Research article

Multiple solutions for nonlocal elliptic problems driven by $ p(x) $-biharmonic operator

  • Received: 07 October 2020 Accepted: 25 January 2021 Published: 05 February 2021
  • MSC : 35J20, 35J60, 47J30

  • In this article, we study the existence of at least three distinct weak solutions for nonlocal elliptic problems involving $ p(x) $-biharmonic operator. The results are obtained by means of variational methods. We also provide an example in order to illustrate our main abstract results. We extend and improve some recent results.

    Citation: Fang-Fang Liao, Shapour Heidarkhani, Shahin Moradi. Multiple solutions for nonlocal elliptic problems driven by $ p(x) $-biharmonic operator[J]. AIMS Mathematics, 2021, 6(4): 4156-4172. doi: 10.3934/math.2021246

    Related Papers:

  • In this article, we study the existence of at least three distinct weak solutions for nonlocal elliptic problems involving $ p(x) $-biharmonic operator. The results are obtained by means of variational methods. We also provide an example in order to illustrate our main abstract results. We extend and improve some recent results.



    加载中


    [1] G. Bonanno, P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differ. Equ., 244 (2008), 3031–3059. doi: 10.1016/j.jde.2008.02.025
    [2] G. Bonanno, B. Di Bella, A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl., 343 (2008), 1166–1176. doi: 10.1016/j.jmaa.2008.01.049
    [3] G. Dai, J. Wei, Infinitely many non-negative solutions for a $p(x)$-Kirchhoff-type problem with Dirichlet boundary condition, Nonlinear Anal., 73 (2010), 3420–3430. doi: 10.1016/j.na.2010.07.029
    [4] C. P. Dǎneţ, Two maximum principles for a nonlinear fourth order equation from thin plate theory, Electron. J. Qual. Theory Differ. Equ., 2014 (2014), 1–9. doi: 10.1186/1687-1847-2014-1
    [5] X. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{ m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446. doi: 10.1006/jmaa.2000.7617
    [6] A. Ferrero, G. Warnault, On a solutions of second and fourth order elliptic with power type nonlinearities, Nonlinear Anal., 70 (2009), 2889–2902. doi: 10.1016/j.na.2008.12.041
    [7] J. R. Graef, S. Heidarkhani, L. Kong, A variational approach to a Kirchhoff-type problem involving two parameters, Results Math., 63 (2013), 877–889. doi: 10.1007/s00025-012-0238-x
    [8] T. C. Halsey, Electrorheological fluids, Science, 258 (1992), 761–766. doi: 10.1126/science.258.5083.761
    [9] M. K. Hamdani, A. Harrabi, F. Mtiri, D. D. Repovš, Existence and multiplicity results for a new $p(x)$-Kirchhoff problem, Nonlinear Anal., 190 (2020), 1–15.
    [10] S. Heidarkhani, G. A. Afrouzi, S. Moradi, G. Caristi, A variational approach for solving $p(x)$-biharmonic equations with Navier boundary conditions, Electron. J. Differ. Equ., 25 (2017), 1–15.
    [11] S. Heidarkhani, G. A. Afrouzi, S. Moradi, G. Caristi, Existence of three solutions for multi-point boundary value problems, J. Nonlinear Funct. Anal., 2017 (2017), 1–19.
    [12] S. Heidarkhani, G. A. Afrouzi, S. Moradi, G. Caristi, B. Ge, Existence of one weak solution for $p(x)$-biharmonic equations with Navier boundary conditions, Z. Angew. Math. Phys., 67 (2016), 1–13. doi: 10.1007/s00033-015-0604-0
    [13] S. Heidarkhani,, A. L. A. de Araujo, G. A. Afrouzi, S. Moradi, Existence of three weak solutions for Kirchhoff-type problems with variable exponent and nonhomogeneous Neumann conditions, Fixed Point Theory, to appear.
    [14] S. Heidarkhani, A. L. A. de Araujo, A. Salari, Infinitely many solutions for nonlocal problems with variable exponent and nonhomogeneous Neumann conditions, Bol. Soc. Parana. Mat., 38 (2020), 71–96.
    [15] S. Heidarkhani, A. L. A. De Araujo, G. A. Afrouzi, S. Moradi, Multiple solutions for Kirchhoff-type problems with variable exponent and nonhomogeneous Neumann conditions, Math. Nachr., 91 (2018), 326–342.
    [16] S. Heidarkhani, M. Ferrara, A. Salari, G. Caristi, Multiplicity results for $p(x)$-biharmonic equations with Navier boundary, Compl. Vari. Ellip. Equ., 61 (2016), 1494–1516. doi: 10.1080/17476933.2016.1182520
    [17] M. Hssini, M. Massar, N. Tsouli, Existence and multiplicity of solutions for a $p(x)$-Kirchhoff type problems, Bol. Soc. Paran. Mat., 33 (2015), 201–215.
    [18] G. Kirchhoff, Vorlesungen uber mathematische Physik: Mechanik, Teubner, Leipzig, 1883.
    [19] L. Kong, Eigenvalues for a fourth order elliptic problem, Proc. Amer. Math. Soc., 143 (2015), 249–258.
    [20] L. Kong, Existence of solutions to boundary value problems arising from the fractional advection dispersion equation, Electron. J. Diff. Equ., 106 (2013), 1–15.
    [21] L. Kong, Multiple solutions for fourth order elliptic problems with $p(x)$-biharmonic operators, Opuscula Math., 36 (2016), 253–264.
    [22] A. C. Lazer, P. J. McKenna, Large amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537–578. doi: 10.1137/1032120
    [23] J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud, 30 (1978), 284–346. doi: 10.1016/S0304-0208(08)70870-3
    [24] M. Massar, E. M. Hssini, N. Tsouli, M. Talbi, Infinitely many solutions for a fourth-order Kirchhoff type elliptic problem, J. Math. Comput. Sci., 8 (2014), 33–51. doi: 10.22436/jmcs.08.01.04
    [25] Q. Miao, Multiple solutions for nonlocal elliptic systems involving $p(x)$-Biharmonic operator, Mathematics, 7 (2019), 756. doi: 10.3390/math7080756
    [26] T. G. Myers, Thin films with high surface tension, SIAM Rev., 40 (1998), 441–462. doi: 10.1137/S003614459529284X
    [27] B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optim., 46 (2010), 543–549. doi: 10.1007/s10898-009-9438-7
    [28] M. Ru$ \rm{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over z} }} $i$ {\rm{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over c} }}} $ka, Electro-rheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., Springer, Berlin, 2000.
    [29] J. Simon, Régularité de la solution d'une équation non linéaire dans $\mathbb{R}^{N}$, Journées d'Analyse Non Linéaire, 665 (1978), 205–227. doi: 10.1007/BFb0061807
    [30] H. Yin, Y. Liu, Existence of three solutions for a Navier boundary value problem involving the $p(x)$-biharmonic, Bull. Korean Math. Soc., 50 (2013), 1817–1826. doi: 10.4134/BKMS.2013.50.6.1817
    [31] H. Yin, M. Xu, Existence of three solutions for a Navier boundary value problem involving the $p(x)$-biharmonic operator, Ann. Polon. Math., 109 (2013), 47–54. doi: 10.4064/ap109-1-4
    [32] A. Zang, Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces, Nonlinear Anal., 69 (2008), 3629–3636. doi: 10.1016/j.na.2007.10.001
    [33] E. Zeidler, Nonlinear functional analysis and its applications, Vol. II, Berlin-Heidelberg-New York, 1985.
    [34] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR-Izv., 29 (1987), 33–66. doi: 10.1070/IM1987v029n01ABEH000958
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1702) PDF downloads(160) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog