Citation: Tahir Ullah Khan, Muhammad Adil Khan. Hermite-Hadamard inequality for new generalized conformable fractional operators[J]. AIMS Mathematics, 2021, 6(1): 23-38. doi: 10.3934/math.2021002
[1] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[2] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[3] | Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112 |
[4] | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392 |
[5] | Paul Bosch, Héctor J. Carmenate, José M. Rodríguez, José M. Sigarreta . Generalized inequalities involving fractional operators of the Riemann-Liouville type. AIMS Mathematics, 2022, 7(1): 1470-1485. doi: 10.3934/math.2022087 |
[6] | Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814 |
[7] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322 |
[8] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
[9] | Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043 |
[10] | Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273 |
Fractional calculus has come out as one of the most applicable subjects of mathematics [1]. Its importance is evident from the fact that many real-world phenomena can be best interpreted and modeled using this theory. It is also a fact that many disciplines of engineering and science have been influenced by the tools and techniques of fractional calculus. Its emergence can easily be traced and linked with the famous correspondence between the two mathematicians, L'Hospital and Leibnitz, which was made on 30th September 1695. After that, many researchers tried to explore the concept of fractional calculus, which is based on the generalization of nth order derivatives or n-fold integration [2,3,4].
Recently, Khan and Khan [5] have discovered novel definitions of fractional integral and derivative operators. These operators enjoy interesting properties such as continuity, boundedeness, linearity etc. The integral operators, they presented, are stated as under:
Definition 1 ([5]). Let h∈Lθ[s,t](conformable integrable on [s,t]⊆[0,∞)). The left-sided and right-sided generalized conformable fractional integrals τθKνs+ and τθKνt− of order ν>0 with θ∈(0,1], τ∈R, θ+τ≠0 are defined by:
τθKνs+h(r)=1Γ(ν)r∫s(rτ+θ−wτ+θτ+θ)ν−1h(w)wτdθw,r>s, | (1.1) |
and
τθKνt−h(r)=1Γ(ν)t∫r(wτ+θ−rτ+θτ+θ)ν−1h(w)wτdθw,t>r, | (1.2) |
respectively, and τθK0s+h(r)=τθK0t−h(r)=h(r). Here Γ denotes the well-known Gamma function.
Here the integral t∫sdθw represents the conformable integration, defined as:
t∫sh(w)dθw=t∫sh(w)wθ−1dw. | (1.3) |
The operators defined in Definition 1 are in generalized form and contain few important operators in themselves. Here, only the left-sided operators are presented, the corresponding right-sided operators may be deduced in the similar way. Moreover, to understand the theory of conformable fractional calculus, one can see [5,6,7]. Also, the basic theory of fractional calculus can be found in the books [1,8,9] and for the latest research in this field one can see [3,4,10,11,12] and the references there in.
Remark 1. 1) For θ=1 in the Definition 1, the following Katugampula fractional integral operator is obtained [13]:
τ1Kνs+h(r)=1Γ(ν)r∫s(rτ+1−wτ+1τ+1)ν−1h(w)dw,r>s. | (1.4) |
2) For τ=0 in the Definition 1, the New Riemann Liouville type conformable fractional integral operator is obtained as given below:
0θKνs+h(r)=1Γ(ν)r∫s(rθ−wθθ)ν−1h(w)dθw,r>s. | (1.5) |
3) Using the definition of conformable integral given in (1.3) and L'Hospital rule, it is straightforward that when θ→0 in (1.5), we get the Hadamard fractional integral operator as follows:
00+Kνs+h(r)=1Γ(ν)r∫s(logrw)ν−1h(w)dww,r>s. | (1.6) |
4) For θ=1 in (1.5), the well-known Riemann-Liouville fractional integral operator is obtained as follows:
01Kνs+h(r)=1Γ(ν)r∫s(r−w)ν−1h(w)dw,r>s. | (1.7) |
5) For the case ν=1,τ=0 in Definition 1, we get the conformable fractional integrals. And when θ=ν=1, τ=0, we get the classical Riemann integrals.
This subsection is devoted to start with the definition of convex function, which plays a very important role in establishment of various kinds of inequalities [14]. This definition is given as follows [15]:
Definition 2. A function h:I⊆R→R is said to be convex on I if the inequality
h(ηs+(1−η)t)≤ηh(s)+(1−η)h(t) | (1.8) |
holds for all s,t∈I and 0≤η≤1. The function h is said to be concave on I if the inequality given in (1.8) holds in the reverse direction.
Associated with the Definition 2 of convex functions the following double inequality is well-known and it has been playing a key role in various fields of science and engineering [15].
Theorem 1. Let h:I⊆R→R be a convex function and s,t∈I with s<t. Then we have the following Hermite-Hadamard inequality:
h(s+t2)≤1t−st∫sh(τ)dτ≤h(s)+h(t)2. | (1.9) |
This inequality (1.9) appears in a reversed order if the function h is supposed to be concave. Also, the relation (1.9) provides upper and lower estimates for the integral mean of the convex function h. The inequality (1.9) has various versions (extensions or generalizations) corresponding to different integral operators [16,17,18,19,20,21,22,23,24,25] each version has further forms with respect to various kinds of convexities [26,27,28,29,30,31,32] or with respect to different bounds obtained for the absolute difference of the two leftmost or rightmost terms in the Hermite-Hadamard inequality.
By using the Riemann-Liouville fractional integral operators, Sirikaye et al. have proved the following Hermite-Hadamard inequality [33].
Theorem 2. ([33]). Let h:[s,t]→R be a function such that 0≤s<t and h∈L[s,t]. If h is convex on [s,t], then the following double inequality holds:
h(s+t2)≤Γ(ν+1)2(t−s)ν[01Kνs+h(t)+01Kνt−h(s)]≤h(s)+h(t)2. | (1.10) |
For more recent research related to generalized Hermite-Hadamard inequality one can see [34,35,36,37,38,39,40,41,42] and the references therein.
Motivated from the Riemann-Liouville version of Hermite-Hadamard inequality (given above in (1.10)), we prove the same inequality for newly introduced generalized conformable fractional operators. As a result we get a more generalized inequality, containing different versions of Hermite-Hadamard inequality in single form. We also prove an identity for generalized conformable fractional operators and establish a bound for the absolute difference of two rightmost terms in the newly obtained Hermite-Hadamard inequality. We point out some relations of our results with those of other results from the past. At the end we present conclusion, where directions for future research are also mentioned.
In the following theorem the well-known Hermite-Hadamard inequality for the newly defined integral operators is proved.
Theorem 3. Let ν>0 and τ∈R,θ∈(0,1] such that τ+θ>0. Let h:[s,t]⊆[0,∞)→R be a function such that h∈Lθ[s,t](conformal integrable on [s, t]). If h is also a convex function on [s,t], then the following Hermite-Hadamard inequality for generalized conformable fractional Integrals τθKνs+ and τθKνt− holds:
h(s+t2)≤(τ+θ)νΓ(ν+1)4(tτ+θ−sτ+θ)ν[τθKνs+H(t)+τθKνt−H(s)]≤h(s)+h(t)2, | (2.1) |
where H(x)=h(x)+˜h(x), ˜h(x)=h(s+t−x).
Proof. Let η∈[0,1]. Consider x,y∈[s,t], defined by x=ηs+(1−η)t,y=(1−η)s+ηt. Since h is a convex function on [s,t], we have
h(s+t2)=h(x+y2)≤h(x)+h(y)2=h(ηs+(1−η)t)+h((1−η)s+ηt)2. | (2.2) |
Multiplying both sides of (2.2) by
(t−s)(τ+θ)1−ν((1−η)s+ηt)τ+θ−1Γ(ν)[tτ+θ−((1−η)s+ηt)τ+θ]1−ν, |
and integrating with respect to η, we get
(t−s)(τ+θ)1−νΓ(ν)h(s+t2)1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νdη≤(t−s)(τ+θ)1−νΓ(ν)12{1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νh(ηs+(1−η)t)dη+1∫0(1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νh((1−η)s+ηt)dη}. | (2.3) |
Note that we have
1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νdη=1ν(τ+θ)(t−s)(tτ+θ−sτ+θ)ν. |
Also, by using the identity ˜h((1−η)s+ηt)=h(ηs+(1−η)t), and making substitution (1−η)s+ηt=w, we get
(t−s)(τ+θ)1−νΓ(ν)1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νh(ηs+(1−η)t)dη=(τ+θ)1−νΓ(ν)t∫swτ+θ−1[tτ+θ−wτ+θ]1−ν˜h(w)dw=(τ+θ)1−νΓ(ν)t∫swτ[tτ+θ−wτ+θ]1−ν˜h(w)dθw=τθKνs+˜h(t). | (2.4) |
Similarly
(t−s)(τ+θ)1−νΓ(ν)1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νh(ηt+(1−η)s)dη=τθKνs+h(t). | (2.5) |
By substituting these values in (2.3), we get
(tτ+θ−sτ+θ)νΓ(ν+1)(τ+θ)νh(s+t2)≤τθKνs+H(t)2. | (2.6) |
Again, by multiplying both sides of (2.2) by
(t−s)(τ+θ)1−ν((1−η)s+ηt)τ+θ−1Γ(ν)[((1−η)s+ηt)τ+θ−sτ+θ]1−ν, |
and then integrating with respect to η and by using the same techniques used above, we can obtain:
(tτ+θ−sτ+θ)νΓ(ν+1)(τ+θ)νh(s+t2)≤τθKνt−H(s)2. | (2.7) |
Adding (2.7) and (2.6), we get:
h(s+t2)≤Γ(ν+1)(τ+θ)ν4(tτ+θ−sτ+θ)ν[τθKνs+H(t)+τθKνt−H(s)]. | (2.8) |
Hence the left-hand side of the inequality (2.1) is established.
Also since h is convex, we have:
h(ηs+(1−η)t)+h((1−η)s+ηt)≤h(s)+h(t). | (2.9) |
Multiplying both sides
(t−s)(τ+θ)1−ν((1−η)s+ηt)τ+θ−1Γ(ν)[tτ+θ−((1−η)s+ηt)τ+θ]1−ν, |
and integrating with respect to η we get
(t−s)(τ+θ)1−νΓ(ν)1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νh(ηs+(1−η)t)dη+(t−s)(τ+θ)1−νΓ(ν)1∫0((1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νh(ηt+(1−η)s)dη≤(t−s)(τ+θ)1−νΓ(ν)[h(s)+h(t)]1∫0(1−η)s+ηt)τ+θ−1[tτ+θ−((1−η)s+ηt)τ+θ]1−νdη, | (2.10) |
that is,
τθKνs+H(t)≤(tτ+θ−sτ+θ)νΓ(ν+1)(τ+θ)ν[h(s)+h(t)]. | (2.11) |
Similarly multiplying both sides of (2.9) by
(t−s)(τ+θ)1−ν((1−η)s+ηt)τ+θ−1Γ(ν)[((1−η)s+ηt)τ+θ−sτ+θ]1−ν, |
and integrating with respect to η, we can obtain
τθKνt−H(s)≤(tτ+θ−sτ+θ)νΓ(ν+1)(τ+θ)ν[h(s)+h(t)]. | (2.12) |
Adding the inequalities (2.11) and (2.12), we get:
Γ(ν+1)(τ+θ)ν4(tτ+θ−sτ+θ)ν[τθKνt−H(s)+τθKνs+H(t)]≤h(s)+h(t)2. | (2.13) |
Combining (2.8) and (2.13), we get the required result.
The inequality in (2.1) is in compact form containing few inequalities for different integrals in it. The following remark tells us about that fact.
Remark 2. 1) For θ=1 in (2.1), we get Hermite-Hadamard inequality for Katugampola fractional integral operators, as follows [38]:
h(s+t2)≤(τ+1)νΓ(ν+1)4(tτ+1−sτ+1)ν[τ1Kνs+H(t)+τ1Kνt−H(s)]≤h(s)+h(t)2, | (2.14) |
where H(x)=h(x)+˜h(x), ˜h(x)=h(s+t−x).
2) For τ=0 in (2.1), we get Hermite-Hadamard inequality for newly obtained Riemann Liouville type conformable fractional integral operators, as follows:
h(s+t2)≤θνΓ(ν+1)4(tθ−sθ)ν[0θKνs+H(t)+0θKνt−H(s)]≤h(s)+h(t)2, | (2.15) |
where H(x)=h(x)+˜h(x), ˜h(x)=h(s+t−x).
3) For τ+θ→0, in (2.1), applying L'Hospital rule and the relation (1.3), we get Hermite-Hadamard inequality for Hadamard fractional integral operators, as follows:
h(s+t2)≤Γ(ν+1)2(lnts)ν[00+Kνs+h(t)+00+Kνt−h(s)]≤h(s)+h(t)2. | (2.16) |
4) For τ+θ=1 in (2.1), the Hermite-Hadamard inequality is obtained for Riemann-Liouville fractional integrals [33]:
h(s+t2)≤Γ(ν+1)2(t−s)ν[01Kνs+h(t)+01Kνt−h(s)]≤h(s)+h(t)2. | (2.17) |
5) For the case ν=1,τ=0 in (2.1), the Hermite-Hadamard inequality is obtained for the conformable fractional integrals as follows:
h(s+t2)≤θ2(tθ−sθ)t∫sH(w)dθw≤h(s)+h(t)2. | (2.18) |
6) When θ=ν=1, τ=0 the Hermite-Hadamard inequality is obtained for classical Riemann integrals [15]:
h(s+t2)≤1t−st∫sh(w)dw≤h(s)+h(t)2. | (2.19) |
To bound the difference of two rightmost terms in the main inequality (2.1), we need to establish the following Lemma.
Lemma 1. Let τ+θ>0 and ν>0. If h∈Lθ[s,t], then
h(s)+h(t)2−(τ+θ)νΓ(ν+1)4(tτ+θ−sτ+θ)ν[τθKνs+H(t)+τθKνt−H(s)]=t−s4(tτ+θ−sτ+θ)ν1∫0Δντ+θ(η)h′(ηs+(1−η)t)dη, | (2.20) |
where
Δντ+θ(η)=[(ηs+(1−η)t)τ+θ−sτ+θ]ν−[(ηt+(1−η)s)τ+θ−sτ+θ]ν+[tτ+θ−((1−η)s+ηt)τ+θ]ν−[tτ+θ−((1−η)t+ηs)τ+θ]ν. |
Proof. With the help of integration by parts, we have
τθKνs+H(t)=(tτ+θ−sτ+θ)ν(τ+θ)νΓ(ν+1)H(s)+(t−s)ν(τ+θ)νΓ(ν+1)1∫0[tτ+θ−((1−η)s+ηt)τ+θ]νH′(ηt+(1−η)s)dη. | (2.21) |
Similarly, we have
τθKνt−H(s)=(tτ+θ−sτ+θ)ν(τ+θ)νΓ(ν+1)H(t)−(t−s)ν(τ+θ)νΓ(ν+1)1∫0[((1−η)s+ηt)τ+θ−sτ+θ]νH′(ηt+(1−η)s)dη. | (2.22) |
Using (2.21) and (2.22) we have
4(tτ+θ−sτ+θ)νt−s(h(s)+h(t)2−(τ+θ)νΓ(ν+1)4(tτ+θ−sτ+θ)ν[τθKνt−H(s)+τθKνs+H(t)])=1∫0([((1−η)s+ηt)τ+θ−sτ+θ]ν−[(tτ+θ−((1−η)s+ηt)τ+θ]ν)H′(ηt+(1−η)s)dη. | (2.23) |
Also, we have
H′(ηt+(1−η)s)=h′(ηt+(1−η)s)−h′(ηs+(1−η)t),η∈[0,1]. | (2.24) |
And
1∫0[((1−η)s+ηt)τ+θ−sτ+θ]νH′(ηt+(1−η)s)dη=1∫0[((1−η)t+ηs)τ+θ−sτ+θ]νh′(ηs+(1−η)t)dη−1∫0[((1−η)s+ηt)τ+θ−sτ+θ]νh′(ηs+(1−η)t)dη. | (2.25) |
Also, we have
1∫0[tτ+θ−((1−η)s+ηt)τ+θ]νH′(ηt+(1−η)s)dη=1∫0[tτ+θ−((1−η)t+ηs)τ+θ]νh′(ηs+(1−η)t)dη−1∫0[tτ+θ−((1−η)s+ηt)τ+θ]νh′(ηs+(1−η)t)dη. | (2.26) |
Using (2.23), (2.25) and (2.26) we get the required result.
Remark 3. When τ+θ=1 in Lemma 1, we get the Lemma 2 in [33].
Definition 3. For ν>0, we define the operators
Ων1(x,y,τ+θ)=s+t2∫s|x−w||yτ+θ−wτ+θ|νdw−t∫s+t2|x−w||yτ+θ−wτ+θ|νdw, | (2.27) |
and
Ων2(x,y,τ+θ)=s+t2∫s|x−w||wτ+θ−yτ+θ|νdw−t∫s+t2|x−w||wτ+θ−yτ+θ|νdw, | (2.28) |
where x,y∈[s,t]⊆[0,∞) and τ+θ>0.
Theorem 4. Let h be a conformable integrable function over [s,t] such that |h′| is convex function. Then for ν>0 and τ+θ>0 we have:
|h(s)+h(t)2−(τ+θ)νΓ(ν+1)4(tτ+θ−sτ+θ)ν[τθKνs+H(t)+τθKνt−H(s)]|≤Kντ+θ(s,t)4(t−s)(tτ+θ−sτ+θ)ν(|h′(s)|+|h′(t)|), | (2.29) |
where Kντ+θ(s,t)=Ων1(t,t,τ+θ)+Ων2(s,s,τ+θ)−Ων2(t,s,τ+θ)−Ων1(s,t,τ+θ).
Proof. Using Lemma 1 and convexity of |h′|, we have:
|h(s)+h(t)2−(τ+θ)νΓ(ν+1)4(tτ+θ−sτ+θ)ν[τθKνs+H(t)+τθKνt−H(s)]|≤t−s4(tτ+θ−sτ+θ)ν1∫0|Δντ+θ(η)||h′(ηs+(1−η)t)|dη≤t−s4(tτ+θ−sτ+θ)ν(|h′(s)|1∫0η|Δντ+θ(η)|dη+|h′(t)|1∫0(1−η)|Δντ+θ(η)|dη). | (2.30) |
Here 1∫0η|Δντ+θ(η)|dη=1(t−s)2t∫s|ψ(u)|(t−u)du,
and ψ(u)=(uτ+θ−sτ+θ)ν−((t+s−u)τ+θ−sτ+θ)ν+(tτ+θ−(s+t−u)τ+θ)ν−(tτ+θ−uτ+θ)ν.
We observe that ψ is a nondecreasing function on [s,t]. Moreover, we have:
ψ(s)=−2(tτ+θ−sτ+θ)ν<0, |
and also ψ(s+t2)=0. As a consequence, we have
{ψ(u)≤0,if s≤u≤s+t2,ψ(u)>0,if s+t2<u≤t. |
Thus we get
1∫0η|Δντ+θ(η)|dη=1(t−s)2t∫s|ψ(u)|(t−u)du=1(t−s)2[−s+t2∫sψ(u)(t−u)du+t∫s+t2ψ(u)(t−u)du]=1(t−s)2[K1+K2+K3+K4], | (2.31) |
where
K1=−s+t2∫s(t−u)(uτ+θ−sτ+θ)νdu+t∫s+t2(t−u)(uτ+θ−sτ+θ)νdu, | (2.32) |
K2=s+t2∫s(t−u)((t+s−u)τ+θ−sτ+θ)νdu−t∫s+t2(t−u)((t+s−u)τ+θ−sτ+θ)νdu, | (2.33) |
K3=−s+t2∫s(t−u)(tτ+θ−(s+t−u)τ+θ)νdu+t∫s+t2(t−u)(tτ+θ−(s+t−u)τ+θ)νdu, | (2.34) |
and
K4=s+t2∫s(t−u)(tτ+θ−uτ+θ)νdu−t∫s+t2(t−u)(tτ+θ−uτ+θ)νdu. | (2.35) |
We can see here that K1=−Ων2(t,s,τ+θ), K4=Ων1(t,t,τ+θ).
Also, by using of change of the variables v=s+t−u, we get
K2=Ων2(s,s,τ+θ),K3=−Ων1(s,t,τ+θ). | (2.36) |
By substituting these values in (2.31), we get
1∫0ηΔντ+θ(η)dη=−Ων2(t,s,τ+θ)+Ων1(t,t,τ+θ)+Ων2(s,s,τ+θ)−Ων1(s,t,τ+θ)(t−s)2. | (2.37) |
Similarly, we can find
1∫0(1−η)Δντ+θ(η)dη=Ων2(s,s,τ+θ)−Ων2(t,s,τ+θ)+Ων1(t,t,τ+θ)−Ων1(s,t,τ+θ)(t−s)2. | (2.38) |
Finally, by using (2.30), (2.37) and (2.38) we get the required result.
Remark 4. when τ+θ=1 in (2.29), we obtain
|h(s)+h(t)2−Γ(ν+1)2(t−s)ν[01Kνt−h(s)+01Kνs+h(t)]|≤(t−s)2(ν+1)(1−12ν)[h′(s)+h′(t)], |
which is Theorem 3 in [33].
A generalized version of Hermite-Hadamard inequality via newly introduced GC fractional operators has been acquired successfully. This result combines several versions (new and old) of the Hermite-Hadamard inequality into a single form, each one has been discussed by fixing parameters in the newly established version of the Hermite-Hadamard inequality. Moreover, an identity containing the GC fractional integral operators has been proved. By using this identity, a bound for the absolute of the difference between the two rightmost terms in the newly established Hermite-Hadamard inequality has been presented. Also, some relations of our results with those of already existing results have been pointed out. Since this is a fact that there exist more than one definitions for fractional derivatives [2] which makes it difficult to choose a convenient operator for solving a given problem. Thus, in the present paper, the GC fractional operators (containing various previously defined fractional operators into a single form) have been used in order to overcome the problem of choosing a suitable fractional operator and to provide a unique platform for researchers working with different operators in this field. Also, by making use of GC fractional operators one can follow the research work which has been performed for the two versions (1.9) and (1.10) of Hermite-Hadamard inequality.
This work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485).
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, 1999. |
[2] | E. C. De Oliveira, J. A. T. Machado, Review of definitions for fractional derivatives and integrals, Math. Probl. Eng., 2014 (2014), 1-6. |
[3] | A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation, Appl. Math. Comput., 273 (2016), 948-956. |
[4] |
A. Atangana, I. Koca, On the new fractional derivative and application to nonlinear Baggs and Freedman model, J. Nonlinear Sci. Appl., 9 (2016), 2467-2480. doi: 10.22436/jnsa.009.05.46
![]() |
[5] | T. U. Khan, M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 37-389. |
[6] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. doi: 10.1016/j.cam.2014.10.016
![]() |
[7] |
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002
![]() |
[8] | A. A. Kilbas, M. H. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, North-Holland Mathematics Studies, 2006. |
[9] | K. S. Miller, B. Ross, An Introduction to the fractional calculus and fractional differential equations, Wiley, 1993. |
[10] |
A. Atangana, B. S. T. Alkahtani, Analysis of the Keller-Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439-4453. doi: 10.3390/e17064439
![]() |
[11] | A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons & Fractals, 89 (2016), 447-454. |
[12] |
A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763- 769. doi: 10.2298/TSCI160111018A
![]() |
[13] | U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865. |
[14] |
P. O. Mohammed, On new trapezoid type inequalities for h-convex functions via generalized fractional integral, Turk. J. Anal. Number Theory, 6 (2018), 125-128. doi: 10.12691/tjant-6-4-5
![]() |
[15] | S. S. Dragomir, C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000. |
[16] | T. Abdeljawad, P. O. Mohammed, A. Kashuri, New modified conformable fractional integral inequalities of Hermite-Hadamard type with applications, J. Funct. Space., 2020 (2020), 1-14. |
[17] | P. O. Mohammed, I. Brevik, A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020), 1-11. |
[18] |
M. A. Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
![]() |
[19] |
P. O. Mohammed, T. Abdeljawad, Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel, Adv. Differ. Equ., 2020 (2020), 1-19. doi: 10.1186/s13662-019-2438-0
![]() |
[20] | M. A. Khan, Y. Khurshid, S. S. Dragomir, R. Ullah, Inequalities of the HermiteHadamard type with applications, Punjab Univ. J. Math., 50 (2018), 1-12. |
[21] |
M. A. Khan, Y. M. Chu, T. U. Khan, J. Khan, Some new inequalities of HermiteHadamard type for s-convex functions with applications, Open Math., 15 (2017), 1414-1430. doi: 10.1515/math-2017-0121
![]() |
[22] | M. A. Khan, Y. M. Chu, A. Kashuri, R. Liko, G. Ali, New Hermite-Hadamard inequalities for conformable fractional integrals, J. Funct. Space., 2018 (2018), 1- 9. |
[23] | A. Iqbal, M. A. Khan, S. Ullah, Y. M. Chu, A. Kashuri, Hermite-Hadamard type inequalities pertaining conformable fractional integrals and their applications, AIP adv., 8 (2018), 1-18. |
[24] | M. A. Khan, Y. Khurshid, T. S. Du, Y. M. Chu, Generalization of Hermite-Hadamard Type Inequalities via Conformable Fractional Integrals, J. Funct. Space., 2018 (2018), 1-12. |
[25] |
Y. Khurshid, M. A. Khan, Y. M. Chu, Conformable fractional integral inequalities for GG- and GA-convex functions, AIMS Mathematics, 5 (2020), 5012-5030. doi: 10.3934/math.2020322
![]() |
[26] | P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 1-15. |
[27] | M. A. Khan, T. U. Khan, Y. M. Chu, Generalized Hermite-Hadamard type inequalities for quasi-convex functions with applications, Journal of Inequalities & Special Functions, 11 (2020), 24-42. |
[28] |
M. A. Khan, A. Iqbal, M. Suleman, Y. M. Chu, Hermite-Hadamard type inequalities for fractional integrals via Green's function, J. Inequal. Appl., 2018 (2018), 1-15. doi: 10.1186/s13660-017-1594-6
![]() |
[29] | M. A. Khan, Y. Khurshid, Y. M. Chu, Hermite-Hadamard type inequalities via the Montgomery identity, Communications in Mathematics and Applications, 10 (2019), 85-97. |
[30] |
A. Iqbal, M. A. Khan, N. Mohammad, E. R. Nwaeze, Y. M. Chu, Revisiting the Hermite-Hadamard fractional integral inequality via a Green function, AIMS Mathematics, 5 (2020), 6087-6107. doi: 10.3934/math.2020391
![]() |
[31] |
Y. M. Chu, M. A. Khan, T. Ali, S. S. Dragomir, Inequalities for α-fractional differentiable functions, J. Inequal. Appl., 2017 (2017), 1-12. doi: 10.1186/s13660-016-1272-0
![]() |
[32] |
J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794-806. doi: 10.1515/math-2020-0038
![]() |
[33] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Ba?ak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403-2407. |
[34] |
Y. M. Chu, M. A. Khan, T. U. Khan, T. Ali, Generalizations of Hermite-Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 4305- 4316. doi: 10.22436/jnsa.009.06.72
![]() |
[35] | Y. Khurshid, M. A. Khan, Y. M. Chu, Hermite-Hadamard-Fejer inequalities for conformable fractional integrals via preinvex functions, J. Funct. Space., 2019 (2019), 1-9. |
[36] | P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 1-17. |
[37] | M. A. Khan, T. Ali, S. S. Dragomir, M. Z. Sarikaya, Hermite-Hadamard type inequalities for conformable fractional integrals, RACSAM Rev. R. Acad. A, 112 (2018), 1033-1048. |
[38] |
M. Jleli, D. O'regan, B. Samet, On Hermite-Hadamard type inequalities via generalized fractional integrals, Turk. J. Math., 40 (2016), 1221-1230. doi: 10.3906/mat-1507-79
![]() |
[39] |
M. A. Khan, S. Begum, Y. Khurshid, Y. M. Chu, Ostrowski type inequalities involving conformable fractional integrals, J. Inequal. Appl., 2018 (2018), 1-14. doi: 10.1186/s13660-017-1594-6
![]() |
[40] |
E. R. Nwaeze, M. A. Khan, Y. M. Chu, Fractional inclusions of the HermiteHadamard type of m-polynomial convex interval-valued functions, Adv. Differ. Equ., 2020 (2020), 1-17. doi: 10.1186/s13662-019-2438-0
![]() |
[41] | A. Guessab, G. Schmeisser, Convexity results and sharp error estimates in approximate multivariate integration, Math. Comput., 73 (2004), 1365-1384. |
[42] |
A. Guessab, G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory, 115 (2002), 260-288. doi: 10.1006/jath.2001.3658
![]() |
1. | Tahir Ullah Khan, Muhammad Adil Khan, Yu-Ming Chu, A new generalized Hilfer-type fractional derivative with applications to space-time diffusion equation, 2021, 22, 22113797, 103953, 10.1016/j.rinp.2021.103953 | |
2. | Chao Miao, Ghulam Farid, Hafsa Yasmeen, Yanhua Bian, Xiaolong Qin, Generalized Hadamard Fractional Integral Inequalities for Strongly s , m -Convex Functions, 2021, 2021, 2314-4785, 1, 10.1155/2021/6642289 | |
3. | Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Yasser S. Hamed, New Riemann–Liouville Fractional-Order Inclusions for Convex Functions via Interval-Valued Settings Associated with Pseudo-Order Relations, 2022, 6, 2504-3110, 212, 10.3390/fractalfract6040212 | |
4. | Soubhagya Kumar Sahoo, Hleil Alrweili, Savin Treanţă, Zareen A. Khan, New Fractional Integral Inequalities Pertaining to Center-Radius (cr)-Ordered Convex Functions, 2023, 7, 2504-3110, 81, 10.3390/fractalfract7010081 | |
5. | Artion Kashuri, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Tariq, Ahmed A. Hamoud, Homan Emadifar, Faraidun K. Hamasalh, Nedal M. Mohammed, Masoumeh Khademi, Guotao Wang, Integral Inequalities of Integer and Fractional Orders for n –Polynomial Harmonically t g s –Convex Functions and Their Applications, 2022, 2022, 2314-4785, 1, 10.1155/2022/2493944 | |
6. | YONGFANG QI, GUOPING LI, NEW HERMITE–HADAMARD–FEJÉR TYPE INEQUALITIES VIA RIEMANN–LIOUVILLE FRACTIONAL INTEGRALS FOR CONVEX FUNCTIONS, 2021, 29, 0218-348X, 10.1142/S0218348X21502297 | |
7. | Muhammad Adil Khan, Saeed Anwar, Sadia Khalid, Zaid Mohammed Mohammed Mahdi Sayed, Erhan Set, Inequalities of the Type Hermite–Hadamard–Jensen–Mercer for Strong Convexity, 2021, 2021, 1563-5147, 1, 10.1155/2021/5386488 | |
8. | Soubhagya Kumar Sahoo, Ravi P. Agarwal, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja, Hadamard–Mercer, Dragomir–Agarwal–Mercer, and Pachpatte–Mercer Type Fractional Inclusions for Convex Functions with an Exponential Kernel and Their Applications, 2022, 14, 2073-8994, 836, 10.3390/sym14040836 | |
9. | YONGFANG QI, GUOPING LI, SHAN WANG, QING ZHI WEN, HERMITE–HADAMARD–FEJÉR-TYPE INEQUALITIES VIA KATUGAMPOLA FRACTIONAL INTEGRALS FOR S-CONVEX FUNCTIONS IN THE SECOND SENSE, 2022, 30, 0218-348X, 10.1142/S0218348X22501316 | |
10. | Fidel Meléndez-Vázquez, Guillermo Fernández-Anaya, Aldo Jonathan Muñóz-Vázquez, Eduardo Gamaliel Hernández-Martínez, Generalized conformable operators: Application to the design of nonlinear observers, 2021, 6, 2473-6988, 12952, 10.3934/math.2021749 | |
11. | YONGFANG QI, QINGZHI WEN, GUOPING LI, KECHENG XIAO, SHAN WANG, DISCRETE HERMITE–HADAMARD-TYPE INEQUALITIES FOR (s,m)-CONVEX FUNCTION, 2022, 30, 0218-348X, 10.1142/S0218348X22501602 | |
12. | Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri, Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application, 2022, 7, 2473-6988, 12303, 10.3934/math.2022683 | |
13. | Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Muhammad Tariq, Y. S. Hamed, New Fractional Integral Inequalities for Convex Functions Pertaining to Caputo–Fabrizio Operator, 2022, 6, 2504-3110, 171, 10.3390/fractalfract6030171 | |
14. | Shasha Li, Ghulam Farid, Atiq Ur Rehman, Hafsa Yasmeen, Ahmet Ocak Akdemir, Fractional Versions of Hadamard-Type Inequalities for Strongly Exponentially α , h − m -Convex Functions, 2021, 2021, 2314-4785, 1, 10.1155/2021/2555974 | |
15. | Shahid Qaisar, Arslan Munir, Hüseyin Budak, Certain fractional inequalities via the Caputo Fabrizio operator, 2023, 37, 0354-5180, 10093, 10.2298/FIL2329093Q | |
16. | Tareq Saeed, Muhammad Adil Khan, Shah Faisal, Hamed H. Alsulami, Mohammed Sh. Alhodaly, New conticrete inequalities of the Hermite-Hadamard-Jensen-Mercer type in terms of generalized conformable fractional operators via majorization, 2023, 56, 2391-4661, 10.1515/dema-2022-0225 | |
17. | Yonghong Liu, Ghulam Farid, Jongsuk Ro, Mawahib Elamin, Sayed Abdel-Khalek, Some well-known inequalities of Ostrowski like for Caputo derivatives, 2025, 33, 2769-0911, 10.1080/27690911.2025.2455190 | |
18. | YONGHONG LIU, GHULAM FARID, LOAY ALKHALIFA, WAQAS NAZEER, FRACTIONAL INTEGRAL INEQUALITIES OF OSTROWSKI AND HADAMARD TYPE VIA k-ANALOGUES OF CAPUTO DERIVATIVES, 2025, 33, 0218-348X, 10.1142/S0218348X25400729 |