In this paper, we consider a Neumann problem of Kirchhoff type equation
{−(a+b∫Ω|∇u|2dx)Δu+u=Q(x)|u|4u+λP(x)|u|q−2u,in Ω,∂u∂v=0,on ∂Ω,
where Ω ⊂ R3 is a bounded domain with a smooth boundary, a,b>0, 1<q<2, λ>0 is a real parameter, Q(x) and P(x) satisfy some suitable assumptions. By using the variational method and the concentration compactness principle, we obtain the existence and multiplicity of nontrivial solutions.
Citation: Jun Lei, Hongmin Suo. Multiple solutions of Kirchhoff type equations involving Neumann conditions and critical growth[J]. AIMS Mathematics, 2021, 6(4): 3821-3837. doi: 10.3934/math.2021227
[1] | Yousef Rohanizadegan, Stefanie Sonner, Hermann J. Eberl . Discrete attachment to a cellulolytic biofilm modeled by an Itô stochastic differential equation. Mathematical Biosciences and Engineering, 2020, 17(3): 2236-2271. doi: 10.3934/mbe.2020119 |
[2] | Nikodem J. Poplawski, Abbas Shirinifard, Maciej Swat, James A. Glazier . Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment. Mathematical Biosciences and Engineering, 2008, 5(2): 355-388. doi: 10.3934/mbe.2008.5.355 |
[3] | Sunwoo Hwang, Seongwon Lee, Hyung Ju Hwang . Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model. Mathematical Biosciences and Engineering, 2021, 18(6): 8524-8534. doi: 10.3934/mbe.2021421 |
[4] | Lin Zhang, Yongbin Ge, Zhi Wang . Positivity-preserving high-order compact difference method for the Keller-Segel chemotaxis model. Mathematical Biosciences and Engineering, 2022, 19(7): 6764-6794. doi: 10.3934/mbe.2022319 |
[5] | Mudassar Imran, Hal L. Smith . A model of optimal dosing of antibiotic treatment in biofilm. Mathematical Biosciences and Engineering, 2014, 11(3): 547-571. doi: 10.3934/mbe.2014.11.547 |
[6] | Donna J. Cedio-Fengya, John G. Stevens . Mathematical modeling of biowall reactors for in-situ groundwater treatment. Mathematical Biosciences and Engineering, 2006, 3(4): 615-634. doi: 10.3934/mbe.2006.3.615 |
[7] | Jack M. Hughes, Hermann J. Eberl, Stefanie Sonner . A mathematical model of discrete attachment to a cellulolytic biofilm using random DEs. Mathematical Biosciences and Engineering, 2022, 19(7): 6582-6619. doi: 10.3934/mbe.2022310 |
[8] | Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl . Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences and Engineering, 2017, 14(3): 625-653. doi: 10.3934/mbe.2017036 |
[9] | Silogini Thanarajah, Hao Wang . Competition of motile and immotile bacterial strains in a petri dish. Mathematical Biosciences and Engineering, 2013, 10(2): 399-424. doi: 10.3934/mbe.2013.10.399 |
[10] | Fazal Abbas, Rangarajan Sudarsan, Hermann J. Eberl . Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates. Mathematical Biosciences and Engineering, 2012, 9(2): 215-239. doi: 10.3934/mbe.2012.9.215 |
In this paper, we consider a Neumann problem of Kirchhoff type equation
{−(a+b∫Ω|∇u|2dx)Δu+u=Q(x)|u|4u+λP(x)|u|q−2u,in Ω,∂u∂v=0,on ∂Ω,
where Ω ⊂ R3 is a bounded domain with a smooth boundary, a,b>0, 1<q<2, λ>0 is a real parameter, Q(x) and P(x) satisfy some suitable assumptions. By using the variational method and the concentration compactness principle, we obtain the existence and multiplicity of nontrivial solutions.
[1] | C. O. Alves, F. J. S. A. Corrˆea, G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth, Differ. Equations Appl., 2 (2010), 409-417. |
[2] |
C. O. Alves, F. J. S. A. Corrˆea, T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93. doi: 10.1016/j.camwa.2005.01.008
![]() |
[3] |
A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7
![]() |
[4] |
H. Brˊezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Commun. Pure Appl. Math., 36 (1983), 437-477. doi: 10.1002/cpa.3160360405
![]() |
[5] | X. F. Cao, J. X. Xu, J. Wang, Multiple positive solutions for Kirchhoff type problems involving concave and convex nonlinearities in R3, Electron. J. Differ. Equations, 301 (2016), 1-16. |
[6] |
J. Chabrowski, The critical Neumann problem for semilinear elliptic equations with concave perturbations, Ric. Mat., 56 (2007), 297-319. doi: 10.1007/s11587-007-0018-1
![]() |
[7] | I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353. |
[8] |
H. N. Fan, Existence of ground state solutions for Kirchhoff-type problems involving critical Sobolev exponents, Math. Methods Appl. Sci., 41 (2018), 371-385. doi: 10.1002/mma.4620
![]() |
[9] |
G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 401 (2013), 706-713. doi: 10.1016/j.jmaa.2012.12.053
![]() |
[10] |
X. M. He, W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3, J. Differ. Equations, 252 (2012), 1813-1834. doi: 10.1016/j.jde.2011.08.035
![]() |
[11] |
X. M. He, W. M. Zou, Ground states for nonlinear Kirchhoff equations with critical growth, Ann. Mat., 193 (2014), 473-500. doi: 10.1007/s10231-012-0286-6
![]() |
[12] | Y. He, G. B. Li, S. J. Peng, Concentrating bound states for Kirchhoff type problems in R3 involving critical Sobolev exponents, Adv. Nonlinear Stud., 14 (2014), 441-468. |
[13] | G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. |
[14] |
C. Y. Lei, C. M. Chu, H. M. Suo, C. L. Tang, On Kirchhoff type problems involving critical and singular nonlinearities, Ann. Polonici Mathematici, 114 (2015), 269-291. doi: 10.4064/ap114-3-5
![]() |
[15] |
G. B. Li, H. Y. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3, J. Differ. Equations, 257 (2014), 566-600. doi: 10.1016/j.jde.2014.04.011
![]() |
[16] |
Q. Q. Li, K. M. Teng, X. Wu, Ground states for Kirchhoff-type equations with critical growth, Commun. Pure Appl. Anal., 17 (2018), 2623-2638. doi: 10.3934/cpaa.2018124
![]() |
[17] | J. F. Liao, P. Zhang, X. P. Wu, Existence of positive solutions for Kirchhoff problems, Electron. J. Differ. Equations, 280 (2015), 1-12. |
[18] |
J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284-346. doi: 10.1016/S0304-0208(08)70870-3
![]() |
[19] | P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 1, Ann. Henri Poincare (C) Nonlinear Anal., 2 (1984), 109-145. |
[20] | Z. S. Liu, Y. J. Lou, J. J. Zhang, A perturbation approach to studying sign-changing solutions of Kirchhoff equations with a general nonlinearity. Available from: https://arXiv.org/abs/1812.09240v2. |
[21] |
Z. S. Liu, S. J. Guo, Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent, Z. Angew. Math. Phys., 66 (2015), 747-769. doi: 10.1007/s00033-014-0431-8
![]() |
[22] |
Z. S. Liu, S. J. Guo, On ground states for the Kirchhoff-type problem with a general critical nonlinearity, J. Math. Anal. Appl., 426 (2015), 267-287. doi: 10.1016/j.jmaa.2015.01.044
![]() |
[23] |
D. Naimen, The critical problem of Kirchhoff type elliptic equations in dimension four, J. Differ. Equations, 257 (2014), 1168-1193. doi: 10.1016/j.jde.2014.05.002
![]() |
[24] | L. J. Shen, X. H. Yao, Multiple positive solutions for a class of Kirchhoff type problems involving general critical growth. Available from: https://arXiv.org/abs/1607.01923v1. |
[25] |
J. Wang, L. X. Tian, J. X. Xu, F. B. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differ. Equations, 253 (2012), 2314-2351. doi: 10.1016/j.jde.2012.05.023
![]() |
[26] | X. J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differ. Equations, 93 (1993), 283-310. |
[27] |
X. Wu, Existence of nontrivial solutions and high energy solutions for Schr¨odinger-Kirchhoff-type equations in RN, Nonlinear Anal.: Real World Appl., 12 (2011), 1278-1287. doi: 10.1016/j.nonrwa.2010.09.023
![]() |
[28] |
Q. L. Xie, X. P. Wu, C. L. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent, Commun. Pure Appl. Anal., 12 (2013), 2773-2786. doi: 10.3934/cpaa.2013.12.2773
![]() |
[29] | W. Xie, H. Chen, H. Shi, Multiplicity of positive solutions for Schr¨odinger-Poisson systems with a critical nonlinearity in R3, Bull. Malays. Mat. Sci. Soc., 3 (2018), 1-24. |
[30] |
W. H. Xie, H. B. Chen, Multiple positive solutions for the critical Kirchhoff type problems involving sign-changing weight functions, J. Math. Anal. Appl., 479 (2019), 135-161. doi: 10.1016/j.jmaa.2019.06.020
![]() |
[31] | L. P. Xu, H. B. Chen, Sign-changing solutions to Schr¨odinger-Kirchhoff-type equations with critical exponent, Adv. Differ. Equations, 121 (2016), 1-14. |
[32] |
L. Yang, Z. S. Liu, Z. S. Ouyang, Multiplicity results for the Kirchhoff type equations with critical growth, Appl. Math. Lett., 63 (2017), 118-123. doi: 10.1016/j.aml.2016.07.029
![]() |
[33] |
J. Zhang, W. M. Zou, Multiplicity and concentration behavior of solutions to the critical Kirchhoff-type problem, Z. Angew. Math. Phys., 68 (2017), 1-27. doi: 10.1007/s00033-016-0745-9
![]() |
[34] | J. Zhang, The critical Neumann problem of Kirchhoff type, Appl. Math. Comput., 274 (2016), 519-530. |
1. | Tianyu Mao, Fengzhou Fang, Biomimetic Functional Surfaces towards Bactericidal Soft Contact Lenses, 2020, 11, 2072-666X, 835, 10.3390/mi11090835 | |
2. | Yong Chen, Hengtong Wang, Jiangang Zhang, Ke Chen, Yumin Li, Simulation of avascular tumor growth by agent-based game model involving phenotype-phenotype interactions, 2016, 5, 2045-2322, 10.1038/srep17992 | |
3. | Mohammad Mahdi Mardanpour, Maryam Saadatmand, Soheila Yaghmaei, Interpretation of the electrochemical response of a multi-population biofilm in a microfluidic microbial fuel cell using a comprehensive model, 2019, 128, 15675394, 39, 10.1016/j.bioelechem.2019.03.003 | |
4. | Christa K. Gomez, Srijan Aggarwal, 2019, 9781119300755, 1, 10.1002/9781119300762.wsts0193 | |
5. | B. D’Acunto, L. Frunzo, M. R. Mattei, Continuum approach to mathematical modelling of multispecies biofilms, 2017, 66, 0035-5038, 153, 10.1007/s11587-016-0294-8 | |
6. | Saheli Ghosh, Asifa Qureshi, Hemant J. Purohit, 2017, Chapter 15, 978-981-10-6862-1, 305, 10.1007/978-981-10-6863-8_15 | |
7. | Mohammad Kalantar, Mohammad Mahdi Mardanpour, Soheila Yaghmaei, A novel model for predicting bioelectrochemical performance of microsized-MFCs by incorporating bacterial chemotaxis parameters and simulation of biofilm formation, 2018, 122, 15675394, 51, 10.1016/j.bioelechem.2018.03.002 | |
8. | Mohammad Mahdi Mardanpour, Soheila Yaghmaei, Dynamical Analysis of Microfluidic Microbial Electrolysis Cell via Integrated Experimental Investigation and Mathematical Modeling, 2017, 227, 00134686, 317, 10.1016/j.electacta.2017.01.041 | |
9. | Mohammad Mahdi Mardanpour, Soheila Yaghmaei, Mohammad Kalantar, Modeling of microfluidic microbial fuel cells using quantitative bacterial transport parameters, 2017, 342, 03787753, 1017, 10.1016/j.jpowsour.2017.01.012 | |
10. | Adib Mahmoodi Nasrabadi, Mahdi Moghimi, Energy analysis and optimization of a biosensor-based microfluidic microbial fuel cell using both genetic algorithm and neural network PSO, 2022, 47, 03603199, 4854, 10.1016/j.ijhydene.2021.11.125 | |
11. | Roent Dune A. Cayetano, Gi-Beom Kim, Jungsu Park, Yung-Hun Yang, Byong-Hun Jeon, Min Jang, Sang-Hyoun Kim, Biofilm formation as a method of improved treatment during anaerobic digestion of organic matter for biogas recovery, 2022, 344, 09608524, 126309, 10.1016/j.biortech.2021.126309 |