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1. Introduction

In this paper we study the existence of at least three distinct weak solutions for the following
problem T (u) = λ f (x, u(x)), in Ω,

u = ∆u = 0, on ∂Ω,
(P f

λ)

where

T (u) = ∆2
p(x)u(x) − M

(∫
Ω

|∇u(x)|p(x)dx
p(x)

)
∆p(x)u(x) + ρ(x)|u(x)|p(x)−2u(x),

Ω ⊂ RN(N ≥ 2) is an open bounded domain with smooth boundary, ∆2
p(x)u is the operator defined

as ∆(|∆u|p(x)−2∆u) and is called the p(x)-biharmonic which is a generalization of the p-biharmonic,
p(x) ∈ C(Ω), ρ(x) ∈ L∞(Ω), M : [0,+∞) → R is a continuous function such that there are two

positive constants m0 and m1 with m0 ≤ M(t) ≤ m1 for all t ≥ 0,
N
2
< p− := ess infx∈Ω p(x) ≤ p+ :=

ess supx∈Ω p(x) < ∞, λ > 0 and f : Ω × R→ R is an L1-Carathéodory function.
The Kirchhoff equation refers back to Kirchhoff [18] in 1883 in the study on the oscillations of

stretched strings and plates, suggested as an extended version of the classical D’Alembert’s wave
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equation by taking into account the effects of the changes in the length of the string during the
vibrations. Kirchhoff’s equation like problem (P f

λ) model several physical and biological systems
where u describes a process which depend on the average of itself. Lions in [23] has proposed an
abstract framework for the Kirchhoff-type equations. After the work by Lions, various problems of
Kirchhoff-type have been widely investigated, we refer the reader to the papers [7, 24, 27] and the
references therein.

The main interest in studying problem (P f
λ) is given by the presence of the variable exponent p(·).

Problems involving such kind of growth conditions benefited by a special attention in the last decade
since they can model with sufficient accuracy phenomena arising in different branches of science. Two
important models where operators involving variable exponents were considered come from the study
of electrorheological fluids [8, 28] and elastic mechanics [34].

Fourth-order equations have various applications in areas of applied mathematics and physics such
as micro-electro-mechanical systems, phase field models of multi-phase systems, thin film theory, thin
plate theory, surface diffusion on solids, interface dynamics, flow in Hele-Shaw cells (see [4, 6, 26]).
The fourth-order equation can also describe the static form change of beam or the sport of rigid body.
In [22], Lazer and Mckenna have pointed out that this type of nonlinearity furnishes a model to study
travelling waves in suspension bridges. Numerous authors investigated the existence and multiplicity
of solutions for the problems involving p(x)-biharmonic operators. We refer to [10,12,16,19,21,30,31].
In the last decade, Kirchhoff type equations involving the p(x)-Laplacian have been investigated, for
instance see [3, 9, 13–15, 17, 25].

In this paper, we are interested to discuss the existence of at least three distinct weak solutions for
problem (P f

λ). No asymptotic condition at infinity is required on the nonlinear term. In Theorem 3.1
we establish the existence of at least three distinct weak solutions for problem (P f

λ). Theorem 3.3 is
a consequence of Theorem 3.1. As a consequence of Theorem 3.3, we obtain Theorem 3.4 for the
autonomous case. We present example 3.5 to illustrate Theorem 3.4.

2. Preliminaries

Let X be a nonempty set and Φ,Ψ : X → R be two functions. For all r, r1, r2 > infX Φ, r2 >

r1, r3 > 0, we define

ϕ(r) := inf
u∈Φ−1(−∞,r)

(supu∈Φ−1(−∞,r) Ψ(u)) − Ψ(u)

r − Φ(u)
,

β(r1, r2) := inf
u∈Φ−1(−∞,r1)

sup
v∈Φ−1[r1,r2)

Ψ(v) − Ψ(u)
Φ(v) − Φ(u)

,

γ(r2, r3) :=
supu∈Φ−1(−∞,r2+r3) Ψ(u)

r3
,

α(r1, r2, r3) := max {ϕ(r1), ϕ(r2), γ(r2, r3)} .

We shall discuss the existence of at least three distinct solutions to the problem (P f
λ). Our main tool is

based on [1, Theorem 3.3] that we now recall as follows:

Theorem 2.1. Let X be a reflexive real Banach space, Φ : X → R be a convex, coercive and
continuously Gâteaux differentiable functional whose Gâteaux derivative admits a continuous inverse
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on X∗,Ψ : X → R be a continuously Gâteaux differentiable functional whose Gâteaux derivative is
compact, such that infX Φ = Φ(0) = Ψ(0) = 0 and for every u1, u2 ∈ X such that Ψ(u1) ≥ 0 and
Ψ(u2) ≥ 0, one has

inf
s∈[0,1]

Ψ(su1 + (1 − s)u2) ≥ 0.

Assume that there are three positive constants r1, r2, r3 with r1 < r2, such that

(c1) ϕ(r1) < β(r1, r2);
(c2) ϕ(r2) < β(r1, r2);
(c3) γ(r2, r3) < β(r1, r2).

Then for each λ ∈
(

1
β(r1, r2)

,
1

α(r1, r2, r3)

)
the functional Φ − λΨ admits three distinct critical points

u1, u2, u3 such that u1 ∈ Φ−1(−∞, r1), u2 ∈ Φ−1[r1, r2) and u3 ∈ Φ−1(−∞, r2 + r3).

We refer the interested reader to the papers [2, 11, 20] in which Theorem 2.1 has been successfully
used to ensure the existence of at least three solutions for boundary value problems.

Let Ω be a bounded domain of RN , denote:

Lp(x)(Ω) :=
{

u : Ω→ R measurable and
∫

Ω

|u(x)|p(x)dx < +∞

}
.

We can introduce the norm on Lp(x)(Ω) by:

‖u‖Lp(x)(Ω) = inf
{
β > 0 :

∫
Ω

|
u(x)
β
|p(x)dx ≤ 1

}
.

Let X be the generalized Lebesgue-Sobolev space Wm,p(x)(Ω) defined by putting Wm,p(x)(Ω) as

Wm,p(x)(Ω) =
{
u ∈ Lp(x)(Ω)|Dγu ∈ Lp(x)(Ω), |γ| ≤ m, m ∈ Z+

}
,

which is equipped with the norm:

‖u‖m,p(x) :=
∑
|γ|≤m

|Dγu|p(x) (2.1)

γ is the multi-index and |γ| is the order.
The closure of C∞0 (Ω) in Wm,p(x)(Ω) is the Wm,p(x)

0 (Ω). It is well known [5] that, both Lp(x)(Ω) and
Wm,p(x)(Ω), with the respective norms, are separable, reflexive and uniformly convex Banach spaces.

Proposition 2.2. [5] Suppose
1

p(x)
+

1
p0(x)

= 1, then Lp0(x)(Ω) and Lp(x)(Ω) are conjugate space, and

satisfy the Hölder inequality:∣∣∣∣∣∫
Ω

uvdx
∣∣∣∣∣ ≤ (

1
p−

+
1

(p0)−

)
|u|p(x)|v|p0(x), u ∈ Lp(x)(Ω), v ∈ Lp0(x)(Ω).

We denote X := W1,p(x)
0 (Ω) ∩W2,p(x)(Ω) and has the norm

‖u‖ = inf
{
σ > 0 :

∫
Ω

(∣∣∣∣∣u(x)
σ

∣∣∣∣∣p(x)

+

∣∣∣∣∣∇u(x)
σ

∣∣∣∣∣p(x)

+

∣∣∣∣∣∆u(x)
σ

∣∣∣∣∣p(x))
dx ≤ 1

}
.

By [32], ‖ · ‖, ‖ · ‖2,p(·) and |∆u|p(·) are equivalent norms of X.
A bounded operator T : X → R is said to be compact if T (BX) has compact closure in R.
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Proposition 2.3. [31] When p− >
N
2

, Ω ⊂ R is a bounded region, then X 7→ C(Ω) is a compact
embedding.

According to 2.3, for each u ∈ X, there exists a constant c > 0 that depends on p(·),N,Ω:

‖u‖∞ = sup
x∈Ω
|u(x)| ≤ c‖u‖. (2.2)

Remark 2.4. We say that f : Ω × R→ R is an L1-Carathéodory function if

(a) t 7→ f (x, t) is measurable for every t ∈ R;
(b) x 7→ f (x, t) is continuous for a.e. x ∈ Ω;
(c) for every ε > 0 there exists a function lε ∈ L1(Ω) such that for a.e. x ∈ Ω,

sup
|t|≤ε
| f (x, t)| ≤ lε(x).

Corresponding to the functions f and M, we introduce the functions F : Ω × R → R and M̃ :
[0,+∞)→ R, respectively, as follows

F(x, t) =

∫ t

0
f (x, ξ)dξ for all (x, t) ∈ Ω × R,

M̃(t) =

∫ t

0
M(ξ)dξ for all t ≥ 0.

We say that u ∈ X is a weak solution of problem (P f
λ) if for every v ∈ X,∫

Ω

|∆u(x)|p(x)−2∆u(x)∆v(x)dx + M
(∫

Ω

|∇u(x)|p(x)

p(x)
dx

) ∫
Ω

|∇u(x)|p(x)−2∇u(x)∇v(x)dx

+

∫
Ω

ρ(x)|u(x)|p(x)−2u(x)v(x)dx − λ
∫

Ω

f (x, u(x))v(x)dx = 0.

Proposition 2.5. [5] Let J(u) =

∫
Ω

|u|p(x)dx for each u ∈ Lp(x)(Ω), we have

(1) |u|p(x) < 1(= 1;> 1)⇔ J(u) < 1(= 1;> 1);
(2) |u|p(x) ≥ 1 =⇒ |u|p

−

p(x) ≤ J(u) ≤ |u|p
+

p(x);

(3) |u|p(x) ≤ 1 =⇒ |u|p
+

p(x) ≤ J(u) ≤ |u|p
−

p(x);
(4) |u|p(x) −→ 0⇔ J −→ 0.

Now for every u ∈ X, we define I(u) := Φ(u) − λΨ(u) where

Φ(u) =

∫
Ω

|∆u(x)|p(x)

p(x)
dx + M̃

(∫
Ω

|∇u(x)|p(x)

p(x)
dx

)
+

∫
Ω

ρ(x)|u(x)|p(x)

p(x)
dx, (2.3)

and
Ψ(u) =

∫
Ω

F(x, u(x))dx. (2.4)

For our convenience, set

ρ0 = min
x∈Ω

ρ(x), M− = min{1,m0, ρ0} and M+ = max{1,m1, ρ∞}.
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Proposition 2.6. Let T = Φ′ : X → X∗ be the operator defined by

T (u)(v) =

∫
Ω

|∆u(x)|p(x)−2∆u(x)∆v(x)dx + M
(∫

Ω

|∇u(x)|p(x)

p(x)
dx

) ∫
Ω

|∇u(x)|p(x)−2∇u(x)∇v(x)dx

+

∫
Ω

ρ(x)|u(x)|p(x)−2u(x)v(x)

for every u, v ∈ X. Then T admits a continuous inverse on X∗.

Proof. For any u ∈ X \ {0},

lim
‖u‖→∞

〈T (u), u〉
‖u‖

= lim
‖u‖→∞

∫
Ω
|∆u(x)|p(x)dx + M

(∫
Ω

∇u(x)|p(x)

p(x) dx
) ∫

Ω
|∇u(x)|p(x)dx +

∫
Ω
ρ(x)|u(x)|p(x)dx

‖u‖

≥ lim
‖u‖→∞

M−‖u‖p−

‖u‖
= lim
‖u‖→∞

M−‖u‖p−−1,

since p− > 1, it follows that the map T is coercive. Since T is the Fréchet derivative of Φ, it follows
that T is continuous and bounded. Using the elementary inequality [29]

|x − y|γ ≤ 2γ
(
|x|γ−2x − |y|γ−2y

)
(x − y) if γ ≥ 2,

for all (x, y) ∈ RN × RN , N ≥ 1, we obtain for all u, v ∈ X such that u , v,

〈T (u) − T (v), u − v〉 > 0,

which means that T is strictly monotone. Thus T is injective. Consequently, thanks to Minty-Browder
theorem [33], the operator T is a surjection and admits an inverse mapping. Thus it is sufficient to
show that T−1 is continuous. For this, let (vn)∞n=1 be a sequence in X∗ such that vn → v in X∗. Let un and
u in X such that

T−1(vn) = un and T−1(v) = u.

By the coercivity of T , we conclude that the sequence (un) is bounded in the reflexive space X. For a
subsequence, we have un → ũ in X, which implies

lim
n→∞
〈T (un) − T (u), un − ũ〉 = lim

n→∞
〈 fn − f , un − ũ〉 = 0.

Therefore, by the continuity of T , we have

un → ũ in X and T (un)→ T (ũ) = T (u) in X∗.

Moreover, since T is an injection, we conclude that u = ũ. �

3. Main results

Fix x0 ∈ Ω and choose s > 0 such that B(x0, s) ⊂ Ω, where B(x0, s) denotes the ball with center at
x0 and radius of s. Put

Θ1 :=
2π

N
2

Γ( N
2 )

∫ s

s
2

∣∣∣∣∣12(N + 1)
s3 r −

24N
s2 +

9(N − 1)
s

1
r

∣∣∣∣∣p(x)

rN−1dr,
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Θ2 :=
∫

B(x0,s)\B(x0, s
2 )

 N∑
i=1

(
12(xi − x0

i )
s3 −

24(xi − x0
i )

s2 +
9(xi − x0

i )
s`

)2
p(x)

2

dx,

where ` = dist(x, x0) =

√∑N
i=1

(
xi − x0

i

)2
and

Θ3 :=
2π

N
2

Γ( N
2 )


(

s
2

)N

N
+

∫ s

s
2

∣∣∣∣∣ 4
s3 r3 −

12
s2 r2 +

9
s

r − 1
∣∣∣∣∣p(x)

rN−1dr

 ,
Γ denotes the Gamma function, and

L := Θ1 + Θ2 + Θ3.

Theorem 3.1. Assume that there exist positive constants θ1, θ2, θ3 and η ≥ 1 with θ1 <
p−√Lcη, η <

min
{

p+

√
p−M−

p+cp−M+L
θ

p−

p+

2 , θ2

}
and θ2 < θ3 such that

(A1) f (x, t) ≥ 0 for each (x, t) ∈ Ω \ B(x0, s
2 ) × [−θ3, θ3];

(A2)

max


∫

Ω

sup
|t|≤θ1

F(x, t)dx

θ
p−

1

,

∫
Ω

sup
|t|≤θ2

F(x, t)dx

θ
p−

2

,

∫
Ω

sup
|t|≤θ3

F(x, t)dx

θ
p−

3 − θ
p−

2


<

p−M−

p+cp−M+L

∫
B(x0, s

2 )
F(x, η)dx −

∫
Ω

sup
|t|≤θ1

F(x, t)dx

ηp+ .

Then for every

λ ∈

( M+L
p−

ηp+

∫
B(x0, s

2 )
F(x, η)dx −

∫
Ω

sup
|t|≤θ1

F(x, t)dx
,

M−

p+cp− min
{

θ
p−

1∫
Ω

sup
|t|≤θ1

F(x, t)dx
,

θ
p−

2∫
Ω

sup
|t|≤θ2

F(x, t)dx
,

θ
p−

3 − θ
p−

2∫
Ω

sup
|t|≤θ3

F(x, t)dx

})
,

problem (P f
λ) has at least three weak solutions u1, u2 and u3 such that

max
x∈Ω
|u1(x)| < θ1, max

x∈Ω
|u2(x)| < θ2 and max

x∈Ω
|u3(x)| < θ3.

Proof. Our goal is to apply Theorem 2.1 to the problem (P f
λ). We consider the auxiliary problemT (u) = λ f̂ (x, u(x)), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω,
(P f̂

λ)
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where f̂ : Ω × R→ R is an L1-Carathéodory function defined as

f̂ (x, ξ) =


f (x, 0), if ξ < −θ3,

f (x, ξ), if − θ3 ≤ ξ ≤ θ3,

f (x, θ3), if ξ > θ3.

If a weak solution of the problem (P f̂
λ) satisfies the condition −θ3 ≤ u(x) ≤ θ3 for every x ∈ Ω, then,

clearly it turns to be also a weak solution of (P f
λ). Therefore, it is enough to show that our conclusion

holds for (P f
λ). We define functionals Φ and Ψ as given in (2.3) and (2.4), respectively. Let us prove

that the functionals Φ and Ψ satisfy the required conditions in Theorem 2.1. It is well known that Ψ is
a differentiable functional whose differential at the point u ∈ X is

Ψ′(u)(v) =

∫
Ω

f (x, u(x))v(x)dx

for every v ∈ X, as well as it is sequentially weakly upper semicontinuous. Recalling (2.1), we have

Φ(u) ≥
1
p+

∫
Ω

|∆u(x)|p(x)dx + m0

(∫
Ω

|∇u(x)|p(x)

p(x)
dx

)
+

∫
Ω

ρ(x)|u(x)|p(x)dx ≥
M−

p+
‖u‖p−

for all u ∈ X with ‖u‖ > 1, which implies Φ is coercive. Moreover, Φ is continuously differentiable
whose differential at the point u ∈ X is

Φ′(u)(v) =

∫
Ω

|∆u(x)|p(x)−2∆u(x)∆v(x)dx + M
(∫

Ω

|∇u(x)|p(x)

p(x)
dx

) ∫
Ω

|∇u(x)|p(x)−2∇u(x)∇v(x)dx

+

∫
Ω

ρ(x)|u(x)|p(x)−2u(x)v(x)dx

for every v ∈ X, while Proposition 2.6 gives that Φ′ admits a continuous inverse on X∗. Furthermore,
Φ is sequentially weakly lower semicontinuous. Therefore, we observe that the regularity assumptions
on Φ and Ψ, as requested of Theorem 2.1, are verified. Define w by setting

w(x) :=


0 if x ∈ Ω \ B(x0, s)

η

(
4
s3 `

3 −
12
s2 `

2 +
9
s
` − 1

)
if x ∈ B(x0, s) \ B(x0, s

2 )

d if x ∈ B(x0, s
2 ).

(3.1)

It is easy to see that w ∈ X and,

∂w(x)
∂xi

=


0 if x ∈ Ω \ B(x0, s) ∪ B(x0, s

2 )

η

(
12`(xi − x0

i )
s3 −

24(xi − x0
i )

s2 +
9
s

(xi − x0
i )

`

)
if x ∈ B(x0, s) \ B(x0, s

2 )

and

∂2w(x)
∂x2

i

=


0 if x ∈ Ω \ B(x0, s) ∪ B(x0, s

2 )

η

(
12
s3

(xi − x0
i )2 + `2

`
−

24
s2 +

9
s
`2 − (xi − x0

i )2

`3

)
if x ∈ B(x0, s) \ B(x0, s

2 ),
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and so that

N∑
i=1

∂2w(x)
∂x2

i

=


0 if x ∈ Ω \ B(x0, s) ∪ B(x0, s

2 )

η

(
12l(N + 1)

s3 −
24N

s2 +
9
s

N − 1
`

)
if x ∈ B(x0, s) \ B(x0, s

2 ).

It is easy to see that w ∈ X and, in particular, since∫
Ω

|∆w(x)|pdx ≤ ηp+ 2π
N
2

Γ( N
2 )

∫ s

s
2

∣∣∣∣∣12(N + 1)
s3 r −

24N
s2 +

9(N − 1)
s

1
r

∣∣∣∣∣p(x)

rN−1dr,

∫
Ω

|∇w(x)|pdx =

∫
B(x0,s)\B(x0, s

2 )

 N∑
i=1

η2
(
12l(xi − x0

i )
s3 −

24(xi − x0
i )

s2 +
9
s

(xi − x0
i )

l

)2
p(x)

2

dx

≤ ηp+

×

∫
B(x0,s)\B(x0, s

2 )

 N∑
i=1

(
12l(xi − x0

i )
s3 −

24(xi − x0
i )

s2 +
9
s

(xi − x0
i )

l

)2
p(x)

2

dx

and ∫
Ω

|w(x)|pdx ≤ ηp+ 2π
N
2

Γ( N
2 )

 ( s
2 )N

N
+

∫ s

s
2

∣∣∣∣∣ 4
s3 r3 −

12
s2 r2 +

9
s

r − 1
∣∣∣∣∣p(x)

rN−1dr
 .

In particular, one has

M−L
p+

ηp− ≤
1
p+

(
Θ1η

p− + m0Θ2η
p− + ρ0Θ3η

p−
)
≤ Φ(w)

≤
1
p−

(
Θ1η

p+

+ m1Θ2η
p+

+ ρ∞Θ3η
p+
)
≤

M+L
p−

ηp+

.

On the other hand, bearing (A1) in mind, from the definition of Ψ, we infer

Ψ(w) =

∫
Ω

F(x,w(x))dx ≥
∫

B(x0, s
2 )

F(x, η)dx.

Choose r1 =
M−

p+

(
θ1

c

)p−

, r2 =
M−

p+

(
θ2

c

)p−

and r3 =
M−

p+

θp−

3 − θ
p−

2

cp−

. From the conditions

θ1 <
p−√

Lcη, p−

√
p+M+L
p−M−

cη
p+

p− < θ2

and θ2 < θ3, we achieve r1 < Φ(w) < r2 and r3 > 0. For all u ∈ X with Φ(u) < r1, taking (2.1) and (2.2)
into account, one has

‖u‖ ≤ max
{
(p+r1)

1
p+ , (p+r1)

1
p−

}
.

So, thanks to the embedding X ↪→ C0(Ω), one has ‖u‖∞ < θ1. From the definition of r1, it follows that

Φ−1(−∞, r1) = {u ∈ X; Φ(u) < r1} ⊆ {u ∈ X; |u|∞ ≤ θ1} .
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Hence, one has

sup
u∈Φ−1(−∞,r1)

∫
Ω

F(x, u(x))dx ≤
∫

Ω

sup
|t|≤θ1

F(x, t)dx.

As above, we can obtain that

sup
u∈Φ−1(−∞,r2)

∫
Ω

F(x, u(x))dx ≤
∫

Ω

sup
|t|≤θ2

F(x, t)dx

and
sup

u∈Φ−1(−∞,r2+r3)

∫
Ω

F(x, u(x))dx ≤
∫

Ω

sup
|t|≤θ3

F(x, t)dx.

Therefore, since 0 ∈ Φ−1(−∞, r1) and Φ(0) = Ψ(0) = 0, one has

ϕ(r1) = inf
u∈Φ−1(−∞,r1)

(supu∈Φ−1(−∞,r1) Ψ(u)) − Ψ(u)

r1 − Φ(u)

≤
supu∈Φ−1(−∞,r1) Ψ(u)

r1

=

sup
u∈Φ−1(−∞,r1)

∫
Ω

F(x, u(x))dx

r1
≤

∫
Ω

sup
|t|≤θ1

F(x, t)dx

M−

p+

(
θ1

c

)p− ,

ϕ(r2) ≤

sup
u∈Φ−1(−∞,r2)

Ψ(u)

r2
=

sup
u∈Φ−1(−∞,r2)

∫
Ω

F(x, u(x))dx

r2
≤

∫
Ω

sup
|t|≤θ2

F(x, t)dx

M−

p+

(
θ2

c

)p− ,

and

γ(r2, r3) ≤

sup
u∈Φ−1(−∞,r2+r3)

Ψ(u)

r3
=

sup
u∈Φ−1(−∞,r2+r3)

∫
Ω

F(x, u(x))dx

r3
≤

∫
Ω

sup
|t|≤θ3

F(x, t)dx

M−

p+

θp−

3 − θ
p−

2

cp−


.

On the other hand, for each u ∈ Φ−1(−∞, r1) one has

β(r1, r2) ≥

∫
B(x0, s

2 )
F(x, η)dx −

∫
Ω

sup
|t|≤θ1

F(x, t)dx

Φ(w) − Φ(u)
≥

∫
B(x0, s

2 )
F(x, η)dx −

∫
Ω

sup
|t|≤θ1

F(x, t)dx

M+L
p−

ηp+

.

Due to (A2) we get
α(r1, r2, r3) < β(r1, r2).
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Therefore, (b1) and (b2) of Theorem 2.1 are verified. Finally, we verify that Φ − λΨ satisfies the
assumption 2 of Theorem 2.1. Let u1 and u2 be two local minima for Φ − λΨ. Then u1 and u2 are
critical points for Φ − λΨ, and so, they are weak solutions of the problem (P f

λ). Since we assumed f
is nonnegative, for fixed λ > 0, we have λ f (k, su1 + (1 − s)u2) ≥ 0 for all s ∈ [0, 1], and consequently,
Ψ(su1 + (1 − s)u2) ≥ 0 for every s ∈ [0, 1]. Hence, Theorem 2.1 implies that for every

λ ∈

( M+L
p−

ηp+

∫
B(x0, s

2 )
F(x, η)dx −

∫
Ω

sup
|t|≤θ1

F(x, t)dx
,

M−

p+cp− min
{

θ
p−

1∫
Ω

sup
|t|≤θ1

F(x, t)dx
,

θ
p−

2∫
Ω

sup
|t|≤θ2

F(x, t)dx
,

θ
p−

3 − θ
p−

2∫
Ω

sup
|t|≤θ3

F(x, t)dx

})
,

the functional Φ − λΨ has three critical points ui, i = 1, 2, 3, in X such that Φ(u1) < r1, Φ(u2) < r2 and
Φ(u3) < r2 + r3, that is,

max
x∈Ω
|u1(x)| < θ1, max

x∈Ω
|u2(x)| < θ2 and max

x∈Ω
|u3(x)| < θ3.

Then, taking into account the fact that the solutions of the problem (P f
λ) are exactly critical points of

the functional Φ − λΨ we have the desired conclusion. �

Remark 3.2. If f is non-negative, then the weak solution ensured in Theorem 3.1 is non-negative.
Indeed, let u0 be the weak solution of the problem (P f

λ) ensured in Theorem 3.1, then u0 is nonnegative.
Arguing by a contradiction, assume that the set A = {x ∈ Ω : u0(x) < 0} is non-empty and of positive
measure. Put v̄(x) = min {0, u0(x)} for all x ∈ Ω. Clearly, v̄ ∈ X and one has∫

Ω

|∆u0(x)|p(x)−2∆u0(x)∆v̄(x)dx + M
(∫

Ω

|∇u0(x)|p(x)

p(x)
dx

) ∫
Ω

|∇u0(x)|p(x)−2∇u0(x)∇v̄(x)dx

+

∫
Ω

ρ(x)|u0(x)|p(x)−2u0(x)v̄(x)dx − λ
∫

Ω

f (x, u0(x))v̄(x)dx = 0

for every v̄ ∈ X. Thus we have

0 ≤ M−‖u‖(A) ≤

∫
A

|∆u0(x)|p(x) + M
(∫
A

|∇u0(x)|p(x)

p(x)
dx

) ∫
A

|∇u0(x)|p(x)dx

+

∫
A

ρ(x)|u0(x)|p(x)dx = λ

∫
A

f (x, u0(x))u0(x)dx ≤ 0,

i.e.,
‖u0‖(A) ≤ 0

which contradicts with this fact that u0 is a non-trivial weak solution. Hence, the set A is empty, and
u0 is positive.
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Theorem 3.3. Assume that there exist positive constants θ1, θ4 and η ≥ 1 with θ1 < min
{
η

p+

p− ,
p−√Lcη

}
and η < min

{
p+

√
p−M−

2cp− p+M+L
θ

p−

p+

4 , θ4

}
such that

(A3) f (x, t) ≥ 0 for each (x, t) ∈ Ω \ B(x0, s
2 ) × [−θ4, θ4];

(A4)

max


∫

Ω

sup
|t|≤θ1

F(x, t)dx

θ
p−

1

,

2
∫

Ω

sup
|t|≤θ4

F(x, t)dx

θ
p−

4

 <
p−M−

p+cp−M+L + p−M−

∫
B(x0, s

2 )
F(x, η)dx

ηp+ .

Then for every

λ ∈ Λ′ :=
( (

p+cp−M+L + p−M−
)
ηp+

p−p+cp−
∫

B(x0, s
2 )

F(x, η)dx
,

M−

p+cp− min
{

θ
p−

1∫
Ω

sup
|t|≤θ1

F(x, t)dx
,

θ
p−

4

2
∫

Ω

sup
|t|≤θ4

F(x, t)dx

})
,

problem (P f
λ) has at least three weak solutions u1, u2 and u3 such that

max
x∈Ω
|u1(x)| < θ1, max

x∈Ω
|u2(x)| <

1
p−√2

θ4 and max
x∈Ω
|u3(x)| < θ4.

Proof. Choose θ2 =
1

p−√2
θ4 and θ3 = θ4. So, from (A4) one has

∫
Ω

sup
|t|≤θ2

F(x, t)dx

θ
p−

2

=

2
∫

Ω

sup
|t|≤ 1

p−√2
θ4

F(x, t)dx

θ
p−

4

≤

2
∫

Ω

sup
|t|≤θ4

F(x, t)dx

θ
p−

4

(3.2)

<
p−M−

p+cp−M+L + p−M−

∫
B(x0, s

2 )
F(x, η)dx

ηp+ ,

and ∫
Ω

sup
|t|≤θ3

F(x, t)dx

θ
p−

3 − θ
p−

2

=

2
∫

Ω

sup
|t|≤θ4

F(x, t)dx

θ
p−

4

<
p−M−

p+cp−M+L + p−M−

∫
B(x0, s

2 )
F(x, η)dx

ηp+ . (3.3)

Moreover, since θ1 < η
p+

p− , from (A4) we have

p−M−

p+cp−M+L

∫
B(x0, s

2 )
F(x, η)dx −

∫
Ω

sup
|t|≤θ1

F(x, t)dx

ηp+ >
p−M−

p+cp−M+L

∫
B(x0, s

2 )
F(x, η)dx

ηp+
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−
p−M−

p+cp−M+L

∫
Ω

sup
|t|≤θ1

F(x, t)dx

θ
p−

1

>
p−M−

p+cp−M+L

(∫
B(x0, s

2 )
F(x, η)dx

ηp+ −
p−M−

p+cp−M+L + p−M−

∫
B(x0, s

2 )
F(x, η)dx

ηp+

)

=
p−M−

p+cp−M+L + p−M−

∫
B(x0, s

2 )
F(x, η)dx

ηp+ .

Hence, from (A4), (3.2) and (3.3), it is easy to observe that the assumption (A2) of Theorem 3.1 is
satisfied, and it follows the conclusion. �

The following result is a consequence of Theorem 3.3.

Theorem 3.4. Let f : Ω × R → R be a continuous function such that ξ f (x, ξ) > 0 for all (x, ξ) ∈
Ω × R\{0}. Assume that

(A5) limξ→0
f (x, ξ)
|ξ|p−−1 = lim|ξ|→+∞

f (x, ξ)
|ξ|p−−1 = 0.

Then for every λ > λ where

λ =
p+cp−M+L + p−M−

p−p+cp− max

inf
η≥1

ηp+∫
B(x0, s

2 )
F(x, η)dx

; inf
η≤−1

(−η)p+∫
B(x0, s

2 )
F(x, η)dx

 ,
problem (P f

λ) possesses at least four distinct non-trivial solutions.

Proof. Set

f1(x, ξ) =

{
f (x, ξ), if (x, ξ) ∈ Ω × [0,+∞),
0, otherwise,

and

f2(x, ξ) =

{
− f (x,−ξ), if (x, ξ) ∈ Ω × [0,+∞),
0, otherwise,

and define F1(x, ξ) :=
∫ ξ

0
f1(x, t)dt for every (x, ξ) ∈ Ω × R. Fix λ > λ∗, and let η ≥ 1 such that

λ >

(
p+cp−M+L + p−M−

)
ηp+

p−p+cp−
∫

B(x0, s
2 )

F(x, η)dx
. From

lim
ξ→0

f1(x, ξ)
|ξ|p−−1 = lim

|ξ|→+∞

f1(x, ξ)
|ξ|p−−1 = 0,
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there is θ1 > 0 such that

θ1 < min
{
η

p+

p− ,
p−√

Lcη
}

and

∫
Ω

F1(x, θ1)dx

θ
p−

1

<
M−

λp+cp− ,

and θ4 > 0 such that

η < min

 p+

√
p−M−

2p+cp−M+L
θ

p−

p+

4 , θ4


and ∫

Ω

F1(x, θ4)dx

θ
p−

4

<
M−

2λp+cp− .

Then, (A4) in Theorem 3.3 is satisfied,

λ ∈

( (
p+cp−M+L + p−M−

)
ηp+

p−p+cp−
∫

B(x0, s
2 )

F1(x, η)dx
,

M−

p+cp− min
{

θ
p−

1∫
Ω

sup
|t|≤θ1

F1(x, t)dx
,

θ
p−

4

2
∫

Ω

sup
|t|≤θ4

F1(x, t)dx

})
.

Hence, the problem (P f1
λ ) admits two positive solutions u1, u2, which are positive solutions of the

problem (P f
λ). Next, arguing in the same way, from

lim
ξ→0

f2(x, ξ)
|ξ|p−−1 = lim

|ξ|→+∞

f2(x, ξ)
|ξ|p−−1 = 0,

we ensure the existence of two positive solutions u3, u4 for the problem (P f2
λ ). Clearly, −u3, −u4 are

negative solutions of the problem (P f
λ) and the conclusion is achieved. �

Example 3.5. Let Ω =
{
(x, y) ∈ R2 : x2 + y2 ≤ 9

}
. Consider the problem∆2

p(x,y)u(x) − M
(∫

Ω

|∇u(x)|p(x,y)dx
p(x)

)
∆p(x,y)u(x) + |u(x)|p(x,y)−2u(x) = λ f (x, y, u), (x, y) ∈ Ω,

u = ∆u = 0, (x, y) ∈ ∂Ω,

where M(t) =
3
2

+
sin(t)

2
for each t ∈ [0,∞), p(x, y) = x2 + y2 + 4 for all (x, y) ∈ Ω and

f (x, y, t) =


5(x2 + y2)t4, if t ≤ 1, (x, y) ∈ Ω,

(x2 + y2)
5
√

t
, if t > 1, (x, y) ∈ Ω.

By the expression of f , we have

F(x, y, t) =

{
(x2 + y2)t5, if t ≤ 1, (x, y) ∈ Ω,

(x2 + y2)(10
√

t − 9), if t > 1, (x, y) ∈ Ω.
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Direct calculations give M− = 1, M+ = 2, p− = 4 and p+ = 13. It is clear that

lim
ξ→0

f (x, ξ)
|ξ|3

= lim
|ξ|→+∞

f (x, ξ)
|ξ|3

= 0.

Hence, by applying Theorem 3.4, there is λ∗ > 0 such that for each λ > λ∗, the problem possesses at
least four distinct non-trivial solutions.

As a special case, we present a simple consequence of Theorem 3.3 when f dose not depend upon
x. To be precise, consider the following problemT (u) = λ f (u(x)), x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω
(3.4)

where f : R→ R is a continues function.
Put

F(t) =

∫ t

0
f (ξ)dξ for all t ∈ R.

Theorem 3.6. Assume that there exist positive constants θ1, θ2, θ3 and η ≥ 1 with θ1 <
p−√Lcη, η <

min
{

p+

√
p−M−

p+cp−M+L
θ

p−

p+

2 , θ2

}
and θ2 < θ3 such that

(A7) f (t) ≥ 0 for each t ∈ [−θ3, θ3];
(A8)

max

F(θ1)

θ
p−

1

,
F(θ2)

θ
p−

2

,
F(θ3)

θ
p−

3 − θ
p−

2

 < p−M−

p+cp−meas(Ω)M+L
meas(B(x0, s

2 ))F(η) −meas(Ω)F(θ1)
ηp+ .

Then for every

λ ∈

( M+L
p−

ηp+

meas(B(x0, s
2 ))F(η) −meas(Ω)F(θ1)

,
M−

p+cp−meas(Ω)
min

 θ
p−

1

F(θ1)
,
θ

p−

2

F(θ2)
,
θ

p−

3 − θ
p−

2

F(θ3)


)
,

problem (P f
λ) has at least three weak solutions u1, u2 and u3 such that

max
x∈Ω
|u1(x)| < θ1, max

x∈Ω
|u2(x)| < θ2 and max

x∈Ω
|u3(x)| < θ3.

Theorem 3.7. Assume that there exist positive constants θ1, θ4 and η ≥ 1 with θ1 < min
{
η

p+

p− ,
p−√Lcη

}
and

η < min

 p+

√
p−M−

2p+cp−M+L
θ

p−

p+

4 , θ4


such that

(A9) f (t) ≥ 0 for each t ∈ [−θ4, θ4];
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(A10)

max

F(θ1)

θ
p−

1

,
2F(θ4)

θ
p−

4

 < meas(B(x0, s
2 ))p−M−

meas(Ω)
(
p+cp−M+L + p−M−

) F(η)
ηp+ .

Then for every

λ ∈ Λ′ :=
( (

p+cp−M+L + p−M−
)
ηp+

p−p+cp−meas(B(x0, s
2 ))F(η)

,
M−

p+cp−meas(Ω)
min

 θ
p−

1

F(θ1)
,

θ
p−

4

2F(θ4)


)
,

problem (P f
λ) has at least three weak solutions u1, u2 and u3 such that

max
x∈Ω
|u1(x)| < θ1, max

x∈Ω
|u2(x)| <

1
p−√2

θ4 and max
x∈Ω
|u3(x)| < θ4.
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