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Abstract: In this paper, we consider a Neumann problem of Kirchhoff type equation
−

(
a + b

∫
Ω

|∇u|2dx
)
∆u + u = Q(x)|u|4u + λP(x)|u|q−2u, in Ω,

∂u
∂v

= 0, on ∂Ω,

where Ω ⊂ R3 is a bounded domain with a smooth boundary, a, b > 0, 1 < q < 2, λ > 0 is a real
parameter, Q(x) and P(x) satisfy some suitable assumptions. By using the variational method and the
concentration compactness principle, we obtain the existence and multiplicity of nontrivial solutions.
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1. Introduction and main results

We study the following Neumann problem of Kirchhoff type equation with critical growth
−

(
a + b

∫
Ω

|∇u|2dx
)
∆u + u = Q(x)|u|4u + λP(x)|u|q−2u, in Ω,

∂u
∂v

= 0, on ∂Ω,

(1.1)

where Ω ⊂ R3 is a bounded domain with a smooth boundary, a, b > 0, 1 < q < 2, λ > 0 is a real
parameter. We assume that Q(x) and P(x) satisfy the following conditions:
(Q1) Q(x) ∈ C(Ω̄) is a sign-changing;
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(Q2) there exists xM ∈ Ω such that QM = Q(xM) > 0 and

|Q(x) − QM | = o(|x − xM |) as x→ xM;

(Q3) there exists 0 ∈ ∂Ω such that Qm = Q(0) > 0 and

|Q(x) − Qm| = o(|x|) as x→ 0;

(P1) P(x) is positive continuous on Ω̄ and P(x0) = maxx∈Ω̄ P(x);
(P2) there exist σ > 0, R > 0 and 3− q < β < 6−q

2 such that P(x) ≥ σ|x − y|−β for |x − y| ≤ R, where y is
xM ∈ Ω or 0 ∈ ∂Ω.

In recent years, the following Dirichlet problem of Kirchhoff type equation has been studied
extensively by many researchers−

(
a + b

∫
Ω

|∇u|2dx
)
∆u = f (x, u), in Ω,

u = 0, on ∂Ω,

(1.2)

which is related to the stationary analogue of the equation

utt −

(
a + b

∫
Ω

|∇u|2dx
)
∆u = f (x, u) (1.3)

proposed by Kirchhoff in [13] as an extension of the classical D’Alembert’s wave equation for free
vibrations of elastic strings. Kirchhoff’s model takes into account the changes in length of the string
produced by transverse vibrations. In (1.2) and (1.3), u denotes the displacement, b is the initial tension
and f (x, u) stands for the external force, while a is related to the intrinsic properties of the string (such
as Youngs modulus). We have to point out that such nonlocal problems appear in other fields like
biological systems, such as population density, where u describes a process which depends on the
average of itself (see Alves et al. [2]). After the pioneer work of Lions [18], where a functional analysis
approach was proposed. The Kirchhoff type Eq (1.2) with critical growth began to call attention of
researchers, we can see [1, 9, 14, 17, 23, 24, 28, 30] and so on.

Recently, the following Kirchhoff type equation has been well studied by various authors−
(
a + b

∫
R3
|∇u|2dx

)
∆u + V(x)u = f (x, u), in R3,

u > 0, u ∈ H1(R3).
(1.4)

There has been much research regarding the concentration behavior of the positive solutions of (1.4),
we can see [10–12, 25, 33]. Many papers studied the existence of ground state solutions of (1.4), for
example [5, 8, 15, 16, 21, 22, 24]. In addition, the authors established the existence of sign-changing
solutions of (1.4) in [20, 31]. In papers [27, 32] proved the existence and multiplicity of nontrivial
solutions of (1.4) by using mountain pass theorem.

In particular, Chabrowski in [6] studied the solvability of the Neumann problem−∆u = Q(x)|u|2
∗−2u + λ f (x, u), in Ω,

∂u
∂v

= 0, on ∂Ω,
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where Ω ⊂ RN is a smooth bounded domain, 2∗ = 2N
N−2 (N ≥ 3) is the critical Sobolev exponent, λ > 0

is a parameter. Assume that Q(x) ∈ C(Ω) is a sign-changing function and
∫

Ω
Q(x)dx < 0, under the

condition of f (x, u). Using the space decomposition H1(Ω) = span1 ⊕ V , where V = {v ∈ H1(Ω) :∫
Ω

vdx = 0}, the author obtained the existence of two distinct solutions by the variational method.
In [14], Lei et al. considered the following Kirchhoff type equation with critical exponent−

(
a + b

∫
Ω

|∇u|2dx
)
∆u = u5 + λ

uq−1

|x|β
, in Ω,

u = 0, on ∂Ω,

where Ω ⊂ R3 is a smooth bounded domain, a, b > 0, 1 < q < 2, λ > 0 is a parameter. They
obtained the existence of a positive ground state solution for 0 ≤ β < 2 and two positive solutions for
3 − q ≤ β < 2 by the Nehari manifold method.

In [34], Zhang obtained the existence and multiplicity of nontrivial solutions of the following
equation 

−

(
a + b

∫
Ω

|∇u|2dx
)
∆u + u = λ|u|q−2u + f (x, u) + Q(x)u5, in Ω,

∂u
∂v

= 0, on ∂Ω,

(1.5)

where Ω is an open bounded domain in R3, a, b > 0, 1 < q < 2, λ ≥ 0 is a parameter, f (x, u) and Q(x)
are positive continuous functions satisfying some additional assumptions. Moreover, f (x, u) ∼ |u|p−2u
with 4 < p < 6.

Comparing with the above mentioned papers, our results are different and extend the above results
to some extent. Specially, motivated by [34], we suppose Q(x) changes sign on Ω and f (x, u) ≡ 0
for (1.5). Since (1.1) is critical growth, which leads to the cause of the lack of compactness of the
embedding H1(Ω) ↪→ L6(Ω), we overcome this difficulty by using P.Lions concentration compactness
principle [19]. Moreover, note that Q(x) changes sign on Ω, how to estimate the level of the mountain
pass is another difficulty.

We define the energy functional corresponding to problem (1.1) by

Iλ(u) =
1
2
‖u‖2 +

b
4

(∫
Ω

|∇u|2dx
)2

−
1
6

∫
Ω

Q(x)|u|6dx −
λ

q

∫
Ω

P(x)|u|qdx.

A weak solution of problem (1.1) is a function u ∈ H1(Ω) and for all ϕ ∈ H1(Ω) such that∫
Ω

(a∇u∇ϕ + uϕ)dx + b
∫

Ω

|∇u|2dx
∫

Ω

∇u∇ϕdx =

∫
Ω

Q(x)|u|4uϕdx + λ

∫
Ω

P(x)|u|q−2uϕdx.

Our main results are the following:
Theorem 1.1. Assume that 1 < q < 2 and Q(x) changes sign on Ω. Then there exists Λ0 > 0 such that
for every λ ∈ (0,Λ0), problem (1.1) has at least one nontrivial solution.
Theorem 1.2. Assume that 1 < q < 2, 3−q < β < 6−q

2 and Q(x) changes sign on Ω, there exists Λ∗ > 0
such that for all λ ∈ (0,Λ∗). Then problem (1.1) has at least two nontrivial solutions.

Throughout this paper, we make use of the following notations:
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• The space H1(Ω) is equipped with the norm ‖u‖2H1(Ω) =
∫

Ω
(|∇u|2 + u2)dx, the norm in Lp(Ω) is

denoted by ‖ · ‖p.
• Define ‖u‖2 =

∫
Ω

(a|∇u|2 + u2)dx for u ∈ H1(Ω). Note that ‖ · ‖ is an equivalent norm on H1(Ω)
with the standard norm.
• Let D1,2(R3) is the completion of C∞0 (R3) with respect to the norm ‖u‖2D1,2(R3) =

∫
R3 |∇u|2dx.

• 0 < QM = maxx∈Ω̄ Q(x), 0 < Qm = maxx∈∂Ω Q(x).
• Ω+ = {x ∈ Ω : Q(x) > 0} and Ω− = {x ∈ Ω : Q(x) < 0}.
• C,C1,C2, . . . denote various positive constants, which may vary from line to line.
• We denote by S ρ (respectively, Bρ) the sphere (respectively, the closed ball) of center zero and

radius ρ, i.e. S ρ = {u ∈ H1(Ω) : ‖u‖ = ρ}, Bρ = {u ∈ H1(Ω) : ‖u‖ ≤ ρ}.
• Let S be the best constant for Sobolev embedding H1(Ω) ↪→ L6(Ω), namely

S = inf
u∈H1(Ω)\{0}

∫
Ω

(a|∇u|2 + u2)dx( ∫
Ω
|u|6dx

)1/3 .

• Let S 0 be the best constant for Sobolev embedding D1,2(R3) ↪→ L6(R3), namely

S 0 = inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2dx( ∫
R3 |u|6dx

)1/3 .

2. Proofs of theorems

In this section, we firstly show that the functional Iλ(u) has a mountain pass geometry.
Lemma 2.1. There exist constants r, ρ,Λ0 > 0 such that the functional Iλ satisfies the following
conditions for each λ ∈ (0,Λ0):
(i) Iλ|u∈S ρ

≥ r > 0; infu∈Bρ
Iλ(u) < 0.

(ii) There exists e ∈ H1(Ω) with ‖e‖ > ρ such that Iλ(e) < 0.

Proof. (i) From (P1), by the Hölder inequality and the Sobolev inequality, for all u ∈ H1(Ω) one has∫
Ω

P(x)|u|qdx ≤ P(x0)
∫

Ω

|u|qdx ≤ P(x0)|Ω|
6−q

6 S −
q
2 ‖u‖q, (2.1)

and there exists a constant C > 0, we get∣∣∣∣∣∫
Ω

Q(x)|u|6dx
∣∣∣∣∣ ≤ C

∫
Ω

|u|6dx ≤ CS −3‖u‖6. (2.2)

Hence, combining (2.1) and (2.2), we have the following estimate

Iλ(u) =
1
2
‖u‖2 +

b
4

(∫
Ω

|∇u|2dx
)2

−
1
6

∫
Ω

Q(x)|u|6dx −
λ

q

∫
Ω

P(x)|u|qdx

≥
1
2
‖u‖2 −

C
6

∫
Ω

|u|6dx −
λ

q
P(x0)|Ω|

6−q
6 S −

q
2 ‖u‖q

≥ ‖u‖q
(
1
2
‖u‖2−q −

C
6

S −3‖u‖6−q −
λ

q
P(x0)|Ω|

6−q
6 S −

q
2

)
.
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Set h(t) = 1
2 t2−q − C

6 S −3t6−q for t > 0, then there exists a constant ρ =
(

3(2−q)S 3

C(6−q)

) 1
4
> 0 such that

maxt>0 h(t) = h(ρ) > 0. Letting Λ0 =
qS

q
2

P(x0)|Ω|
6−q

6
h(ρ), there exists a constant r > 0 such that Iλ|u∈S ρ

≥ r

for every λ ∈ (0,Λ0). Moreover, for all u ∈ H1(Ω)\{0}, we have

lim
t→0+

Iλ(tu)
tq = −

λ

q

∫
Ω

P(x)|u|qdx < 0.

So we obtain Iλ(tu) < 0 for every u , 0 and t small enough. Therefore, for ‖u‖ small enough, one has

m , inf
u∈Bρ

Iλ(u) < 0.

(ii) Let v ∈ H1(Ω) be such that supp v ⊂ Ω+ , v . 0 and t > 0, we have

Iλ(tv) =
t2

2
‖v‖2 +

bt4

4

(∫
Ω

|∇v|2dx
)2

−
t6

6

∫
Ω

Q(x)|v|6dx −
λtq

q

∫
Ω

P(x)|v|qdx→ −∞

as t → ∞, which implies that Iλ(tv) < 0 for t > 0 large enough. Therefore, we can find e ∈ H1(Ω) with
‖e‖ > ρ such that Iλ(e) < 0. The proof is complete. �

Denote
Θ1 =

abS 3
0

4QM
+

b3S 6
0

24Q2
M

+
aS 0

√
b2S 4

0 + 4aS 0QM

6QM
+

b2S 4
0

√
b2S 4

0 + 4aS 0QM

24Q2
M

,

Θ2 =
abS 3

0

16Qm
+

b3S 6
0

384Q2
m

+
aS 0

√
b2S 4

0 + 16aS 0Qm

24Qm
+

b2S 4
0

√
b2S 4

0 + 16aS 0Qm

384Q2
m

.

Then we have the following compactness result.
Lemma 2.2. Suppose that 1 < q < 2. Then the functional Iλ satisfies the (PS )cλ condition for every
cλ < c∗ = min {Θ1 − Dλ

2
2−q ,Θ2 − Dλ

2
2−q }, where D =

2−q
3q ( 6−q

4 P(x0)S −
q
2 |Ω|

6−q
6 )

2
2−q .

Proof. Let {un} ⊂ H1(Ω) be a (PS )cλ sequence for

Iλ(un)→ cλ and I′λ(un)→ 0 as n→ ∞. (2.3)

It follows from (2.1), (2.3) and the Hölder inequality that

cλ + 1 + o(‖un‖) ≥ Iλ(un) −
1
6

〈
I′λ(un), un

〉
≥

1
3
‖un‖

2 +
b

12

(∫
Ω

|∇un|
2dx

)2

− λ

(
1
q
−

1
6

)
P(x0)S −

q
2 |Ω|

6−q
6 ‖un‖

q

≥
1
3
‖un‖

2 −
λ(6 − q)

6q
P(x0)S −

q
2 |Ω|

6−q
6 ‖un‖

q.
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Therefore {un} is bounded in H1(Ω) for all 1 < q < 2. Thus, we may assume up to a subsequence, still
denoted by {un}, there exists u ∈ H1(Ω) such that

un ⇀ u, weakly in H1(Ω),
un → u, strongly in Lp(Ω) (1 ≤ p < 6),
un(x)→ u(x), a.e. in Ω,

(2.4)

as n → ∞. Next, we prove that un → u strongly in H1(Ω). By using the concentration compactness
principle (see [19]), there exist some at most countable index set J, δx j is the Dirac mass at x j ⊂ Ω̄ and
positive numbers {ν j}, {µ j}, j ∈ J, such that

|un|
6dx ⇀ dν = |u|6dx +

∑
j∈J

ν jδx j ,

|∇un|
2dx ⇀ dµ ≥ |∇u|2dx +

∑
j∈J

µ jδx j .

Moreover, numbers ν j and µ j satisfy the following inequalities

S 0ν
1
3
j ≤ µ j if x j ∈ Ω,

S 0

2
2
3

ν
1
3
j ≤ µ j if x j ∈ ∂Ω.

(2.5)

For ε > 0, let φε, j(x) be a smooth cut-off function centered at x j such that 0 ≤ φε, j ≤ 1, |∇φε, j| ≤ 2
ε
, and

φε, j(x) =

1, in B(x j,
ε
2 ) ∩ Ω̄,

0, in Ω \ B(x j, ε).

There exists a constant C > 0 such that

lim
ε→0

lim
n→∞

∫
Ω

P(x)|un|
qφε, jdx ≤ P(x0) lim

ε→0
lim
n→∞

∫
B(x j,ε)

|un|
qdx = 0.

Since |∇φε, j| ≤ 2
ε
, by using the Hölder inequality and L2(Ω)-convergence of {un}, we have

lim
ε→0

lim
n→∞

(
a + b

∫
Ω

|∇un|
2dx

) ∫
Ω

〈∇un,∇φε, j〉undx

≤ C lim
ε→0

lim
n→∞

(∫
Ω

|∇un|
2dx

) 1
2
(∫

Ω

|un|
2|∇φε, j|

2dx
) 1

2

≤ C lim
ε→0

(∫
B(x j,ε)

|u|6dx
) 1

6
(∫

B(x j,ε)
|∇φε, j|

3dx
) 1

3

≤ C lim
ε→0

(∫
B(x j,ε)

|u|6dx
) 1

6
∫

B(x j,ε)

(
2
ε

)3

dx
 1

3

≤ C1 lim
ε→0

(∫
B(x j,ε)

|u|6dx
) 1

6

= 0,
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where C1 > 0, and we also derive that

lim
ε→0

lim
n→∞

∫
Ω

|∇un|
2φε, jdx ≥ lim

ε→0

∫
Ω

|∇u|2φε, jdx + µ j = µ j,

lim
ε→0

lim
n→∞

∫
Ω

Q(x)|un|
6φε, jdx = lim

ε→0

∫
Ω

Q(x)|u|6φε, jdx + Q(x j)ν j = Q(x j)ν j,

lim
ε→0

lim
n→∞

∫
Ω

u2
nφε, jdx = lim

ε→0

∫
Ω

u2φε, jdx ≤ lim
ε→0

∫
B(x j,ε)

u2dx = 0.

Noting that unφε, j is bounded in H1(Ω) uniformly for n, taking the test function ϕ = unφε, j in (2.3),
from the above information, one has

0 = lim
ε→0

lim
n→∞
〈I′λ(un), unφε, j〉

= lim
ε→0

lim
n→∞

{ (
a + b

∫
Ω

|∇un|
2dx

) ∫
Ω

〈
∇un,∇(unφε, j)

〉
dx +

∫
Ω

u2
nφε, jdx

−

∫
Ω

Q(x)|un|
6φε, jdx − λ

∫
Ω

P(x)|un|
qφε, jdx

}
= lim

ε→0
lim
n→∞

{ (
a + b

∫
Ω

|∇un|
2dx

) ∫
Ω

(
|∇un|

2φε, j + 〈∇un,∇φε, j〉un

)
dx

−

∫
Ω

Q(x)|un|
6φε, jdx

}
≥ lim

ε→0

{ (
a + b

∫
Ω

|∇u|2dx + bµ j

) (∫
Ω

|∇u|2φε, jdx + µ j

)
−

∫
Ω

Q(x)|u|6φε, jdx − Q(x j)ν j

}
≥

(
a + bµ j

)
µ j − Q(x j)ν j,

so that
Q(x j)ν j ≥ (a + bµ j)µ j,

which shows that {un} can only concentrate at points x j where Q(x j) > 0. If ν j > 0, by (2.5) we get

ν
1
3
j ≥

bS 2
0 +

√
b2S 4

0 + 4aS 0QM

2QM
if x j ∈ Ω,

ν
1
3
j ≥

bS 2
0 +

√
b2S 4

0 + 16aS 0Qm

2
7
3 Qm

if x j ∈ ∂Ω.

(2.6)

From (2.5) and (2.6), we have

µ j ≥

bS 3
0 +

√
b2S 6

0 + 4aS 3
0QM

2QM
if x j ∈ Ω,

µ j ≥

bS 3
0 +

√
b2S 6

0 + 16aS 3
0Qm

8Qm
if x j ∈ ∂Ω.

(2.7)
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To proceed further we show that (2.7) is impossible. To obtain a contradiction assume that there exists

j0 ∈ J such that µ j0 ≥
bS 3

0+
√

b2S 6
0+4aS 3

0QM

2QM
and x j0 ∈ Ω. By (2.1), (2.3) and (2.4), one has

cλ = lim
n→∞

{
Iλ(un) −

1
6
〈I′λ(un), un〉

}
= lim

n→∞

{a
3

∫
Ω

|∇un|
2dx +

b
12

(∫
Ω

|∇un|
2dx

)2

+
1
3

∫
Ω

u2
ndx − λ

6 − q
6q

∫
Ω

P(x)|un|
qdx

}
≥

a
3

∫
Ω

|∇u|2dx +
∑
j∈J

µ j

 +
b

12

∫
Ω

|∇u|2dx +
∑
j∈J

µ j


2

+
1
3

∫
Ω

u2dx − λ
6 − q

6q
P(x0)S −

q
2 |Ω|

6−q
6 ‖u‖q

≥
a
3
µ j0 +

b
12
µ2

j0 +
1
3
‖u‖2 − λ

6 − q
6q

P(x0)S −
q
2 |Ω|

6−q
6 ‖u‖q.

Set
g(t) =

1
3

t2 − λ
6 − q

6q
P(x0)S −

q
2 |Ω|

6−q
6 tq, t > 0,

then
g′(t) =

2
3

t − λ
6 − q

6
P(x0)S −

q
2 |Ω|

6−q
6 tq−1 = 0,

we can deduce that mint≥0 g(t) attains at t0 > 0 and

t0 =

(
λ

6 − q
4

P(x0)S −
q
2 |Ω|

6−q
6

) 1
2−q

.

Consequently, we obtain

cλ ≥
abS 3

0

4QM
+

b3S 6
0

24Q2
M

+
aS 0

√
b2S 4

0 + 4aS 0QM

6QM

+
b2S 4

0

√
b2S 4

0 + 4aS 0QM

24Q2
M

− Dλ
2

2−q

= Θ1 − Dλ
2

2−q ,

where D =
2−q
3q

(
6−q

4 P(x0)S −
q
2 |Ω|

6−q
6

) 2
2−q . If µ j0 ≥

bS 3
0+
√

b2S 6
0+16aS 3

0Qm

8Qm
and x j0 ∈ ∂Ω, then, by the similar

calculation, we also get

cλ ≥
abS 3

0

16Qm
+

b3S 6
0

384Q2
m

+
aS 0

√
b2S 4

0 + 16aS 0Qm

24Qm

+
b2S 4

0

√
b2S 4

0 + 16aS 0Qm

384Q2
m

− Dλ
2

2−q

= Θ2 − Dλ
2

2−q .
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Let c∗ = min{Θ1−Dλ
2

2−q ,Θ2−Dλ
2

2−q }, from the above information, we deduce that cλ ≥ c∗. It contradicts
our assumption, so it indicates that ν j = µ j = 0 for every j ∈ J, which implies that∫

Ω

|un|
6dx→

∫
Ω

|u|6dx (2.8)

as n → ∞. Now, we may assume that
∫

Ω
|∇un|

2dx → A2 and
∫

Ω
|∇u|2dx ≤ A2, by (2.3), (2.4) and (2.8),

one has

0 = lim
n→∞

〈
I′λ(un), un − u

〉
= lim

n→∞

[ (
a + b

∫
Ω

|∇un|
2dx

) (∫
Ω

|∇un|
2dx −

∫
Ω

∇un∇udx
)

+

∫
Ω

un(un − u)dx −
∫

Ω

Q(x)|un|
5(un − u)dx − λ

∫
Ω

P(x)|un|
q−1(un − u)dx

]
=

(
a + bA2

) (
A2 −

∫
Ω

|∇u|2dx
)
.

Then, we obtain that un → u in H1(Ω). The proof is complete. �

As well known, the function

Uε,y(x) =
(3ε2)

1
4

(ε2 + |x − y|2)
1
2

, for any ε > 0,

satisfies
−∆Uε,y = U5

ε,y in R3,

and ∫
R3
|∇Uε,y|

2dx =

∫
R3
|Uε,y|

6dx = S
3
2
0 .

Let φ ∈ C1(R3) such that φ(x) = 1 on B(xM,
R
2 ), φ(x) = 0 on R3 − B(xM,R) and 0 ≤ φ(x) ≤ 1 on R3,

we set vε(x) = φ(x)Uε,xM (x). We may assume that Q(x) > 0 on B(xM,R) for some R > 0 such that
B(xM,R) ⊂ Ω. From [4], we have 

‖∇vε‖22 = S
3
2
0 + O(ε),

‖vε‖66 = S
3
2
0 + O(ε3),

‖vε‖22 = O(ε),

‖vε‖2 = aS
3
2
0 + O(ε).

(2.9)

Moreover, by [28], we get 
‖∇vε‖42 ≤ S 3

0 + O(ε),
‖∇vε‖82 ≤ S 6

0 + O(ε),
‖∇vε‖12

2 ≤ S 9
0 + O(ε).

(2.10)

Then we have the following Lemma.
Lemma 2.3. Suppose that 1 < q < 2, 3 − q < β < 6−q

2 , QM > 4Qm, (Q1) and (Q2), then supt≥0 Iλ(tvε) <
Θ1 − Dλ

2
2−q .
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Proof. By Lemma 2.1, one has Iλ(tvε) → −∞ as t → ∞ and Iλ(tvε) < 0 as t → 0, then there exists
tε > 0 such that Iλ(tεvε) = supt>0 Iλ(tvε) ≥ r > 0. We can assume that there exist positive constants
t1, t2 > 0 and 0 < t1 < tε < t2 < +∞. Let Iλ(tεvε) = β(tεvε) − λψ(tεvε), where

β(tεvε) =
t2
ε

2
‖vε‖2 +

bt4
ε

4
‖∇vε‖42 −

t6
ε

6

∫
Ω

Q(x)|vε|6dx,

and

ψ(tεvε) =
tq
ε

q

∫
Ω

P(x)|vε|qdx.

Now, we set

h(t) =
t2

2
‖vε‖2 +

bt4

4
‖∇vε‖42 −

t6

6

∫
Ω

Q(x)|vε|6dx.

It is clear that limt→0 h(t) = 0 and limt→∞ h(t) = −∞. Therefore there exists T1 > 0 such that h(T1) =

maxt≥0 h(t), that is

h′(t)|T1 = T1‖vε‖2 + bT 3
1‖∇vε‖42 − T 5

1

∫
Ω

Q(x)|vε|6dx = 0,

from which we have
‖vε‖2 + bT 2

1‖∇vε‖42 = T 4
1

∫
Ω

Q(x)|vε|6dx. (2.11)

By (2.11) we obtain

T 2
1 =

b‖∇vε‖42 +

√
b2‖∇vε‖82 + 4‖vε‖2

∫
Ω

Q(x)|vε|6dx

2
∫

Ω
Q(x)|vε|6dx

.

In addition, by (Q2), for all η > 0, there exists ρ > 0 such that |Q(x)−QM | < η|x−xM | for 0 < |x−xM | < ρ,
for ε > 0 small enough, we have∣∣∣∣∣∫

Ω

Q(x)v6
εdx −

∫
Ω

QMv6
εdx

∣∣∣∣∣ ≤ ∫
Ω

|Q(x) − QM |v6
εdx

<

∫
B(xM ,ρ)

η|x − xM |
(3ε2)

3
2

(ε2 + |x − xM |
2)3 dx

+ C
∫

Ω\B(xM ,ρ)

(3ε2)
3
2

(ε2 + |x − xM |
2)3 dx

≤ Cηε3
∫ ρ

0

r3

(ε2 + r2)3 dr + Cε3
∫ R

ρ

r2

(ε2 + r2)3 dr

≤ Cηε
∫ ρ/ε

0

t3

(1 + t2)3 dt + C
∫ R/ε

ρ/ε

t2

(1 + t2)3 dt

≤ C1ηε + C2ε
3,

where C1,C2 > 0 (independent of η, ε). From this we derive that

lim sup
ε→0

|
∫

Ω
Q(x)v6

εdx −
∫

Ω
QMv6

εdx|

ε
≤ C1η. (2.12)
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Then from the arbitrariness of η > 0, by (2.9) and (2.12), one has∫
Ω

Q(x)|vε|6dx = QM

∫
Ω

|vε|6dx + o(ε) = QMS
3
2
0 + o(ε). (2.13)

Hence, it follows from (2.9), (2.10) and (2.13) that

β(tεvε) ≤ h(T1)

= T 2
1

(
1
3
‖vε‖2 +

bT 2
1

12
‖∇vε‖42

)
=

b‖∇vε‖42‖vε‖
2

4
∫

Ω
Q(x)|vε|6dx

+
b3‖∇vε‖12

2

24(
∫

Ω
Q(x)|vε|6dx)2

+
‖vε‖2

√
b2‖∇vε‖82 + 4‖vε‖2

∫
Ω

Q(x)|vε|6dx

6
∫

Ω
Q(x)|vε|6dx

+
b2‖∇vε‖82

√
b2‖∇vε‖82 + 4‖vε‖2

∫
Ω

Q(x)|vε|6dx

24(
∫

Ω
Q(x)|vε|6dx)2

≤
b(S 3

0 + O(ε))(aS
3
2
0 + O(ε))

4(QMS
3
2
0 + o(ε))

+
b3(S 9

0 + O(ε))

24(QMS
3
2
0 + o(ε))2

+
(aS

3
2
0 + O(ε))

√
b2(S 6

0 + O(ε)) + 4(aS
3
2
0 + O(ε))(QMS

3
2
0 + o(ε))

6(QMS
3
2
0 + o(ε))

+
b2(S 6

0 + O(ε))
√

b2(S 6
0 + O(ε)) + 4(aS

3
2
0 + O(ε))(QMS

3
2
0 + o(ε))

24(QMS
3
2
0 + o(ε))2

≤
abS 3

0

4QM
+

b3S 6
0

24Q2
M

+
aS 0

√
b2S 4

0 + 4aS 0QM

6QM

+
b2S 4

0

√
b2S 4

0 + 4aS 0QM

24Q2
M

+ C3ε

= Θ1 + C3ε,

where the constant C3 > 0. According to the definition of vε, from [29], for R
2 > ε > 0, there holds

ψ(tεvε) ≥
1
q

3
q
4 tq

1

∫
B(xM ,

R
2 )

σε
q
2

(ε2 + |x − xM |
2)

q
2 |x − xM |

β
dx

≥ Cε
q
2

∫ R/2

0

r2

(ε2 + r2)
q
2 rβ

dr

= Cε
6−q

2 −β

∫ R/2ε

0

t2

(1 + t2)
q
2 tβ

dt (2.14)
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≥ Cε
6−q

2 −β

∫ 1

0
t2−βdt

= C4ε
6−q

2 −β,

where C4 > 0 (independent of ε, λ). Consequently, from the above information, we obtain

Iλ(tεvε) = β(tεvε) − λψ(tεvε)

≤ Θ1 + C3ε −C4λε
6−q

2 −β

< Θ1 − Dλ
2

2−q .

Here we have used the fact that β > 3 − q and let ε = λ
2

2−q , 0 < λ < Λ1 = min{1, (C3+D
C4

)
2−q

6−2q−2β }, then

C3ε −C4λε
6−q

2 −β = C3λ
2

2−q −C4λ
8−2q−2β

2−q

= λ
2

2−q (C3 −C4λ
6−2q−2β

2−q )

< −Dλ
2

2−q .

(2.15)

The proof is complete. �

We assume that 0 ∈ ∂Ω and Qm = Q(0). Let ϕ ∈ C1(R3) such that ϕ(x) = 1 on B(0, R
2 ), ϕ(x) = 0 on

R3 − B(0,R) and 0 ≤ ϕ(x) ≤ 1 on R3, we set uε(x) = ϕ(x)Uε(x), the radius R is chosen so that Q(x) > 0
on B(0,R) ∩ Ω. If H(0) denotes the mean curvature of the boundary at 0, then the following estimates
hold (see [6] or [26]) ‖uε‖

2
2 = O(ε),

‖∇uε‖22
‖uε‖26

≤
S 0

2
2
3
− A3H(0)ε log 1

ε
+ O(ε),

(2.16)

where A3 > 0 is a constant. Then we have the following lemma.
Lemma 2.4. Suppose that 1 < q < 2, 3 − q < β < 6−q

2 , QM ≤ 4Qm, H(0) > 0, Q is positive somewhere
on ∂Ω, (Q1) and (Q3), then supt≥0 Iλ(tuε) < Θ2 − Dλ

2
2−q .

Proof. Similar to the proof of Lemma 2.3, we also have by Lemma 2.1, there exists tε > 0 such that
Iλ(tεuε) = supt>0 Iλ(tuε) ≥ r > 0. We can assume that there exist positive constants t1, t2 > 0 such that
0 < t1 < tε < t2 < +∞. Let Iλ(tεuε) = A(tεuε) − λB(tεuε), where

A(tεuε) =
t2
ε

2
‖uε‖2 +

bt4
ε

4
‖∇uε‖42 −

t6
ε

6

∫
Ω

Q(x)|uε|6dx,

and

B(tεuε) =
tq
ε

q

∫
Ω

P(x)|uε|qdx.

Now, we set

f (t) =
t2

2
‖uε‖2 +

bt4

4
‖∇uε‖42 −

t6

6

∫
Ω

Q(x)|uε|6dx.
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Therefore, it is easy to see that there exists T2 > 0 such that f (T2) = max f≥0 f (t), that is

f ′(t)|T2 = T2‖uε‖2 + bT 3
2‖∇uε‖42 − T 5

2

∫
Ω

Q(x)|uε|6dx = 0. (2.17)

From (2.17) we obtain

T 2
2 =

b‖∇uε‖42 +

√
b2‖∇uε‖82 + 4‖uε‖2

∫
Ω

Q(x)|uε|6dx

2
∫

Ω
Q(x)|uε|6dx

.

By the assumption (Q3), we have the expansion formula∫
Ω

Q(x)|uε|6dx = Qm

∫
Ω

|uε|6dx + o(ε). (2.18)

Hence, combining (2.16) and (2.18), there exists C5 > 0, such that

A(tεuε) ≤ f (T2)

= T 2
2

(
1
3
‖uε‖2 +

bT 2
2

12
‖∇uε‖42

)
=

b‖∇uε‖42‖uε‖
2

4
∫

Ω
Q(x)|uε|6dx

+
b3‖∇uε‖12

2

24(
∫

Ω
Q(x)|uε|6dx)2

+
‖uε‖2

√
b2‖∇uε‖82 + 4‖uε‖2

∫
Ω

Q(x)|uε|6dx

6
∫

Ω
Q(x)|uε|6dx

+
b2‖∇uε‖82

√
b2‖∇uε‖82 + 4‖uε‖2

∫
Ω

Q(x)|uε|6dx

24(
∫

Ω
Q(x)|uε|6dx)2

≤
ab

4Qm

 ‖∇uε‖62∫
Ω
|uε|6dx

+ O(ε)

 +
b3

24Q2
m

 ‖∇uε‖12
2

(
∫

Ω
|uε|6dx)2

+ O(ε)


+

a
6Qm

 ‖∇uε‖22
(
∫

Ω
|uε|6dx)

1
3

√√
b2‖∇uε‖82

(
∫

Ω
|uε|6dx)

4
3

+
4aQm‖∇uε‖22
(
∫

Ω
|uε|6dx)

1
3

+ O(ε)


+

b2

24Q2
m

 ‖∇uε‖82
(
∫

Ω
|uε|6dx)

4
3

√√
b2‖∇uε‖82

(
∫

Ω
|uε|6dx)

4
3

+
4aQm‖∇uε‖22
(
∫

Ω
|uε|6dx)

1
3

+ O(ε)


≤

abS 3
0

16Qm
+

b3S 6
0

384Q2
m

+
aS 0

√
b2S 4

0 + 16aS 0Qm

24Qm

+
b2S 4

0

√
b2S 4

0 + 16aS 0Qm

384Q2
m

+ C5ε

= Θ2 + C5ε.
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Consequently, by (2.14) and (2.15), similarly, there exists Λ2 > 0 such that 0 < λ < Λ2, we get

Iλ(tεuε) = A(tεuε) − λB(tεuε)

≤ Θ2 + C5ε −C6λε
6−q

2 −β

< Θ2 − Dλ
2

2−q .

where C6 > 0 (independent of ε, λ). The proof is complete. �

Theorem 2.5. Assume that 0 < λ < Λ0 (Λ0 is as in Lemma 2.1) and 1 < q < 2. Then problem (1.1)
has a nontrivial solution uλ with Iλ(uλ) < 0.

Proof. It follows from Lemma 2.1 that

m , inf
u∈Bρ(0)

Iλ(u) < 0.

By the Ekeland variational principle [7], there exists a minimizing sequence {un} ⊂ Bρ(0) such that

Iλ(un) ≤ inf
u∈Bρ(0)

Iλ(u) +
1
n
, Iλ(v) ≥ Iλ(un) −

1
n
‖v − un‖, v ∈ Bρ(0).

Therefore, there holds Iλ(un) → m and I′λ(un) → 0. Since {un} is a bounded sequence and Bρ(0) is a
closed convex set, we may assume up to a subsequence, still denoted by {un}, there exists uλ ∈ Bρ(0) ⊂
H1(Ω) such that 

un ⇀ uλ, weakly in H1(Ω),
un → uλ, strongly in Lp(Ω), 1 ≤ p < 6,
un(x)→ uλ(x), a.e. in Ω.

By the lower semi-continuity of the norm with respect to weak convergence, one has

m ≥ lim inf
n→∞

[
Iλ(un) −

1
6
〈I′λ(un), un〉

]
= lim inf

n→∞

[1
3

∫
Ω

(
a|∇un|

2 + u2
n

)
dx +

b
12

(∫
Ω

|∇un|
2dx

)2

+ λ

(
1
6
−

1
q

) ∫
Ω

P(x)|un|
qdx

]
≥

1
3

∫
Ω

(
a|∇uλ|2 + u2

λ

)
dx +

b
12

(∫
Ω

|∇uλ|2dx
)2

+ λ

(
1
6
−

1
q

) ∫
Ω

P(x)|uλ|qdx

= Iλ(uλ) −
1
6
〈I′λ(uλ), uλ〉 = Iλ(uλ) = m.

Thus Iλ(uλ) = m < 0, by m < 0 < cλ and Lemma 2.2, we can see that ∇un → ∇uλ in L2(Ω) and
uλ . 0. Therefore, we obtain that uλ is a weak solution of problem (1.1). Since Iλ(|uλ|) = Iλ(uλ), which
suggests that uλ ≥ 0, then uλ is a nontrivial solution to problem (1.1). That is, the proof of Theorem 1.1
is complete. �
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Theorem 2.6. Assume that 0 < λ < Λ∗(Λ∗ = min{Λ0,Λ1,Λ2}), 1 < q < 2 and 3 − q < β < 6−q
2 . Then

the problem (1.1) has a nontrivial solution u1 ∈ H1(Ω) such that Iλ(u1) > 0.

Proof. Applying the mountain pass lemma [3] and Lemma 2.2, there exists a sequence {un} ⊂ H1(Ω)
such that

Iλ(un)→ cλ > 0 and I′λ(un)→ 0 as n→ ∞,

where
cλ = inf

γ∈Γ
max
t∈[0,1]

Iλ(γ(t)),

and
Γ =

{
γ ∈ C([0, 1],H1(Ω)) : γ(0) = 0, γ(1) = e

}
.

According to Lemma 2.2, we know that {un} ⊂ H1(Ω) has a convergent subsequence, still denoted by
{un}, such that un → u1 in H1(Ω) as n→ ∞,

Iλ(u1) = lim
n→∞

Iλ(un) = cλ > r > 0,

which implies that u1 . 0. Therefore, from the continuity of I′λ, we obtain that u1 is a nontrivial
solution of problem (1.1) with Iλ(u1) > 0. Combining the above facts with Theorem 2.5 the proof of
Theorem 1.2 is complete. �

3. Conclusions

In this paper, we consider a class of Kirchhoff type equations with Neumann conditions and
critical growth. Under suitable assumptions on Q(x) and P(x), using the variational method and the
concentration compactness principle, we proved the existence and multiplicity of nontrivial solutions.
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