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1. Introduction and preliminaries

1.1. Fractional calculus

Fractional calculus has come out as one of the most applicable subjects of
mathematics [1]. Its importance is evident from the fact that many real-world
phenomena can be best interpreted and modeled using this theory. It is also a fact that
many disciplines of engineering and science have been influenced by the tools and
techniques of fractional calculus. Its emergence can easily be traced and linked with the
famous correspondence between the two mathematicians, L’Hospital and Leibnitz,
which was made on 30th September 1695. After that, many researchers tried to explore
the concept of fractional calculus, which is based on the generalization of nth order
derivatives or n-fold integration [2–4].
Recently, Khan and Khan [5] have discovered novel definitions of fractional integral and
derivative operators. These operators enjoy interesting properties such as continuity,
boundedeness, linearity etc. The integral operators, they presented, are stated as under:

Definition 1 ( [5]). Let h ∈ Lθ[s, t](conformable integrable on [s, t] ⊆ [0,∞)). The left-
sided and right-sided generalized conformable fractional integrals τ

θK
ν
s+ and τ

θK
ν
t− of order

ν > 0 with θ ∈ (0, 1], τ ∈ R, θ + τ , 0 are defined by:

τ
θK

ν
s+h(r) =

1
Γ(ν)

r∫
s

(
rτ+θ − wτ+θ

τ + θ

)ν−1

h(w)wτdθw, r > s, (1.1)

and

τ
θK

ν
t−h(r) =

1
Γ(ν)

t∫
r

(
wτ+θ − rτ+θ

τ + θ

)ν−1

h(w)wτdθw, t > r, (1.2)

respectively, and τ
θK

0
s+h(r) = τ

θK
0
t−h(r) = h(r). Here Γ denotes the well-known Gamma

function.

Here the integral
t∫

s
dθw represents the conformable integration, defined as:

t∫
s

h(w)dθw =

t∫
s

h(w)wθ−1dw. (1.3)

The operators defined in Definition 1 are in generalized form and contain few important
operators in themselves. Here, only the left-sided operators are presented, the
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corresponding right-sided operators may be deduced in the similar way. Moreover, to
understand the theory of conformable fractional calculus, one can see [5–7]. Also, the
basic theory of fractional calculus can be found in the books [1, 8, 9] and for the latest
research in this field one can see [3, 4, 10–12] and the references there in.

Remark 1. 1) For θ = 1 in the Definition 1, the following Katugampula fractional integral
operator is obtained [13]:

τ
1Kν

s+h(r) =
1

Γ(ν)

r∫
s

(
rτ+1 − wτ+1

τ + 1

)ν−1

h(w)dw, r > s. (1.4)

2) For τ = 0 in the Definition 1, the New Riemann Liouville type conformable fractional
integral operator is obtained as given below:

0
θK

ν
s+h(r) =

1
Γ(ν)

r∫
s

(
rθ − wθ

θ

)ν−1

h(w)dθw, r > s. (1.5)

3) Using the definition of conformable integral given in (1.3) and L’Hospital rule, it is
straightforward that when θ → 0 in (1.5), we get the Hadamard fractional integral operator
as follows:

0
0+ Kν

s+h(r) =
1

Γ(ν)

r∫
s

(
log

r
w

)ν−1
h(w)

dw
w
, r > s. (1.6)

4) For θ = 1 in (1.5), the well-known Riemann-Liouville fractional integral operator is
obtained as follows:

0
1Kν

s+h(r) =
1

Γ(ν)

r∫
s

(r − w)ν−1 h(w)dw, r > s. (1.7)

5) For the case ν = 1, τ = 0 in Definition 1, we get the conformable fractional integrals.
And when θ = ν = 1, τ = 0, we get the classical Riemann integrals.

1.2. Hermite-Hadamard inequalities

This subsection is devoted to start with the definition of convex function, which plays a
very important role in establishment of various kinds of inequalities [14]. This definition
is given as follows [15]:
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Definition 2. A function h : I ⊆ R→ R is said to be convex on I if the inequality

h(ηs + (1 − η)t) ≤ ηh(s) + (1 − η)h(t) (1.8)

holds for all s, t ∈ I and 0 ≤ η ≤ 1. The function h is said to be concave on I if the
inequality given in (1.8) holds in the reverse direction.

Associated with the Definition 2 of convex functions the following double inequality is
well-known and it has been playing a key role in various fields of science and engineering
[15].

Theorem 1. Let h : I ⊆ R → R be a convex function and s, t ∈ I with s < t. Then we
have the following Hermite-Hadamard inequality:

h
( s + t

2

)
≤

1
t − s

t∫
s

h(τ)dτ ≤
h(s) + h(t)

2
. (1.9)

This inequality (1.9) appears in a reversed order if the function h is supposed to be
concave. Also, the relation (1.9) provides upper and lower estimates for the integral
mean of the convex function h. The inequality (1.9) has various versions (extensions or
generalizations) corresponding to different integral operators [16–25] each version has
further forms with respect to various kinds of convexities [26–32] or with respect to
different bounds obtained for the absolute difference of the two leftmost or rightmost
terms in the Hermite-Hadamard inequality.

By using the Riemann-Liouville fractional integral operators, Sirikaye et al. have
proved the following Hermite-Hadamard inequality [33].

Theorem 2 ( [33]). Let h : [s, t]→ R be a function such that 0 ≤ s < t and h ∈ L[s, t]. If
h is convex on [s, t], then the following double inequality holds:

h
( s + t

2

)
≤

Γ(ν + 1)
2(t − s)ν

[
0
1Kν

s+h(t) + 0
1Kν

t−h(s)
]
≤

h(s) + h(t)
2

. (1.10)

For more recent research related to generalized Hermite-Hadamard inequality one can
see [34–42] and the references therein.

Motivated from the Riemann-Liouville version of Hermite-Hadamard inequality
(given above in (1.10)), we prove the same inequality for newly introduced generalized
conformable fractional operators. As a result we get a more generalized inequality,
containing different versions of Hermite-Hadamard inequality in single form. We also
prove an identity for generalized conformable fractional operators and establish a bound
for the absolute difference of two rightmost terms in the newly obtained
Hermite-Hadamard inequality. We point out some relations of our results with those of
other results from the past. At the end we present conclusion, where directions for future
research are also mentioned.
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2. Main results

In the following theorem the well-known Hermite-Hadamard inequality for the newly
defined integral operators is proved.

Theorem 3. Let ν > 0 and τ ∈ R, θ ∈ (0, 1] such that τ + θ > 0. Let h : [s, t] ⊆
[0,∞) → R be a function such that h ∈ Lθ[s, t](conformal integrable on [s,t]). If h
is also a convex function on [s, t], then the following Hermite-Hadamard inequality for
generalized conformable fractional Integrals τ

θK
ν
s+ and τ

θK
ν
t− holds:

h
( s + t

2

)
≤

(τ + θ)νΓ(ν + 1)
4(tτ+θ − sτ+θ)ν

[τ
θK

ν
s+ H(t) + τ

θK
ν
t−H(s)

]
≤

h(s) + h(t)
2

, (2.1)

where H(x) = h(x) + h̃(x), h̃(x) = h(s + t − x).

Proof. Let η ∈ [0, 1]. Consider x, y ∈ [s, t], defined by x = ηs + (1− η)t, y = (1− η)s + ηt.
Since h is a convex function on [s, t], we have

h
( s + t

2

)
= h

( x + y
2

)
≤

h(x) + h(y)
2

=
h(ηs + (1 − η)t) + h((1 − η)s + ηt)

2
. (2.2)

Multiplying both sides of (2.2) by

(t − s)(τ + θ)1−ν((1 − η)s + ηt)τ+θ−1

Γ(ν)[tτ+θ − ((1 − η)s + ηt)τ+θ]1−ν ,

and integrating with respect to η, we get

(t − s)(τ + θ)1−ν

Γ(ν)
h
( s + t

2

) 1∫
0

((1 − η)s + ηt)τ+θ−1

[tτ+θ − ((1 − η)s + ηt)τ+θ]1−νdη

≤
(t − s)(τ + θ)1−ν

Γ(ν)
1
2

{ 1∫
0

((1 − η)s + ηt)τ+θ−1

[tτ+θ − ((1 − η)s + ηt)τ+θ]1−νh(ηs + (1 − η)t)dη

+

1∫
0

(1 − η)s + ηt)τ+θ−1

[tτ+θ − ((1 − η)s + ηt)τ+θ]1−νh((1 − η)s + ηt)dη
}
.

(2.3)

Note that we have

1∫
0

((1 − η)s + ηt)τ+θ−1

[tτ+θ − ((1 − η)s + ηt)τ+θ]1−νdη =
1

ν(τ + θ)(t − s)
(tτ+θ − sτ+θ)ν.
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Also, by using the identity h̃((1 − η)s + ηt) = h(ηs + (1 − η)t), and making substitution
(1 − η)s + ηt = w, we get

(t − s)(τ + θ)1−ν

Γ(ν)

1∫
0

((1 − η)s + ηt)τ+θ−1

[tτ+θ − ((1 − η)s + ηt)τ+θ]1−νh(ηs + (1 − η)t)dη

=
(τ + θ)1−ν

Γ(ν)

t∫
s

wτ+θ−1

[tτ+θ − wτ+θ]1−ν h̃(w)dw

=
(τ + θ)1−ν

Γ(ν)

t∫
s

wτ

[tτ+θ − wτ+θ]1−ν h̃(w)dθw

= τ
θK

ν
s+ h̃(t).

(2.4)

Similarly

(t − s)(τ + θ)1−ν

Γ(ν)

1∫
0

((1 − η)s + ηt)τ+θ−1

[tτ+θ − ((1 − η)s + ηt)τ+θ]1−νh(ηt + (1 − η)s)dη = τ
θK

ν
s+h(t). (2.5)

By substituting these values in (2.3), we get

(tτ+θ − sτ+θ)ν

Γ(ν + 1)(τ + θ)ν
h
( s + t

2

)
≤

τ
θK

ν
s+ H(t)
2

. (2.6)

Again, by multiplying both sides of (2.2) by

(t − s)(τ + θ)1−ν((1 − η)s + ηt)τ+θ−1

Γ(ν)[((1 − η)s + ηt)τ+θ − sτ+θ]1−ν ,

and then integrating with respect to η and by using the same techniques used above, we
can obtain:

(tτ+θ − sτ+θ)ν

Γ(ν + 1)(τ + θ)ν
h
( s + t

2

)
≤

τ
θK

ν
t−H(s)
2

. (2.7)

Adding (2.7) and (2.6), we get:

h
( s + t

2

)
≤

Γ(ν + 1)(τ + θ)ν

4(tτ+θ − sτ+θ)ν
[τ
θK

ν
s+ H(t) + τ

θK
ν
t−H(s)

]
. (2.8)

Hence the left-hand side of the inequality (2.1) is established.
Also since h is convex, we have:

h (ηs + (1 − η)t) + h ((1 − η)s + ηt) ≤ h(s) + h(t). (2.9)
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Multiplying both sides

(t − s)(τ + θ)1−ν((1 − η)s + ηt)τ+θ−1

Γ(ν)[tτ+θ − ((1 − η)s + ηt)τ+θ]1−ν ,

and integrating with respect to η we get

(t − s)(τ + θ)1−ν

Γ(ν)

1∫
0

((1 − η)s + ηt)τ+θ−1

[tτ+θ − ((1 − η)s + ηt)τ+θ]1−νh(ηs + (1 − η)t)dη

+
(t − s)(τ + θ)1−ν

Γ(ν)

1∫
0

((1 − η)s + ηt)τ+θ−1

[tτ+θ − ((1 − η)s + ηt)τ+θ]1−νh(ηt + (1 − η)s)dη

≤
(t − s)(τ + θ)1−ν

Γ(ν)
[h(s) + h(t)]

1∫
0

(1 − η)s + ηt)τ+θ−1

[tτ+θ − ((1 − η)s + ηt)τ+θ]1−νdη,

(2.10)

that is,
τ
θK

ν
s+ H(t) ≤

(tτ+θ − sτ+θ)ν

Γ(ν + 1)(τ + θ)ν
[h(s) + h(t)] . (2.11)

Similarly multiplying both sides of (2.9) by

(t − s)(τ + θ)1−ν((1 − η)s + ηt)τ+θ−1

Γ(ν)[((1 − η)s + ηt)τ+θ − sτ+θ]1−ν ,

and integrating with respect to η, we can obtain

τ
θK

ν
t−H(s) ≤

(tτ+θ − sτ+θ)ν

Γ(ν + 1)(τ + θ)ν
[h(s) + h(t)] . (2.12)

Adding the inequalities (2.11) and (2.12), we get:

Γ(ν + 1)(τ + θ)ν

4(tτ+θ − sτ+θ)ν
[τ
θK

ν
t−H(s) + τ

θK
ν
s+ H(t)

]
≤

h(s) + h(t)
2

. (2.13)

Combining (2.8) and (2.13), we get the required result. �

The inequality in (2.1) is in compact form containing few inequalities for different
integrals in it. The following remark tells us about that fact.
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Remark 2. 1) For θ = 1 in (2.1), we get Hermite-Hadamard inequality for Katugampola
fractional integral operators, as follows [38]:

h
( s + t

2

)
≤

(τ + 1)νΓ(ν + 1)
4(tτ+1 − sτ+1)ν

[τ
1Kν

s+ H(t) + τ
1Kν

t−H(s)
]
≤

h(s) + h(t)
2

, (2.14)

where H(x) = h(x) + h̃(x), h̃(x) = h(s + t − x).
2) For τ = 0 in (2.1), we get Hermite-Hadamard inequality for newly obtained Riemann
Liouville type conformable fractional integral operators, as follows:

h
( s + t

2

)
≤
θνΓ(ν + 1)
4(tθ − sθ)ν

[
0
θK

ν
s+ H(t) + 0

θK
ν
t−H(s)

]
≤

h(s) + h(t)
2

, (2.15)

where H(x) = h(x) + h̃(x), h̃(x) = h(s + t − x).
3) For τ+θ → 0, in (2.1), applying L’Hospital rule and the relation (1.3), we get Hermite-
Hadamard inequality for Hadamard fractional integral operators, as follows:

h
( s + t

2

)
≤

Γ(ν + 1)
2(ln t

s )ν
[

0
0+ Kν

s+h(t) + 0
0+ Kν

t−h(s)
]
≤

h(s) + h(t)
2

. (2.16)

4) For τ + θ = 1 in (2.1), the Hermite-Hadamard inequality is obtained for Riemann-
Liouville fractional integrals [33]:

h
( s + t

2

)
≤

Γ(ν + 1)
2(t − s)ν

[
0
1Kν

s+h(t) + 0
1Kν

t−h(s)
]
≤

h(s) + h(t)
2

. (2.17)

5) For the case ν = 1, τ = 0 in (2.1), the Hermite-Hadamard inequality is obtained for the
conformable fractional integrals as follows:

h
( s + t

2

)
≤

θ

2(tθ − sθ)

t∫
s

H(w)dθw ≤
h(s) + h(t)

2
. (2.18)

6) When θ = ν = 1, τ = 0 the Hermite-Hadamard inequality is obtained for classical
Riemann integrals [15]:

h
( s + t

2

)
≤

1
t − s

t∫
s

h(w)dw ≤
h(s) + h(t)

2
. (2.19)

To bound the difference of two rightmost terms in the main inequality (2.1), we need
to establish the following Lemma.
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Lemma 1. Let τ + θ > 0 and ν > 0. If h ∈ Lθ[s, t] , then

h(s) + h(t)
2

−
(τ + θ)νΓ(ν + 1)
4(tτ+θ − sτ+θ)ν

[τ
θK

ν
s+ H(t) + τ

θK
ν
t−H(s)

]
=

t − s
4(tτ+θ − sτ+θ)ν

1∫
0

∆ν
τ+θ(η)h′(ηs + (1 − η)t)dη,

(2.20)

where
∆ν
τ+θ(η) = [(ηs + (1 − η)t)τ+θ − sτ+θ]ν − [(ηt + (1 − η)s)τ+θ − sτ+θ]ν

+[tτ+θ − ((1 − η)s + ηt)τ+θ]ν − [tτ+θ − ((1 − η)t + ηs)τ+θ]ν.

Proof. With the help of integration by parts, we have

τ
θK

ν
s+ H(t) =

(tτ+θ − sτ+θ)ν

(τ + θ)νΓ(ν + 1)
H(s)

+
(t − s)ν

(τ + θ)νΓ(ν + 1)

1∫
0

[tτ+θ − ((1 − η)s + ηt)τ+θ]νH′(ηt + (1 − η)s)dη.
(2.21)

Similarly, we have

τ
θK

ν
t−H(s) =

(tτ+θ − sτ+θ)ν

(τ + θ)νΓ(ν + 1)
H(t)

−
(t − s)ν

(τ + θ)νΓ(ν + 1)

1∫
0

[((1 − η)s + ηt)τ+θ − sτ+θ]νH′(ηt + (1 − η)s)dη.
(2.22)

Using (2.21) and (2.22) we have

4(tτ+θ − sτ+θ)ν

t − s

(
h(s) + h(t)

2
−

(τ + θ)νΓ(ν + 1)
4(tτ+θ − sτ+θ)ν

[τ
θK

ν
t−H(s) + τ

θK
ν
s+ H(t)

])

=

1∫
0

(
[((1 − η)s + ηt)τ+θ − sτ+θ]ν − [(tτ+θ − ((1 − η)s + ηt)τ+θ]ν

)
H′(ηt + (1 − η)s)dη.

(2.23)
Also, we have

H′(ηt + (1 − η)s) = h′(ηt + (1 − η)s) − h′(ηs + (1 − η)t), η ∈ [0, 1]. (2.24)
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And
1∫

0

[((1 − η)s + ηt)τ+θ − sτ+θ]νH′(ηt + (1 − η)s)dη

=

1∫
0

[((1 − η)t + ηs)τ+θ − sτ+θ]νh′(ηs + (1 − η)t)dη

−

1∫
0

[((1 − η)s + ηt)τ+θ − sτ+θ]νh′(ηs + (1 − η)t)dη.

(2.25)

Also, we have

1∫
0

[tτ+θ − ((1 − η)s + ηt)τ+θ]νH′(ηt + (1 − η)s)dη

=

1∫
0

[tτ+θ − ((1 − η)t + ηs)τ+θ]νh′(ηs + (1 − η)t)dη

−

1∫
0

[tτ+θ − ((1 − η)s + ηt)τ+θ]νh′(ηs + (1 − η)t)dη.

(2.26)

Using (2.23), (2.25) and (2.26) we get the required result. �

Remark 3. When τ + θ = 1 in Lemma 1, we get the Lemma 2 in [33].

Definition 3. For ν > 0, we define the operators

Ων
1(x, y, τ+θ) =

s+t
2∫

s

|x−w||yτ+θ−wτ+θ|νdw−

t∫
s+t
2

|x−w||yτ+θ−wτ+θ|νdw,

(2.27)
and

Ων
2(x, y, τ+θ) =

s+t
2∫

s

|x−w||wτ+θ−yτ+θ|νdw−

t∫
s+t
2

|x−w||wτ+θ−yτ+θ|νdw,

(2.28)
where x, y ∈ [s, t] ⊆ [0,∞) and τ + θ > 0.
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Theorem 4. Let h be a conformable integrable function over [s, t] such that |h′| is convex
function. Then for ν > 0 and τ + θ > 0 we have:∣∣∣∣h(s) + h(t)

2
−

(τ + θ)νΓ(ν + 1)
4(tτ+θ − sτ+θ)ν

[τ
θK

ν
s+ H(t) + τ

θK
ν
t−H(s)

] ∣∣∣∣
≤

Kν
τ+θ(s, t)

4(t − s)(tτ+θ − sτ+θ)ν
(|h′(s)| + |h′(t)|),

(2.29)

where Kν
τ+θ(s, t) = Ων

1(t, t, τ + θ) + Ων
2(s, s, τ + θ) −Ων

2(t, s, τ + θ) −Ων
1(s, t, τ + θ).

Proof. Using Lemma 1 and convexity of |h′|, we have:∣∣∣∣h(s) + h(t)
2

−
(τ + θ)νΓ(ν + 1)
4(tτ+θ − sτ+θ)ν

[τ
θK

ν
s+ H(t) + τ

θK
ν
t−H(s)

] ∣∣∣∣
≤

t − s
4(tτ+θ − sτ+θ)ν

1∫
0

|∆ν
τ+θ(η)||h′(ηs + (1 − η)t)|dη

≤
t − s

4(tτ+θ − sτ+θ)ν

|h′(s)|

1∫
0

η
∣∣∣∣∆ν

τ+θ(η)
∣∣∣∣dη + |h′(t)|

1∫
0

(1 − η)
∣∣∣∣∆ν

τ+θ(η)
∣∣∣∣dη

 .
(2.30)

Here
1∫

0
η
∣∣∣∆ν

τ+θ(η)
∣∣∣ dη = 1

(t−s)2

t∫
s
|ψ(u)|(t − u)du,

and ψ(u) = (uτ+θ − sτ+θ)ν − ((t + s − u)τ+θ − sτ+θ)ν + (tτ+θ − (s + t − u)τ+θ)ν − (tτ+θ − uτ+θ)ν.
We observe that ψ is a nondecreasing function on [s, t] . Moreover, we have:

ψ(s) = −2(tτ+θ − sτ+θ)ν < 0,

and also ψ
(

s+t
2

)
= 0. As a consequence, we haveψ(u) ≤ 0, i f s ≤ u ≤ s+t

2 ,

ψ(u) > 0, i f s+t
2 < u ≤ t.

Thus we get
1∫

0

η
∣∣∣∆ν

τ+θ(η)
∣∣∣ dη =

1
(t − s)2

t∫
s

|ψ(u)|(t − u)du

=
1

(t − s)2

−
s+t
2∫

s

ψ(u)(t − u)du +

t∫
s+t
2

ψ(u)(t − u)du


=

1
(t − s)2 [K1 + K2 + K3 + K4] ,

(2.31)
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where

K1 = −

s+t
2∫

s

(t − u)(uτ+θ − sτ+θ)νdu +

t∫
s+t
2

(t − u)(uτ+θ − sτ+θ)νdu, (2.32)

K2 =

s+t
2∫

s

(t − u)((t + s − u)τ+θ − sτ+θ)νdu −

t∫
s+t
2

(t − u)((t + s − u)τ+θ − sτ+θ)νdu, (2.33)

K3 = −

s+t
2∫

s

(t − u)(tτ+θ − (s + t − u)τ+θ)νdu +

t∫
s+t
2

(t − u)(tτ+θ − (s + t − u)τ+θ)νdu, (2.34)

and

K4 =

s+t
2∫

s

(t − u)(tτ+θ − uτ+θ)νdu −

t∫
s+t
2

(t − u)(tτ+θ − uτ+θ)νdu. (2.35)

We can see here that K1 = −Ων
2(t, s, τ + θ), K4 = Ων

1(t, t, τ + θ).
Also, by using of change of the variables v = s + t − u, we get

K2 = Ων
2(s, s, τ + θ), K3 = −Ων

1(s, t, τ + θ). (2.36)

By substituting these values in (2.31), we get
1∫

0

η∆ν
τ+θ(η)dη =

−Ων
2(t, s, τ + θ) + Ων

1(t, t, τ + θ) + Ων
2(s, s, τ + θ) −Ων

1(s, t, τ + θ)
(t − s)2 .

(2.37)
Similarly, we can find

1∫
0

(1 − η)∆ν
τ+θ(η)dη =

Ων
2(s, s, τ + θ) −Ων

2(t, s, τ + θ) + Ων
1(t, t, τ + θ) −Ων

1(s, t, τ + θ)
(t − s)2 .

(2.38)
Finally, by using (2.30), (2.37) and (2.38) we get the required result. �

Remark 4. when τ + θ = 1 in (2.29), we obtain∣∣∣∣∣h(s) + h(t)
2

−
Γ(ν + 1)
2(t − s)ν

[
0
1Kν

t−h(s) + 0
1Kν

s+h(t)
]∣∣∣∣∣ ≤ (t − s)

2(ν + 1)

(
1 −

1
2ν

) [
h′(s) + h′(t)

]
,

which is Theorem 3 in [33].
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3. Conclusion and future works

A generalized version of Hermite-Hadamard inequality via newly introduced GC
fractional operators has been acquired successfully. This result combines several
versions (new and old) of the Hermite-Hadamard inequality into a single form, each one
has been discussed by fixing parameters in the newly established version of the
Hermite-Hadamard inequality. Moreover, an identity containing the GC fractional
integral operators has been proved. By using this identity, a bound for the absolute of the
difference between the two rightmost terms in the newly established Hermite-Hadamard
inequality has been presented. Also, some relations of our results with those of already
existing results have been pointed out. Since this is a fact that there exist more than one
definitions for fractional derivatives [2] which makes it difficult to choose a convenient
operator for solving a given problem. Thus, in the present paper, the GC fractional
operators (containing various previously defined fractional operators into a single form)
have been used in order to overcome the problem of choosing a suitable fractional
operator and to provide a unique platform for researchers working with different
operators in this field. Also, by making use of GC fractional operators one can follow the
research work which has been performed for the two versions (1.9) and (1.10) of
Hermite-Hadamard inequality.
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