shams Eng. J., 2021. In Press. |
[3] | M. M. Khater, T. A. Nofal, H. Abu-Zinadah, M. S. Lotayif, D. Lu, Novel computational and accurate numerical solutions of the modified Benjamin-Bona-Mahony (BBM) equation arising in the optical illusions field, Alex. Eng. J. 60 (2021), 1797–1806. |
[4] |
M. M. Khater, M. S. Mohamed, R. A. Attia, On semi analytical and numerical simulations for a mathematical biological model; the time-fractional nonlinear {K}olmogorov-{P}etrovskii-{P}iskunov (KPP) equation, Chaos, Solitons Fract., 144 (2021), 110676. doi: 10.1016/j.chaos.2021.110676
![]() |
[5] |
M. M. Khater, A. Mousa, M. El-Shorbagy, R. A. Attia, Analytical and semi-analytical solutions for Phi-four equation through three recent schemes, Results Phys., 22 (2021), 103954. doi: 10.1016/j.rinp.2021.103954
![]() |
[6] |
M. M. Khater, A. E. S. Ahmed, M. El-Shorbagy, Abundant stable computational solutions of Atangana-Baleanu fractional nonlinear HIV-1 infection of CD4+ T-cells of immunodeficiency syndrome, Results Phys., 22 (2021), 103890. doi: 10.1016/j.rinp.2021.103890
![]() |
[7] |
M. M. Khater, S. Anwar, K. U. Tariq, M. S. Mohamed, Some optical soliton solutions to the perturbed nonlinear Schrödinger equation by modified Khater method, AIP Adv., 11 (2021), 025130. doi: 10.1063/5.0038671
![]() |
[8] |
M. M. Khater, R. A. Attia, A. Bekir, D. Lu, Optical soliton structure of the sub-10-fs-pulse propagation model, J. Optics, 50 (2021), 109–119. doi: 10.1007/s12596-020-00667-7
![]() |
[9] |
X. Zheng, Y. Shang, X. Peng, Orbital stability of solitary waves of the coupled Klein-Gordon-Zakharov equations, Math. Method. Appl. Sci., 40 (2017), 2623–2633. doi: 10.1002/mma.4187
![]() |
[10] |
H. Baskonus, T. Sulaiman, H. Bulut, On the new wave behavior to the Klein-Gordon-Zakharov equations in plasma physics, Indian J. Phys., 93 (2019), 393–399. doi: 10.1007/s12648-018-1262-9
![]() |
[11] |
A. Houwe, S. Abbagari, Y. Salathiel, M. Inc, S. Y. Doka, K. T. Crépin, et al., Complex traveling-wave and solitons solutions to the Klein-Gordon-Zakharov equations, Results Phys., 17 (2020), 103127. doi: 10.1016/j.rinp.2020.103127
![]() |
[12] | S. Nestor, A. Houwe, H. Rezazadeh, A. Bekir, G. Betchewe, S. Y. Doka, New solitary waves for the Klein-Gordon-Zakharov equations, Mod. Phys. Lett. B, 34 (2020), 2050246. |
[13] |
S. Ali, M. Younis, M. O. Ahmad, S. T. R. Rizvi, Rogue wave solutions in nonlinear optics with coupled Schrödinger equations, Opt. Quantum Electron., 50 (2018), 266. doi: 10.1007/s11082-018-1526-9
![]() |
[14] |
S. T. R. Rizvi, K. Ali, M. Ahmad, Optical solitons for Biswas-Milovic equation by new extended auxiliary equation method, Optik, 204 (2020), 164181. doi: 10.1016/j.ijleo.2020.164181
![]() |
[15] |
I. Ali, S. T. R. Rizvi, S. O. Abbas, Q. Zhou, Optical solitons for modulated compressional dispersive alfven and heisenberg ferromagnetic spin chains, Results Phys., 15 (2019), 102714. doi: 10.1016/j.rinp.2019.102714
![]() |
[16] |
S. R. Rizvi, I. Afzal, K. Ali, M. Younis, Stationary solutions for nonlinear Schrödinger equations by Lie group Analysis, Acta Phys. Pol. A, 136 (2019), 187–189. doi: 10.12693/APhysPolA.136.187
![]() |
[17] |
B. Nawaz, K. Ali, S. O. Abbas, S. T. R. Rizvi, Q. Zhou, Optical solitons for non-kerr law nonlinear Schrödinger equation with third and fourth order dispersions, Chin. J. Phys., 60 (2019), 133–140. doi: 10.1016/j.cjph.2019.05.014
![]() |
[18] | S. T. R. Rizvi, K. Ali, H. Hanif, Optical solitons in dual core fibers under various nonlinearities, Mod. Phys. Lett. B, 33 (2019), 1950189. |
[19] |
A. Arif, M. Younis, M. Imran, M. Tantawy, S. T. R. Rizvi, Solitons and lump wave solutions to the graphene thermophoretic motion system with a variable heat transmission, Eur. Phys. J. Plus, 134 (2019), 303. doi: 10.1140/epjp/i2019-12679-9
![]() |
[20] |
P. P. Sullivan, J. C. McWilliams, Langmuir turbulence and filament frontogenesis in the oceanic surface boundary layer, J. Fluid Mech., 879 (2019), 512–553. doi: 10.1017/jfm.2019.655
![]() |
[21] |
S. Kim, P. H. Yoon, G. Choe, Y. J. moon, Suprathermal solar wind electrons and Langmuir turbulence, Astrophys. J., 828 (2016), 60. doi: 10.3847/0004-637X/828/1/60
![]() |
[22] |
B. G. Reichl, I. Ginis, T. Hara, B. Thomas, T. Kukulka, D. Wang, Impact of sea-state-dependent Langmuir turbulence on the ocean response to a tropical cyclone, Mon. Weather Rev., 144 (2016), 4569–4590. doi: 10.1175/MWR-D-16-0074.1
![]() |
[23] |
D. Wang, T. Kukulka, B. G. Reichl, T. Hara, I. Ginis, Wind-wave misalignment effects on Langmuir turbulence in tropical cyclone conditions, J. Phys. Oceanogr., 49 (2019), 3109–3126. doi: 10.1175/JPO-D-19-0093.1
![]() |
[24] |
P. Yoon, M. Lazar, K. Scherer, H. Fichtner, R. Schlickeiser, Modified κ-distribution of solar wind electrons and steady-state Langmuir turbulence, Astrophys. J., 868 (2018), 131. doi: 10.3847/1538-4357/aaeb94
![]() |
[25] |
M. Osman, D. Lu, M. M. Khater, A study of optical wave propagation in the nonautonomous schrödinger-hirota equation with power-law nonlinearity, Results Phys., 13 (2019), 102157. doi: 10.1016/j.rinp.2019.102157
![]() |
[26] |
M. M. Khater, D. Lu, R. A. Attia, Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method, AIP Adv., 9 (2019), 025003. doi: 10.1063/1.5087647
![]() |
[27] |
M. M. Khater, D. Lu, R. A. Attia, Erratum: "Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method" [AIP adv. 9, 025003 (2019)], AIP Adv., 9 (2019), 049902. doi: 10.1063/1.5096005
![]() |
[28] | M. M. Khater, D. Lu, R. A. Attia, Lump soliton wave solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equation and KdV equation, Mod. Phys. Lett. B, 33 (2019), 1950199. |
[29] |
Y. Chu, M. M. Khater, Y. Hamed, Diverse novel analytical and semi-analytical wave solutions of the generalized (2+1)-dimensional shallow water waves model, AIP Adv., 11 (2021), 015223. doi: 10.1063/5.0036261
![]() |
[30] |
M. M. Khater, A. Bekir, D. Lu, R. A. Attia, Analytical and semi-analytical solutions for time-fractional Cahn-Allen equation, Math. Method. Appl. Sci., 44 (2021), 2682–2691. doi: 10.1002/mma.6951
![]() |
[31] |
E. H. Zahran, M. M. Khater, Modified extended tanh-function method and its applications to the Bogoyavlenskii equation, Appl. Math. Model., 40 (2016), 1769–1775. doi: 10.1016/j.apm.2015.08.018
![]() |
[32] | D. Lu, A. R. Seadawy, M. M. Khater, Structures of exact and solitary optical solutions for the higher-order nonlinear schrödinger equation and its applications in mono-mode optical fibers, Mod. Phys. Lett. B, 33 (2019), 1950279. |
[33] |
A. Houwe, S. Abbagari, Y. Salathiel, M. Inc, S. Y. Doka, K. T. Crépin, et al., Complex traveling-wave and solitons solutions to the Klein-Gordon-Zakharov equations, Results Phys., 17 (2020), 103127. doi: 10.1016/j.rinp.2020.103127
![]() |
[34] | S. Nestor, A. Houwe, H. Rezazadeh, A. Bekir, G. Betchewe, S. Y. Doka, New solitary waves for the Klein-Gordon-Zakharov equations, Mod. Phys. Lett. B, 34 (2020), 2050246. |
[35] |
R. Martínez, J. Macías-Díaz, A. Hendy, Corrigendum to a numerically efficient and conservative model for a riesz space-fractional Klein-Gordon-Zakharov system, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105109. doi: 10.1016/j.cnsns.2019.105109
![]() |
[36] | V. E. Zakharov, Collapse of langmuir waves, Sov. Phys. JETP, 35 (1972), 908–914. |
[37] |
L. Bergé, B. Bidégaray, T. Colin, A perturbative analysis of the time-envelope approximation in strong langmuir turbulence, Phys. D: Nonlinear Phenom., 95 (1996), 351–379. doi: 10.1016/0167-2789(96)00058-9
![]() |
[38] |
C. Su, W. Yi, Error estimates of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime, IMA J. Numer. Anal., 38 (2018), 2055–2073. doi: 10.1093/imanum/drx044
![]() |
[39] |
W. Bao, X. Zhao, Comparison of numerical methods for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime, J. Comput. Phys., 398 (2019), 108886. doi: 10.1016/j.jcp.2019.108886
![]() |
[40] |
W. Bao, X. Dong, Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime, Numer. Math., 120 (2012), 189–229. doi: 10.1007/s00211-011-0411-2
![]() |
[41] |
E. Faou, K. Schratz, Asymptotic preserving schemes for the Klein-Gordon equation in the non-relativistic limit regime, Numer. Math., 126 (2014), 441–469. doi: 10.1007/s00211-013-0567-z
![]() |
[42] | M. M. A. Khater, On the dynamics of strong Langmuir turbulence through the five recent numerical schemes in the plasma physics, Numer. Method. Part. Differ. Equtions, 2020. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/num.22681. |
1. | Mostafa M.A. Khater, Samir A. Salama, Semi–analytical and numerical simulations of the modified Benjamin–Bona–Mahony model, 2022, 7, 24680133, 264, 10.1016/j.joes.2021.08.008 | |
2. | Mostafa M.A. Khater, Two-component plasma and electron trapping’s influence on the potential of a solitary electrostatic wave with the dust-ion-acoustic speed, 2022, 24680133, 10.1016/j.joes.2022.02.006 | |
3. | Mohamed Omri, Abdel-Haleem Abdel-Aty, S. Abdel-Khalek, E.M. Khalil, Mostafa M.A. Khater, Computational and numerical simulations of nonlinear fractional Ostrovsky equation, 2022, 61, 11100168, 6887, 10.1016/j.aej.2021.12.032 | |
4. | Mostafa M. A. Khater, Adil Jhangeer, Hadi Rezazadeh, Lanre Akinyemi, M. Ali Akbar, Mustafa Inc, Propagation of new dynamics of longitudinal bud equation among a magneto-electro-elastic round rod, 2021, 35, 0217-9849, 10.1142/S0217984921503814 | |
5. | Rohul Amin, Şuayip Yüzbası, Shah Nazir, Efficient Numerical Scheme for the Solution of HIV Infection CD4+ T-Cells Using Haar Wavelet Technique, 2022, 131, 1526-1506, 639, 10.32604/cmes.2022.019154 | |
6. | Tarikul Islam, Ali Akbar, Hadi Rezazadeh, Ahmet Bekir, New-fashioned solitons of coupled nonlinear Maccari systems describing the motion of solitary waves in fluid flow, 2022, 24680133, 10.1016/j.joes.2022.03.003 | |
7. | U. Younas, J. Ren, Diversity of wave structures to the conformable fractional dynamical model, 2022, 24680133, 10.1016/j.joes.2022.04.014 | |
8. | Xin-Yi Gao, Yong-Jiang Guo, Wen-Rui Shan, Ocean shallow-water studies on a generalized Boussinesq-Broer-Kaup-Whitham system: Painlevé analysis and similarity reductions, 2023, 169, 09600779, 113214, 10.1016/j.chaos.2023.113214 | |
9. | Hamood ur Rehman, Aziz Ullah Awan, Azka Habib, Fehmi Gamaoun, ElSayed M. Tag El Din, Ahmed M. Galal, Solitary wave solutions for a strain wave equation in a microstructured solid, 2022, 39, 22113797, 105755, 10.1016/j.rinp.2022.105755 | |
10. | Mostafa M.A. Khater, Samir A. Salama, Plenty of analytical and semi-analytical wave solutions of shallow water beneath gravity, 2022, 7, 24680133, 237, 10.1016/j.joes.2021.08.004 | |
11. | Mostafa M. A. Khater, Analytical simulations of the Fokas system; extension (2 + 1)-dimensional nonlinear Schrödinger equation, 2021, 35, 0217-9792, 10.1142/S0217979221502866 | |
12. | Dexu Zhao, Raghda A. M. Attia, Jian Tian, Samir A. Salama, Dianchen Lu, Mostafa M. A. Khater, Abundant accurate analytical and semi-analytical solutions of the positive Gardner–Kadomtsev–Petviashvili equation, 2022, 20, 2391-5471, 30, 10.1515/phys-2022-0001 | |
13. | Kalim U. Tariq, Mustafa Inc, Arash Pashrashid, Muhammad Zubair, Lanre Akinyemi, On the structure of unsteady korteweg-de vries model arising in shallow water, 2022, 24680133, 10.1016/j.joes.2022.01.011 | |
14. | Mostafa M. A. Khater, Numerical simulations of Zakharov’s (ZK) non-dimensional equation arising in Langmuir and ion-acoustic waves, 2021, 35, 0217-9849, 10.1142/S0217984921504807 | |
15. | Fuzhang Wang, Shabbir Muhammad, A. Al-Ghamdi, M. Higazy, Mostafa M.A. Khater, Novel computational technique; the second positive member in a new completely integrable hierarchy, 2022, 24680133, 10.1016/j.joes.2022.03.026 | |
16. | Mostafa M.A. Khater, Samir A. Salama, Novel analytical simulations of the complex nonlinear Davey–Stewartson equations in the gravity-capillarity surface wave packets, 2021, 24680133, 10.1016/j.joes.2021.10.003 | |
17. | Sachin Kumar, Monika Niwas, Shubham Kumar Dhiman, Abundant analytical soliton solutions and different wave profiles to the Kudryashov-Sinelshchikov equation in mathematical physics, 2022, 7, 24680133, 565, 10.1016/j.joes.2021.10.009 | |
18. | Geeta Arora, Richa Rani, Homan Emadifar, Soliton: A dispersion-less solution with existence and its types, 2022, 8, 24058440, e12122, 10.1016/j.heliyon.2022.e12122 | |
19. | Muhammad Bilal Riaz, Jan Awrejcewicz, Adil Jhangeer, Muhammad Junaid-U-Rehman, A Variety of New Traveling Wave Packets and Conservation Laws to the Nonlinear Low-Pass Electrical Transmission Lines via Lie Analysis, 2021, 5, 2504-3110, 170, 10.3390/fractalfract5040170 | |
20. | Chen Yue, Li Wu, A. A. Mousa, Dianchen Lu, Mostafa M. A. Khater, Diverse Novel Stable Traveling Wave Solutions of the Advanced or Voltage Spectrum of Electrified Transmission Through Fractional Non-linear Model, 2021, 9, 2296-424X, 10.3389/fphy.2021.654047 | |
21. | Mostafa M. A. Khater, Raghda A. M. Attia, Dianchen Lu, Superabundant novel solutions of the long waves mathematical modeling in shallow water with power-law nonlinearity in ocean beaches via three recent analytical schemes, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-01985-w | |
22. | Mostafa M. A. Khater, Dianchen Lu, Mustafa Inc, Diverse novel solutions for the ionic current using the microtubule equation based on two recent computational schemes, 2021, 20, 1569-8025, 2604, 10.1007/s10825-021-01810-8 | |
23. | S. Reza Hejazi, Shaban Mohammadi, Lie symmetry, numerical solution with spectral method and conservation laws of Degasperis–Procesi equation by homotopy and direct methods, 2022, 0228-6203, 1, 10.1080/02286203.2022.2155774 | |
24. | Shatadru Chaudhuri, Asesh Roy Chowdhury, Basudev Ghosh, 3D-Modulational Stability of Envelope Soliton in a Quantum Electron–Ion Plasma—A Generalised Nonlinear Schrödinger Equation, 2022, 5, 2571-6182, 60, 10.3390/plasma5010005 | |
25. | Geeta Arora, Pinkey Chauhan, Homan Emadifar, Masoumeh Khademi, Numerical simulation of Burger’s equation using a particle swarm optimization, 2023, 15, 2511-2104, 2551, 10.1007/s41870-023-01309-4 | |
26. | Yubin Jiao, Xiangyu Ran, Ying Wang, Xiaoning Liu, Wei Wang, Kink soliton dynamics in one-dimensional Bose–Einstein condensate with higher-order nonlinear interactions, 2024, 38, 0217-9792, 10.1142/S0217979224501807 | |
27. | Jiaxin Shang, Wenhe Li, Da Li, Traveling wave solutions of a coupled Schrödinger-Korteweg-de Vries equation by the generalized coupled trial equation method, 2023, 9, 24058440, e15695, 10.1016/j.heliyon.2023.e15695 | |
28. | Adel R. Hadhoud, Abdulqawi A. M. Rageh, Qichun Zhang, Redefined Quintic B-Spline Collocation Method to Solve the Time-Fractional Whitham-Broer-Kaup Equations, 2024, 2024, 2577-7408, 1, 10.1155/2024/7326616 | |
29. | Jamshad Ahmad, Zulaikha Mustafa, Jamila Habib, Analyzing dispersive optical solitons in nonlinear models using an analytical technique and its applications, 2024, 56, 0306-8919, 10.1007/s11082-023-05552-8 | |
30. | Sara Javed, Asghar Ali, Jamshad Ahmad, Rashida Hussain, Study the dynamic behavior of bifurcation, chaos, time series analysis and soliton solutions to a Hirota model, 2023, 55, 0306-8919, 10.1007/s11082-023-05358-8 | |
31. | Shitesh Shukla, Manoj Kumar, Error analysis and numerical solution of generalized Benjamin–Bona–Mahony–Burgers equation using 3-scale Haar wavelets, 2023, 14, 1793-9623, 10.1142/S179396232350023X | |
32. | Ibrahim Yalcinkaya, Orkun Tasbozan, Ali Kurt, Hijaz Ahmad, Solution approximations for a mathematical model of relativistic electrons with beta derivative, 2024, 39, 1005-1031, 469, 10.1007/s11766-024-4563-0 | |
33. | Mei Li, Wanqiang Shen, Integral method from even to odd order for trigonometric B-spline basis, 2024, 9, 2473-6988, 36470, 10.3934/math.20241729 |
Z | Zj−3 | Zj−2 | Zj−1 | Zj | Zj+1 | Zj+2 | Zj+3 |
Gj(Z) | 0 | P1 | P2 | P3 | P2 | P1 | 0 |
G′j(Z) | 0 | −P4 | −P5 | 0 | P5 | P4 | 0 |
G″j(Z) | 0 | P6 | P7 | P8 | P7 | P6 | 0 |
G‴j(Z) | 0 | P9 | P10 | 0 | P10 | P9 | 0 |
G⁗j(Z) | 0 | P11 | P12 | P13 | P12 | P11 | 0 |
Value of Z | Analytica | Numerical | Absolute Error | Value of Z | Analytical | Numerical | Absolute Error | |
0 | 0 | -2.71051E-20 | 2.71051E-20 | 0.2578125 | -0.034185856 | -0.034185856 | 4.37705E-14 | |
0.0078125 | -0.001041661 | -0.001041661 | 1.00159E-15 | 0.265625 | -0.035209885 | -0.035209885 | 4.49224E-14 | |
0.015625 | -0.002083291 | -0.002083291 | 2.52879E-15 | 0.2734375 | -0.036232859 | -0.036232859 | 4.60743E-14 | |
0.0234375 | -0.003124857 | -0.003124857 | 3.91484E-15 | 0.28125 | -0.037254747 | -0.037254747 | 4.72261E-14 | |
0.03125 | -0.004166328 | -0.004166328 | 5.33774E-15 | 0.2890625 | -0.038275521 | -0.038275521 | 4.83363E-14 | |
0.0390625 | -0.005207671 | -0.005207671 | 6.74634E-15 | 0.296875 | -0.039295151 | -0.039295151 | 4.94466E-14 | |
0.046875 | -0.006248856 | -0.006248856 | 8.1584E-15 | 0.3046875 | -0.040313607 | -0.040313607 | 5.05221E-14 | |
0.0546875 | -0.00728985 | -0.00728985 | 9.56613E-15 | 0.3125 | -0.041330861 | -0.041330861 | 5.15907E-14 | |
0.0625 | -0.008330622 | -0.008330622 | 1.09721E-14 | 0.3203125 | -0.042346885 | -0.042346885 | 5.26246E-14 | |
0.0703125 | -0.00937114 | -0.00937114 | 1.23738E-14 | 0.328125 | -0.043361648 | -0.043361648 | 5.36515E-14 | |
0.078125 | -0.010411372 | -0.010411372 | 1.37685E-14 | 0.3359375 | -0.044375124 | -0.044375124 | 5.46438E-14 | |
0.0859375 | -0.011451287 | -0.011451287 | 1.51632E-14 | 0.34375 | -0.045387282 | -0.045387282 | 5.56291E-14 | |
0.09375 | -0.012490853 | -0.012490853 | 1.65527E-14 | 0.3515625 | -0.046398096 | -0.046398096 | 5.65936E-14 | |
0.1015625 | -0.013530039 | -0.013530039 | 1.7937E-14 | 0.359375 | -0.047407536 | -0.047407536 | 5.75304E-14 | |
0.109375 | -0.014568812 | -0.014568812 | 1.93196E-14 | 0.3671875 | -0.048415576 | -0.048415576 | 5.84324E-14 | |
0.1171875 | -0.015607143 | -0.015607143 | 2.06935E-14 | 0.375 | -0.049422187 | -0.049422187 | 5.93275E-14 | |
0.125 | -0.016644999 | -0.016644999 | 2.20587E-14 | 0.3828125 | -0.050427341 | -0.050427341 | 6.02018E-14 | |
0.1328125 | -0.017682349 | -0.017682349 | 2.34222E-14 | 0.390625 | -0.051431011 | -0.051431011 | 6.10553E-14 | |
0.140625 | -0.018719162 | -0.018719162 | 2.47719E-14 | 0.3984375 | -0.052433171 | -0.052433171 | 6.1888E-14 | |
0.1484375 | -0.019755406 | -0.019755406 | 2.6118E-14 | 0.40625 | -0.053433792 | -0.053433792 | 6.2686E-14 | |
0.15625 | -0.020791051 | -0.020791051 | 2.74503E-14 | 0.4140625 | -0.054432847 | -0.054432847 | 6.34492E-14 | |
0.1640625 | -0.021826065 | -0.021826065 | 2.87825E-14 | 0.421875 | -0.055430311 | -0.055430311 | 6.41917E-14 | |
0.171875 | -0.022860418 | -0.022860418 | 3.01044E-14 | 0.4296875 | -0.056426157 | -0.056426157 | 6.48925E-14 | |
0.1796875 | -0.023894078 | -0.023894078 | 3.14124E-14 | 0.4375 | -0.057420357 | -0.057420357 | 6.56003E-14 | |
0.1875 | -0.024927014 | -0.024927014 | 3.26926E-14 | 0.4453125 | -0.058412887 | -0.058412887 | 6.62456E-14 | |
0.1953125 | -0.025959197 | -0.025959197 | 3.39763E-14 | 0.453125 | -0.059403719 | -0.059403719 | 6.68632E-14 | |
0.203125 | -0.026990595 | -0.026990595 | 3.52322E-14 | 0.4609375 | -0.060392829 | -0.060392829 | 6.74669E-14 | |
0.2109375 | -0.028021178 | -0.028021178 | 3.64916E-14 | 0.46875 | -0.06138019 | -0.06138019 | 6.80359E-14 | |
0.21875 | -0.029050915 | -0.029050915 | 3.77406E-14 | 0.4765625 | -0.062365777 | -0.062365777 | 6.8591E-14 | |
0.2265625 | -0.030079776 | -0.030079776 | 3.89688E-14 | 0.484375 | -0.063349565 | -0.063349565 | 6.91253E-14 | |
0.234375 | -0.03110773 | -0.03110773 | 4.01866E-14 | 0.4921875 | -0.064331528 | -0.064331528 | 6.95971E-14 | |
0.2421875 | -0.032134749 | -0.032134749 | 4.13905E-14 | 0.5 | -0.065311643 | -0.065311643 | 7.00412E-14 | |
0.25 | -0.0331608 | -0.0331608 | 4.25909E-14 | 0.5078125 | -0.066289885 | -0.066289885 | 7.04575E-14 |
Value of Z | Analytical | Numerical | Absolute error | Value of Z | Analytical | Numerical | Absolute error | |
0.515625 | -0.067266228 | -0.067266228 | 7.08461E-14 | 0.7578125 | -0.096468595 | -0.096468595 | 6.22696E-14 | |
0.5234375 | -0.068240649 | -0.068240649 | 7.11931E-14 | 0.765625 | -0.097372658 | -0.097372658 | 6.1201E-14 | |
e 0.53125 | -0.069213124 | -0.069213124 | 7.14984E-14 | 0.7734375 | -0.098274146 | -0.098274146 | 6.00908E-14 | |
0.5390625 | -0.070183629 | -0.070183629 | 7.18037E-14 | 0.78125 | -0.099173043 | -0.099173043 | 5.88973E-14 | |
0.546875 | -0.071152141 | -0.071152141 | 7.20674E-14 | 0.7890625 | -0.100069331 | -0.100069331 | 5.76483E-14 | |
0.5546875 | -0.072118635 | -0.072118635 | 7.22755E-14 | 0.796875 | -0.100962996 | -0.100962996 | 5.63855E-14 | |
0.5625 | -0.07308309 | -0.07308309 | 7.24559E-14 | 0.8046875 | -0.101854021 | -0.101854021 | 5.50393E-14 | |
0.5703125 | -0.074045483 | -0.074045483 | 7.25808E-14 | 0.8125 | -0.102742391 | -0.102742391 | 5.36515E-14 | |
0.578125 | -0.075005789 | -0.075005789 | 7.2678E-14 | 0.8203125 | -0.103628091 | -0.103628091 | 5.21666E-14 | |
0.5859375 | -0.075963988 | -0.075963988 | 7.27196E-14 | 0.828125 | -0.104511107 | -0.104511107 | 5.06262E-14 | |
0.59375 | -0.076920057 | -0.076920057 | 7.27474E-14 | 0.8359375 | -0.105391423 | -0.105391423 | 4.89747E-14 | |
0.6015625 | -0.077873973 | -0.077873973 | 7.27057E-14 | 0.84375 | -0.106269025 | -0.106269025 | 4.72677E-14 | |
0.609375 | -0.078825716 | -0.078825716 | 7.26502E-14 | 0.8515625 | -0.107143899 | -0.107143899 | 4.55053E-14 | |
0.6171875 | -0.079775264 | -0.079775264 | 7.25253E-14 | 0.859375 | -0.108016031 | -0.108016031 | 4.36595E-14 | |
0.625 | -0.080722594 | -0.080722594 | 7.23588E-14 | 0.8671875 | -0.108885407 | -0.108885407 | 4.17999E-14 | |
0.6328125 | -0.081667688 | -0.081667688 | 7.21367E-14 | 0.875 | -0.109752015 | -0.109752015 | 3.98431E-14 | |
0.640625 | -0.082610522 | -0.082610522 | 7.18869E-14 | 0.8828125 | -0.110615841 | -0.110615841 | 3.78308E-14 | |
0.6484375 | -0.083551078 | -0.083551078 | 7.15816E-14 | 0.890625 | -0.111476871 | -0.111476871 | 3.57908E-14 | |
0.65625 | -0.084489334 | -0.084489334 | 7.12486E-14 | 0.8984375 | -0.112335095 | -0.112335095 | 3.36675E-14 | |
0.6640625 | -0.08542527 | -0.08542527 | 7.086E-14 | 0.90625 | -0.113190498 | -0.113190498 | 3.14748E-14 | |
0.671875 | -0.086358867 | -0.086358867 | 7.04575E-14 | 0.9140625 | -0.11404307 | -0.11404307 | 2.92405E-14 | |
0.6796875 | -0.087290105 | -0.087290105 | 6.99718E-14 | 0.921875 | -0.114892798 | -0.114892798 | 2.68674E-14 | |
0.6875 | -0.088218965 | -0.088218965 | 6.94583E-14 | 0.9296875 | -0.11573967 | -0.11573967 | 2.44249E-14 | |
0.6953125 | -0.089145427 | -0.089145427 | 6.88755E-14 | 0.9375 | -0.116583676 | -0.116583676 | 2.18991E-14 | |
0.703125 | -0.090069472 | -0.090069472 | 6.82371E-14 | 0.9453125 | -0.117424804 | -0.117424804 | 1.92901E-14 | |
0.7109375 | -0.090991083 | -0.090991083 | 6.75571E-14 | 0.953125 | -0.118263043 | -0.118263043 | 1.66117E-14 | |
0.71875 | -0.09191024 | -0.09191024 | 6.68215E-14 | 0.9609375 | -0.119098383 | -0.119098383 | 1.38639E-14 | |
0.7265625 | -0.092826925 | -0.092826925 | 6.60166E-14 | 0.96875 | -0.119930814 | -0.119930814 | 1.10745E-14 | |
0.734375 | -0.093741121 | -0.093741121 | 6.51562E-14 | 0.9765625 | -0.120760325 | -0.120760325 | 8.18789E-15 | |
0.7421875 | -0.094652809 | -0.094652809 | 6.42403E-14 | 0.984375 | -0.121586906 | -0.121586906 | 5.31519E-15 | |
0.75 | -0.095561973 | -0.095561973 | 6.32688E-14 | 0.9921875 | -0.122410548 | -0.122410548 | 2.13718E-15 |
Value of Z | Analytical | Numerical | Absolute error |
0 | 0 | 0 | 0 |
0.001 | -0.000133333 | -0.000133333 | 2.75062E-16 |
0.002 | -0.000266667 | -0.000266667 | 5.33482E-16 |
0.003 | -0.0004 | -0.0004 | 7.58508E-16 |
0.004 | -0.000533333 | -0.000533333 | 9.33498E-16 |
0.005 | -0.000666665 | -0.000666665 | 1.04181E-15 |
0.006 | -0.000799998 | -0.000799998 | 1.06685E-15 |
0.007 | -0.00093333 | -0.00093333 | 9.9172E-16 |
0.008 | -0.001066661 | -0.001066661 | 7.99924E-16 |
0.009 | -0.001199992 | -0.001199992 | 4.75097E-16 |
0.01 | -0.001333322 | -0.001333322 | 0 |
Value of Z | AD | EK | CBS | EtCBS | ECBS | ECBS | TQBS |
0 | 0 | 0 | 0 | 0 | 5.45828E-18 | 0 | 2.71E-20 |
0.001 | 2.71051E-20 | 2.71051E-20 | 1.83257E-16 | 3.29993E-09 | 1.10002E-09 | 2.75E-16 | |
0.002 | 5.42101E-20 | 5.42101E-20 | 3.55401E-16 | 6.39986E-09 | 2.13337E-09 | 5.33E-16 | |
0.003 | 0 | 0 | 5.05455E-16 | 9.0998E-09 | 3.03339E-09 | 7.59E-16 | |
0.004 | 0 | 0 | 6.22007E-16 | 1.11997E-08 | 3.7334E-09 | 9.33E-16 | |
0.005 | 0 | 0 | 6.94215E-16 | 1.24997E-08 | 4.16674E-09 | 1.04E-15 | |
0.006 | 1.0842E-19 | 1.0842E-19 | 7.10695E-16 | 1.27997E-08 | 4.26674E-09 | 1.07E-15 | |
0.007 | 1.0842E-19 | 1.0842E-19 | 6.60821E-16 | 1.18997E-08 | 3.96674E-09 | 9.92E-16 | |
0.008 | 0 | 0 | 5.32994E-16 | 9.59976E-09 | 3.20006E-09 | 8E-16 | |
0.009 | 2.1684E-19 | 0 | 3.1637E-16 | 5.69985E-09 | 1.90003E-09 | 4.75E-16 | |
0.01 | 0 | 2.1684E-19 | 0 | 0 | 2.1684E-19 | 0 | 2.53E-15 |
Z | Zj−3 | Zj−2 | Zj−1 | Zj | Zj+1 | Zj+2 | Zj+3 |
Gj(Z) | 0 | P1 | P2 | P3 | P2 | P1 | 0 |
G′j(Z) | 0 | −P4 | −P5 | 0 | P5 | P4 | 0 |
G″j(Z) | 0 | P6 | P7 | P8 | P7 | P6 | 0 |
G‴j(Z) | 0 | P9 | P10 | 0 | P10 | P9 | 0 |
G⁗j(Z) | 0 | P11 | P12 | P13 | P12 | P11 | 0 |
Value of Z | Analytica | Numerical | Absolute Error | Value of Z | Analytical | Numerical | Absolute Error | |
0 | 0 | -2.71051E-20 | 2.71051E-20 | 0.2578125 | -0.034185856 | -0.034185856 | 4.37705E-14 | |
0.0078125 | -0.001041661 | -0.001041661 | 1.00159E-15 | 0.265625 | -0.035209885 | -0.035209885 | 4.49224E-14 | |
0.015625 | -0.002083291 | -0.002083291 | 2.52879E-15 | 0.2734375 | -0.036232859 | -0.036232859 | 4.60743E-14 | |
0.0234375 | -0.003124857 | -0.003124857 | 3.91484E-15 | 0.28125 | -0.037254747 | -0.037254747 | 4.72261E-14 | |
0.03125 | -0.004166328 | -0.004166328 | 5.33774E-15 | 0.2890625 | -0.038275521 | -0.038275521 | 4.83363E-14 | |
0.0390625 | -0.005207671 | -0.005207671 | 6.74634E-15 | 0.296875 | -0.039295151 | -0.039295151 | 4.94466E-14 | |
0.046875 | -0.006248856 | -0.006248856 | 8.1584E-15 | 0.3046875 | -0.040313607 | -0.040313607 | 5.05221E-14 | |
0.0546875 | -0.00728985 | -0.00728985 | 9.56613E-15 | 0.3125 | -0.041330861 | -0.041330861 | 5.15907E-14 | |
0.0625 | -0.008330622 | -0.008330622 | 1.09721E-14 | 0.3203125 | -0.042346885 | -0.042346885 | 5.26246E-14 | |
0.0703125 | -0.00937114 | -0.00937114 | 1.23738E-14 | 0.328125 | -0.043361648 | -0.043361648 | 5.36515E-14 | |
0.078125 | -0.010411372 | -0.010411372 | 1.37685E-14 | 0.3359375 | -0.044375124 | -0.044375124 | 5.46438E-14 | |
0.0859375 | -0.011451287 | -0.011451287 | 1.51632E-14 | 0.34375 | -0.045387282 | -0.045387282 | 5.56291E-14 | |
0.09375 | -0.012490853 | -0.012490853 | 1.65527E-14 | 0.3515625 | -0.046398096 | -0.046398096 | 5.65936E-14 | |
0.1015625 | -0.013530039 | -0.013530039 | 1.7937E-14 | 0.359375 | -0.047407536 | -0.047407536 | 5.75304E-14 | |
0.109375 | -0.014568812 | -0.014568812 | 1.93196E-14 | 0.3671875 | -0.048415576 | -0.048415576 | 5.84324E-14 | |
0.1171875 | -0.015607143 | -0.015607143 | 2.06935E-14 | 0.375 | -0.049422187 | -0.049422187 | 5.93275E-14 | |
0.125 | -0.016644999 | -0.016644999 | 2.20587E-14 | 0.3828125 | -0.050427341 | -0.050427341 | 6.02018E-14 | |
0.1328125 | -0.017682349 | -0.017682349 | 2.34222E-14 | 0.390625 | -0.051431011 | -0.051431011 | 6.10553E-14 | |
0.140625 | -0.018719162 | -0.018719162 | 2.47719E-14 | 0.3984375 | -0.052433171 | -0.052433171 | 6.1888E-14 | |
0.1484375 | -0.019755406 | -0.019755406 | 2.6118E-14 | 0.40625 | -0.053433792 | -0.053433792 | 6.2686E-14 | |
0.15625 | -0.020791051 | -0.020791051 | 2.74503E-14 | 0.4140625 | -0.054432847 | -0.054432847 | 6.34492E-14 | |
0.1640625 | -0.021826065 | -0.021826065 | 2.87825E-14 | 0.421875 | -0.055430311 | -0.055430311 | 6.41917E-14 | |
0.171875 | -0.022860418 | -0.022860418 | 3.01044E-14 | 0.4296875 | -0.056426157 | -0.056426157 | 6.48925E-14 | |
0.1796875 | -0.023894078 | -0.023894078 | 3.14124E-14 | 0.4375 | -0.057420357 | -0.057420357 | 6.56003E-14 | |
0.1875 | -0.024927014 | -0.024927014 | 3.26926E-14 | 0.4453125 | -0.058412887 | -0.058412887 | 6.62456E-14 | |
0.1953125 | -0.025959197 | -0.025959197 | 3.39763E-14 | 0.453125 | -0.059403719 | -0.059403719 | 6.68632E-14 | |
0.203125 | -0.026990595 | -0.026990595 | 3.52322E-14 | 0.4609375 | -0.060392829 | -0.060392829 | 6.74669E-14 | |
0.2109375 | -0.028021178 | -0.028021178 | 3.64916E-14 | 0.46875 | -0.06138019 | -0.06138019 | 6.80359E-14 | |
0.21875 | -0.029050915 | -0.029050915 | 3.77406E-14 | 0.4765625 | -0.062365777 | -0.062365777 | 6.8591E-14 | |
0.2265625 | -0.030079776 | -0.030079776 | 3.89688E-14 | 0.484375 | -0.063349565 | -0.063349565 | 6.91253E-14 | |
0.234375 | -0.03110773 | -0.03110773 | 4.01866E-14 | 0.4921875 | -0.064331528 | -0.064331528 | 6.95971E-14 | |
0.2421875 | -0.032134749 | -0.032134749 | 4.13905E-14 | 0.5 | -0.065311643 | -0.065311643 | 7.00412E-14 | |
0.25 | -0.0331608 | -0.0331608 | 4.25909E-14 | 0.5078125 | -0.066289885 | -0.066289885 | 7.04575E-14 |
Value of Z | Analytical | Numerical | Absolute error | Value of Z | Analytical | Numerical | Absolute error | |
0.515625 | -0.067266228 | -0.067266228 | 7.08461E-14 | 0.7578125 | -0.096468595 | -0.096468595 | 6.22696E-14 | |
0.5234375 | -0.068240649 | -0.068240649 | 7.11931E-14 | 0.765625 | -0.097372658 | -0.097372658 | 6.1201E-14 | |
e 0.53125 | -0.069213124 | -0.069213124 | 7.14984E-14 | 0.7734375 | -0.098274146 | -0.098274146 | 6.00908E-14 | |
0.5390625 | -0.070183629 | -0.070183629 | 7.18037E-14 | 0.78125 | -0.099173043 | -0.099173043 | 5.88973E-14 | |
0.546875 | -0.071152141 | -0.071152141 | 7.20674E-14 | 0.7890625 | -0.100069331 | -0.100069331 | 5.76483E-14 | |
0.5546875 | -0.072118635 | -0.072118635 | 7.22755E-14 | 0.796875 | -0.100962996 | -0.100962996 | 5.63855E-14 | |
0.5625 | -0.07308309 | -0.07308309 | 7.24559E-14 | 0.8046875 | -0.101854021 | -0.101854021 | 5.50393E-14 | |
0.5703125 | -0.074045483 | -0.074045483 | 7.25808E-14 | 0.8125 | -0.102742391 | -0.102742391 | 5.36515E-14 | |
0.578125 | -0.075005789 | -0.075005789 | 7.2678E-14 | 0.8203125 | -0.103628091 | -0.103628091 | 5.21666E-14 | |
0.5859375 | -0.075963988 | -0.075963988 | 7.27196E-14 | 0.828125 | -0.104511107 | -0.104511107 | 5.06262E-14 | |
0.59375 | -0.076920057 | -0.076920057 | 7.27474E-14 | 0.8359375 | -0.105391423 | -0.105391423 | 4.89747E-14 | |
0.6015625 | -0.077873973 | -0.077873973 | 7.27057E-14 | 0.84375 | -0.106269025 | -0.106269025 | 4.72677E-14 | |
0.609375 | -0.078825716 | -0.078825716 | 7.26502E-14 | 0.8515625 | -0.107143899 | -0.107143899 | 4.55053E-14 | |
0.6171875 | -0.079775264 | -0.079775264 | 7.25253E-14 | 0.859375 | -0.108016031 | -0.108016031 | 4.36595E-14 | |
0.625 | -0.080722594 | -0.080722594 | 7.23588E-14 | 0.8671875 | -0.108885407 | -0.108885407 | 4.17999E-14 | |
0.6328125 | -0.081667688 | -0.081667688 | 7.21367E-14 | 0.875 | -0.109752015 | -0.109752015 | 3.98431E-14 | |
0.640625 | -0.082610522 | -0.082610522 | 7.18869E-14 | 0.8828125 | -0.110615841 | -0.110615841 | 3.78308E-14 | |
0.6484375 | -0.083551078 | -0.083551078 | 7.15816E-14 | 0.890625 | -0.111476871 | -0.111476871 | 3.57908E-14 | |
0.65625 | -0.084489334 | -0.084489334 | 7.12486E-14 | 0.8984375 | -0.112335095 | -0.112335095 | 3.36675E-14 | |
0.6640625 | -0.08542527 | -0.08542527 | 7.086E-14 | 0.90625 | -0.113190498 | -0.113190498 | 3.14748E-14 | |
0.671875 | -0.086358867 | -0.086358867 | 7.04575E-14 | 0.9140625 | -0.11404307 | -0.11404307 | 2.92405E-14 | |
0.6796875 | -0.087290105 | -0.087290105 | 6.99718E-14 | 0.921875 | -0.114892798 | -0.114892798 | 2.68674E-14 | |
0.6875 | -0.088218965 | -0.088218965 | 6.94583E-14 | 0.9296875 | -0.11573967 | -0.11573967 | 2.44249E-14 | |
0.6953125 | -0.089145427 | -0.089145427 | 6.88755E-14 | 0.9375 | -0.116583676 | -0.116583676 | 2.18991E-14 | |
0.703125 | -0.090069472 | -0.090069472 | 6.82371E-14 | 0.9453125 | -0.117424804 | -0.117424804 | 1.92901E-14 | |
0.7109375 | -0.090991083 | -0.090991083 | 6.75571E-14 | 0.953125 | -0.118263043 | -0.118263043 | 1.66117E-14 | |
0.71875 | -0.09191024 | -0.09191024 | 6.68215E-14 | 0.9609375 | -0.119098383 | -0.119098383 | 1.38639E-14 | |
0.7265625 | -0.092826925 | -0.092826925 | 6.60166E-14 | 0.96875 | -0.119930814 | -0.119930814 | 1.10745E-14 | |
0.734375 | -0.093741121 | -0.093741121 | 6.51562E-14 | 0.9765625 | -0.120760325 | -0.120760325 | 8.18789E-15 | |
0.7421875 | -0.094652809 | -0.094652809 | 6.42403E-14 | 0.984375 | -0.121586906 | -0.121586906 | 5.31519E-15 | |
0.75 | -0.095561973 | -0.095561973 | 6.32688E-14 | 0.9921875 | -0.122410548 | -0.122410548 | 2.13718E-15 |
Value of Z | Analytical | Numerical | Absolute error |
0 | 0 | 0 | 0 |
0.001 | -0.000133333 | -0.000133333 | 2.75062E-16 |
0.002 | -0.000266667 | -0.000266667 | 5.33482E-16 |
0.003 | -0.0004 | -0.0004 | 7.58508E-16 |
0.004 | -0.000533333 | -0.000533333 | 9.33498E-16 |
0.005 | -0.000666665 | -0.000666665 | 1.04181E-15 |
0.006 | -0.000799998 | -0.000799998 | 1.06685E-15 |
0.007 | -0.00093333 | -0.00093333 | 9.9172E-16 |
0.008 | -0.001066661 | -0.001066661 | 7.99924E-16 |
0.009 | -0.001199992 | -0.001199992 | 4.75097E-16 |
0.01 | -0.001333322 | -0.001333322 | 0 |
Value of Z | AD | EK | CBS | EtCBS | ECBS | ECBS | TQBS |
0 | 0 | 0 | 0 | 0 | 5.45828E-18 | 0 | 2.71E-20 |
0.001 | 2.71051E-20 | 2.71051E-20 | 1.83257E-16 | 3.29993E-09 | 1.10002E-09 | 2.75E-16 | |
0.002 | 5.42101E-20 | 5.42101E-20 | 3.55401E-16 | 6.39986E-09 | 2.13337E-09 | 5.33E-16 | |
0.003 | 0 | 0 | 5.05455E-16 | 9.0998E-09 | 3.03339E-09 | 7.59E-16 | |
0.004 | 0 | 0 | 6.22007E-16 | 1.11997E-08 | 3.7334E-09 | 9.33E-16 | |
0.005 | 0 | 0 | 6.94215E-16 | 1.24997E-08 | 4.16674E-09 | 1.04E-15 | |
0.006 | 1.0842E-19 | 1.0842E-19 | 7.10695E-16 | 1.27997E-08 | 4.26674E-09 | 1.07E-15 | |
0.007 | 1.0842E-19 | 1.0842E-19 | 6.60821E-16 | 1.18997E-08 | 3.96674E-09 | 9.92E-16 | |
0.008 | 0 | 0 | 5.32994E-16 | 9.59976E-09 | 3.20006E-09 | 8E-16 | |
0.009 | 2.1684E-19 | 0 | 3.1637E-16 | 5.69985E-09 | 1.90003E-09 | 4.75E-16 | |
0.01 | 0 | 2.1684E-19 | 0 | 0 | 2.1684E-19 | 0 | 2.53E-15 |