
Citation: Xiangyang Wu, Kang Yang, Nichang Jiang, Xiao-Diao Chen. Sharper bounds and new proofs of the exponential function with cotangent[J]. AIMS Mathematics, 2020, 5(6): 7014-7040. doi: 10.3934/math.2020450
[1] | Lakhlifa Sadek, Ali Akgül, Ahmad Sami Bataineh, Ishak Hashim . A cotangent fractional Gronwall inequality with applications. AIMS Mathematics, 2024, 9(4): 7819-7833. doi: 10.3934/math.2024380 |
[2] | Lakhlifa Sadek, Ali Algefary . Extended Hermite–Hadamard inequalities. AIMS Mathematics, 2024, 9(12): 36031-36046. doi: 10.3934/math.20241709 |
[3] | Lakhlifa Sadek, Tania A Lazǎr . On Hilfer cotangent fractional derivative and a particular class of fractional problems. AIMS Mathematics, 2023, 8(12): 28334-28352. doi: 10.3934/math.20231450 |
[4] | Muhammmad Ghaffar Khan, Wali Khan Mashwani, Lei Shi, Serkan Araci, Bakhtiar Ahmad, Bilal Khan . Hankel inequalities for bounded turning functions in the domain of cosine Hyperbolic function. AIMS Mathematics, 2023, 8(9): 21993-22008. doi: 10.3934/math.20231121 |
[5] | Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379 |
[6] | Xiaojun Hu, Qihan Wang, Boyong Long . Bohr-type inequalities for bounded analytic functions of Schwarz functions. AIMS Mathematics, 2021, 6(12): 13608-13621. doi: 10.3934/math.2021791 |
[7] | Li Yin, Liguo Huang, Xiuli Lin . Inequalities and bounds for the $ p $-generalized trigonometric functions. AIMS Mathematics, 2021, 6(10): 11097-11108. doi: 10.3934/math.2021644 |
[8] | Ling Zhu . New inequalities of Wilker’s type for circular functions. AIMS Mathematics, 2020, 5(5): 4874-4888. doi: 10.3934/math.2020311 |
[9] | Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . $ k $-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460 |
[10] | Muhammad Ghaffar Khan, Sheza.M. El-Deeb, Daniel Breaz, Wali Khan Mashwani, Bakhtiar Ahmad . Sufficiency criteria for a class of convex functions connected with tangent function. AIMS Mathematics, 2024, 9(7): 18608-18624. doi: 10.3934/math.2024906 |
In 1978, Becker and Stark [1] proved the double inequality
8π2−4x2<tan(x)x<π2π2−4x2, | (1.1) |
−4x2π2<xcot(x)−1≜F(x)<(π2−8)−4x28. | (1.2) |
holds for all x∈(0,π/2). It is clear that the product of xcot(x) and tan(x)x is equal to 1, while F(0)=0. In [16], it proves that
1<sinh(x)x<excothx−1<coshx. | (1.3) |
Since then, many inequalities for cotangent function were established by different ideas and methods; see e.g. [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18], including the following inequality
cos(x)<excotx−1<sinxx<1. | (1.4) |
Recently, a new type of bounds for
G(x)=excot(x)−1 | (1.5) |
is proposed in [7], see more details in Theorems 1 and 2.
Theorem 1. [7] Let p,q∈(−∞,4/π2], p⋆≈0.13484 be the unique zero of the function αp(π/2)−1 on (−∞,4/π2), where αp(x)=G(x)/(1−px2)1/(3p) if p≠0 and α0(x)=excot(x)−1+x2/3. Then the double inequality
(1−px2)1/(3p)<G(x)=excot(x)−1<(1−qx2)1/(3q) | (1.6) |
holds for all x∈(0,π/2) if and only if p≥p⋆ and q≤2/15≈0.13333.
Theorem 2. [7] For x∈(0,π/2), one has that the double inequality
(1−43π2x2)π2/4<G(x)<(1−215x2)5/2. | (1.7) |
Very recently, Zhu [17] proposed the following results in Theorems 3 and 4, where h(p)=ln(1−π230−π664p)−8(45π4p+32)15π6p+32π2−960,
p3=32(30−π2)15π6≈0.04467,p2=470875≈5.6437×10−5,p1=64(1−π2/30−e−2/5)π6≈4.6143×10−5,p0≈3.799533×10−5, | (1.8) |
and p0 is the unique zero of the function h(p).
Theorem 3. [17] Let 0<p<p3 and x∈(0,π/2).
(ⅰ) If p2≤p<p3, then the function x→ln(1−2x2/15−px6)xcotx−1:=f(x)g(x) is strictly increasing on (0,π/2), and therefore the double inequality
(1−2x215−px6)5/2<G(x)<(1−2x215−px6)1/λp | (1.9) |
holds, where λp=−ln(1−π230−π664p).
(ⅱ) If p0<p<p2, then there is an x0∈(0,π/2) such that the function f/g is strictly decreasing on (0,x0) and strictly increasing on (x0,π/2). Consequently, the inequality
G(x)<(1−2x215−px6)1/θp | (1.10) |
holds, where θp=max(2/5,λp). In particular, we have
G(x)<(1−2x215−px6)5/2,forp0<p≤p1, | (1.11) |
G(x)<(1−2x215−px6)1/λp,forp1<p≤p2. | (1.12) |
(ⅲ) If 0<p<p0, then the function f/g is strictly decreasing on (0,π/2), and therefore the double inequality (1.9) is reversed.
Theorem 4. [17] Let p2≤p<p3 and p0<q≤p1. Then the double inequality
(1−215x2−px6)5/2<excot(x)−1<(1−215x2−qx6)5/2 |
holds for all x∈(0,π/2) with the best coefficients p=p2 and q=p1. In particularly, we have
LZhu(x)=lzhu(x)5/2=(1−215x2−470875x6)5/2<excot(x)−1<(1−215x2−64(1−130π2−e−2/5)x6π6)5/2=uzhu(x)5/2=UZhu(x), | (1.13) |
for all x∈(0,π/2).
In this paper, we present a new method for finding new bounds of both F(x) and G(x), and also provide a new method for the proofs. The first thing is to find four polynomials such that 0≤l1(x)≤F(x)≤l2(x) and 0≤l3(x)ρ≤G(x)≤l4(x)ρ, where x∈(0,π/2) and ρ=8/3 in this paper. Our method for finding the bounds is as follows. Suppose that B(x)=n∑i=0bixi is a bounding polynomial of degree n to be found. Let h(x)=(xcot(x)−1−B(x))⋅sin(x)=xcos(x)−(1+B(x))sin(x), where h(0)=0. By selecting a suitable k∈(0,n), the unknown parameter of bi can be determined by the following constraints
h(i)(0)=0,h(j)(π/2)=0,i=1,2,⋯,k,j=0,1,⋯,n−k, | (1.14) |
which are linear in bi. On the other hand, let H(x)=G(x)1/ρ−B(x). By selecting a suitable l∈(0,n), the unknown parameter of bi can be determined by the following constraints
H(i)(0)=0,H(j)(π/2)=0,i=0,1,⋯,l,j=0,1,⋯,n−l, | (1.15) |
which are linear in bi. Through the above way, together with the Maple software, one can find better bounds for both F(x) and G(x).
The main results are as follows, see also the details of Theorems 5 and 6. We also present a new method for proving the new bounds, see more details in the proofs.
Theorem 5. For all x∈(0,π/2), we have that
l1(x)=−13x2−145x4+445π4+60π2−720π6x6≤F(x)≤−13x2−145x4+445π4+210π2−2160π5x5−445π4+360π2−3600π6x6=l2(x). | (1.16) |
Theorem 6. For all x∈(0,π/2), we have that
LC(x)=l3(x)8/3≤G(x)≤l4(x)8/3=UC(x). | (1.17) |
where
τ=π4+960π2−30720(1−e−3/8)480π6≈−7.4e−5,l3(x)=1−18x2−11920x4−564512x6−1951609600x8andl4(x)=1−18x2−11920x4+τx6. |
Remark 1. This paper uses Maple software to deduce and verify the formulae and inequalities.
We introduce Theorem 3.5.1 in Page 67, Chapter 3.5 of [19] as follows.
Theorem 7. [19] Let w0, w1, ⋯, wr be r+1 distinct points in [a,b], and n0, ⋯, nr be r+1 integers ≥0. Let N=n0+⋯+nr+r. Suppose that γ(t) is a polynomial of degree N such that
γ(i)(wj)=β(i)(wj),i=0,⋯,nj,j=0,⋯,r. |
Then there exists ξ1(t)∈[a,b] such that
β(t)−γ(t)=β(N+1)(ξ1(t))(N+1)!r∏i=0(t−wi)ni+1. |
Lemma 1. For all x∈(0,π/2), we have that
Lcos(x)<cos(x)<Ucos(x),Lsin(x)<sin(x)<Usin(x), | (2.1) |
where
Lcos(x)=1−12x2+124x4−1720x6+−552960+61440π+40320π2−400π4+π6120π7x7−−967680+115200π+67200π2−600π4+π660π8x8+−1290240+161280π+86400π2−720π4+π690π9x9,Ucos(x)=1−12x2+124x4−1720x6+−138240+7680π+13440π2−200π4+π660π8x8−−184320+11520π+17280π2−240π4+π645π9x9,Lsin(x)=x−16x3+1120x5−−23040+8960π+80π2−200π3+π55π7x7+8(−30240+11520π+120π2−240π3+π5)15π8x8−2(−107520+40320π+480π2−800π3+3π5)15π9x9,Usin(x)=x−16x3+1120x5−15040x7+2903040−1290240π+40320π3−336π5+π71260π8x8−5160960−2257920π+67200π3−504π5+π71260π9x9. | (2.2) |
Proof. By using Maple software, it can be verified that
L(i)cos(0)=cos(i)(0),L(j)cos(π/2)=cos(j)(π/2),i=0,1,⋯,6,j=0,1,2,U(i)cos(0)=cos(i)(0),U(j)cos(π/2)=cos(j)(π/2),i=0,1,⋯,7,j=0,1,L(i)sin(0)=sin(i)(0),L(j)sin(π/2)=sin(j)(π/2),i=0,1,⋯,6,j=0,1,2,U(i)sin(0)=sin(i)(0),U(j)sin(π/2)=sin(j)(π/2),i=0,1,⋯,7,j=0,1. | (2.3) |
Combining Eq (2.3) with Theorem 7, for all x∈(0,π/2), there exists ξj(x)∈(0,π/2) such that
cos(x)−Lcos(x)=−cos(ξ2(x))10!(x−0)7(x−π/2)3>0,cos(x)−Ucos(x)=−cos(ξ3(x))10!(x−0)8(x−π/2)2<0,sin(x)−Lsin(x)=−sin(ξ4(x))10!(x−0)7(x−π/2)3>0,sin(x)−Usin(x)=−sin(ξ5(x))10!(x−0)8(x−π/2)2<0. | (2.4) |
From Eq (2.4), we have completed the proof.
Lemma 2. For all x∈(0,π/2), we have that
L1(x)<cos(x)<U1(x),L2(x)<sin(x)<U2(x), | (2.5) |
where
L1(x)=1−12x2+124x4−1720x6+140320x8−113541120−9461760π−9676800π2+125440π4−560π6+π81680π10x10+154828800−12902400π2−13547520π+161280π4−672π6+π8630π11x11−567705600−46448640π2−51609600π+564480π4−2240π6+3π82520π12x12,U1(x)=1−12x2+124x4−1720x6+140320x8−13628800x10+−22295347200+928972800π+2322432000π2−38707200π4+241920π6−720π8+π10907200π11x11−−40874803200+1857945600π+4180377600π2−67737600π4+403200π6−1080π8+π10907200π12x12,L2(x)=x−16x3+1120x5−15040x7+1362880x9−−743178240+340623360π−11612160π3+112896π5−480π7+π930240π11x11+−1021870080+464486400π−15482880π3+145152π5−576π7+π922680π12x12,U2(x)=x−16x3+1120x5−15040x7+1362880x9−139916800x11+π11−440π9+126720π7−21288960π5+1703116800π3−40874803200π+8174960640019958400π12x12. |
Proof. By using Maple software, it can be verified that
L(i)1(0)=cos(i)(0),L(j)1(π/2)=cos(j)(π/2),i=0,1,⋯,9,j=0,1,2,U(i)1(0)=cos(i)(0),U(j)1(π/2)=cos(j)(π/2),i=0,1,⋯,10,j=0,1,L(i)2(0)=sin(i)(0),L(j)2(π/2)=sin(j)(π/2),i=0,1,⋯,10,j=0,1,U(i)2(0)=sin(i)(0),U2(π/2)=sin(π/2),i=0,1,⋯,11, | (2.6) |
Combining Eq (2.6) with Theorem 7, for all x∈(0,π/2), there exists ξj(x)∈(0,π/2) such that
cos(x)−L1(x)=−sin(ξ6(x))13!(x−0)10(x−π/2)3>0,cos(x)−U1(x)=−sin(ξ7(x))13!(x−0)11(x−π/2)2<0,sin(x)−L2(x)=cos(ξ8(x))13!(x−0)11(x−π/2)2>0,sin(x)−U2(x)=cos(ξ9(x))13!(x−0)12(x−π/2)<0. | (2.7) |
From Eq (2.7), we have completed the proof.
Lemma 3. For all x∈(0,π/2), we have that
D(15)i(x)<0,i=1,2. | (2.8) |
where D1(x)=ln(l3(x)) and D2(x)=ln(l4(x)).
Proof. By using Maple software, it can be verified that D′i(x)=l′i+2(x)li+2(x) is a rational polynomial,
li(x)>0,i=3,4, for allx∈(0,π/2). | (2.9) |
and for all x∈(0,π/2],
κ1(x)=−601357663510275943710064566985421952632540401⋯⋅x100⋅(361x4−1140000x2+5946259200)<0,κ2(x)=980837x801965735739340225123543047⋯(71781353358054263567x18+18964520360911280155176x16+33375031220654552055567360x14+14106841255622101997491281920x12+3248943776681967096074187571200x10−654959394752487417649222542950400x8−785699728765653327813332252491776000x6−308271189865003934985922050916142284800x4−68195596361920188144587177147655782400000x2−7305787082896788623187918918629059461120000)≤980837x801965735739340225123543047⋯(71781353358054263567(π2)18+18964520360911280155176(π2)16+33375031220654552055567360(π2)14+14106841255622101997491281920(π2)12+3248943776681967096074187571200(π2)10−7305787082896788623187918918629059461120000)<0, | (2.10) |
κ3(x)=143x662383768320020⋯(39615448364964663661602091341417x12+25924702930522607920453711065067326x10+4152800481023073830237366768877141760x8+231631903261303024243219800545753015520x6−25827272873676080892589660652890180684800x4−5719039369320516436256950595322540776448000x2−345338587141699368149962328958128651059200000)≤143x662383768320020⋯(39615448364964663661602091341417(π2)12+25924702930522607920453711065067326(π2)10+4152800481023073830237366768877141760(π2)8+231631903261303024243219800545753015520(π2)6−345338587141699368149962328958128651059200000)<0,κ4(x)=143x564582189212530597⋯(22684720993522154880577344552574181x8+5172108906700221488632662399149638400x6+155423030137100025158843435168244172800x4−13720914824276998512226838815949728972800x2−901096344078465844454326452674876532326400)≤143x564582189212530597⋯(22684720993522154880577344552574181(π2)8+5172108906700221488632662399149638400(π2)6+155423030137100025158843435168244172800(π2)4−901096344078465844454326452674876532326400)<0,κ5(x)=143x481651517824⋯(5276194557590127438354017962781x6+679047775805399648766007542598188x4−8051331322034766931611685378561920x2−1023064843093424843631332985958417920)≤143x481651517824⋯(5276194557590127438354017962781(π2)6+679047775805399648766007542598188(π2)4−1023064843093424843631332985958417920)<0,κ6(x)=143x401777789⋯(115757114711216805713108695715x6+6832160916251525607179902820304x4−266942123356478045770045817856000x2−3863174129353738557505948552516800)≤143x401777789⋯(115757114711216805713108695715(π2)6+6832160916251525607179902820304(π2)4−3863174129353738557505948552516800)<0,κ7(x)=635462099385960525911937625063110229986056738920652958769673666560000000000x38−2019015⋯656130⋯x36−68975⋯9112⋯x34−372796⋯34173⋯x32−13690⋯25426⋯x30−43944⋯35314⋯x28−27072⋯94593⋯x26−40832⋯60341⋯x24−14896⋯10948⋯x22−79491⋯30792⋯x20−16220⋯36657⋯x18−12333⋯18183⋯x16−73029⋯79551⋯x14−10137⋯94704⋯x12−76318⋯73987⋯x10−37113⋯47352⋯x8−94727⋯23488⋯x6−78814⋯73400⋯x4−40202⋯3670016x2−86015174817327680≤635462099385960525911937625063110229986056738920652958769673666560000000000(π2)38−86015174817327680≈−262497<0, | (2.11) |
E1(x)=D(15)1(x)⋅(l3(x))15x=7∑i=1κi(x)<0, | (2.12) |
η0=−501275174400τ2+29031052054τ−32934084183163840≈−257631<0,η1=355687428096000τ3−3436731698400τ2+21858537600964τ−10472108717071310720≈−1071474<0,η2=1867358997504000τ3−5984900366445τ2+504250928181128τ−376459750738071524288000≈−1044095<0,η3=2906894736345600τ3−348388034044058τ2+299108147080743163840τ−23823291663171104857600≈−387838<0,η4=−422112055292928000τ4+2065840809832800τ3−216419474310039128τ2+57764529541719131072τ−6237493525215953201326592000≈−73853<0,η5=−432771562903680000τ4+824412507343425τ3−204729959729295512τ2+2095534282151313276800τ−1136803695066039536870912000≈−9414<0,η6=−220814343293544000τ4+4136972167077752τ3−201256973206789532768τ2+2396774801321901419430400τ−10786238873527117128849018880000≈−937<0,η7=34194277665580032000τ5−63764878829652000τ4+223136765119768564τ3−1662186846325005262144τ2+2084314737751145967108864000τ−6913753297150732212254720000≈−76.36<0,η8=8888648443234560000τ5−250788222177743252τ4+1045272345672555256τ3−46209424989618891104857600τ2+35670703901132333554432000τ−4764914086571639123695058124800000≈−5.3228<0,η9=3251404599835392000τ5−2662964961018862516τ4+1105187833069620332768τ3−2112612139196559104857600τ2+393340550790487316106127360000τ−503679452823547989560464998400000≈−0.32518<0,η10=−649691097802306560000τ6+364099278440898000τ5−41967486562066065256τ4+63946728967621532768τ3−204066233468097335544320τ2+341906440205338589934592000τ−291890139410875699868278390784000≈−0.1752e−1<0,η11=9788423214810240000τ6+1247666988027710252τ5−1425514496781375128τ4+10158075254136811310720τ3−10560561112101838860800τ2+1318010516812992748779069440000τ−190590582882747498902319923200000≈−0.8660e−3<0,η12=−25628792198079470400τ6+3114031445965440τ5−47521145583942038192τ4+109050917144469352428800τ3−15017093339938698053063680000τ2+2415102778988954975581388800000τ−188828640913913759982437118771200000000≈−0.3843e−4<0,η13=4296253386506425344000τ7+948846727455026400τ6+1142627403795777932τ5−123941262221676965536τ4+989335201624870125165824000τ3−8752384054313942949672960000τ2+309148868798779895604649984000000τ−14903574455771215971899390033920000000≈−1.443e−6<0, | (2.13) |
η14=−552784421551025664000τ7−285875484512337720τ6+1291924461885057256τ5−1382681237317680326214400τ4+34332694695599367108864000τ3−70496415876586741231686041600000τ2+109798311723163331869759897600000τ−47203108852997277751951202713600000000≈−7.042e−8<0,η15=129088195162140614400τ7+476858584150398454τ6+2850905743355369740960τ5−652812345105921104857600τ4+90542878684157916106127360000τ3−687104056538965970697666560000τ2+35891718373511455989462271262720000000τ−6514498991437749883780412211200000000≈−1.38e−9<0,η16=−11748882745396532736000τ8−11376739291162845600τ7−91416241580694038τ6−930716732606661163840τ5−6601548445401914194304000τ4+726707595313725769803776000τ3−3001905859252347498902319923200000τ2+4177122779831823957849085050880000000τ−44317620647310085757322300697346048000000000≈−5.275e−11<0,η17=1988151406283794752000τ8+1046938847799834990τ7+20136540963736197512τ6+874739950870886116384000τ5+12256533198912684354560τ4+205267872439634947802324992000τ3−2770404536937999121855938560000τ2+10444320987187549976756082442240000000τ−766075315379070571893705251225600000000≈−5.76e−12<0,η18=−295437322452046975200τ8−2247650852545548454τ7−3228389009358212720480τ6−41588393342195752428800τ5−298013423998291073741824000τ4−1183803150538246337208320000τ3−59397407769730399297484750848000000τ2−4436131723346660468288651264000000τ−5694098411290976937254489260294144000000000≈1.784e−13>0,η19=14318971616152659456000τ9+24560500189075250400τ8+15926830688875005964τ7+225102378844242965536τ6+13123877739142178388608000τ5+9212968754994294967296000τ4+271687633317111874725579980800000τ3+171523652327021597764222976000000τ2+11237273047672383821486713156403200000000τ+9319311290976937254489260294144000000000≈−3.839e−15<0,η20=−2447107716176323200000τ9−61094280671543369254τ8−36228261480215805512τ7−39483589177842816553600τ6−9974464207808167108864000τ5−3104215118104116492674416640000τ4−63361007717036874417766400000τ3−939528690132425917317067571200000000τ2−35614478913447676429734263128064000000000τ−1172271112393378597643096898823782400000000000≈−4.579e−16<0, | (2.14) |
η21=272910404440674000000τ9+197760704080246807532τ8+115145550376766918192τ7+1316464105777821209715200τ6+579226419361595368709120000τ5+1002435525091131941395333120000τ4+1383124041299455989462271262720000000τ3+5069354291167333023414432563200000000τ2+42742714941862699704736808960000000000τ+700733049009593714925063530086400000000000≈2.181e−17>0,η22=−7883647560616988160000τ10−17858968644337821000τ9−857120550698457045512τ8−109982711929790765536τ7−217696396358541150331648000τ6−91996855850921474836480000τ5−203410622314994997804639846400000τ4−974652679227994731135631360000000τ3−13547964433361919107433565782016000000000τ2−16116125819538745089785205882880000000000τ−7007356929303612121190686124933120000000000000≈−1.598e−19<0,η23=1183810760430217920000τ10+30445655179658969254τ9+6859153306380375256τ8+316513671387213326214400τ7+570908930491933554432000τ6+296631140705927487790694400000τ5+5406229829189995609279692800000τ4+1535577043437749883780412211200000000τ3+230530326895352859468526256128000000000τ2+700712393378597643096898823782400000000000τ≈−2.277e−20<0,η24=−97249615182395676000τ10−1554237627956763758τ9−1492499187357878765536τ8−101999314766349209715200τ7−1290882779886732212254720000τ6−44934917027329853488332800000τ5−19243247023911978924542525440000000τ4−637637875499767560824422400000000τ3−490496454884686272446301470720000000000τ2≈6.297e−22>0,η25=1880145000711065088000τ11+4435430454446191200τ10+850967115775276532τ9+523781479434213524288τ8+18686098941511677721600τ7+834475541917179869184000τ6+1103112011187472557998080000τ5+312442137295831396340203520000000τ4+63763710085757322300697346048000000000τ3≈4.511e−24>0,η26=−218958438542747904000τ11−2270153842610103452τ10−14607844288087051024τ9−9742692879819941943040τ8−3528746921726843545600τ7−509918308916492674416640000τ6−7014007379991218559385600000τ5−6376371750999535121648844800000000τ4≈−3.972e−25<0,η27=11986574582580998400τ11+2167838641767298516τ10+23606728244599565536τ9+570631798737209715200τ8+2550994345932212254720000τ7+1192381191979120929996800000τ6+70140074559894622712627200000000τ5≈2.113e−27>0, | (2.15) |
η28=−172947490910498304000τ12−316520163620060400τ11−997201323635517256τ10−1123302183003262144τ9−211137719793134217728000τ8−1302601385899345920000τ7−70140071424967069597696000000τ6≈9.467e−29>0,η29=13223813566227264000τ12+68484847135354652τ11+2682756587511512τ10+12751147308952428800τ9+3187414231073741824000τ8+100200182463372083200000τ7≈−8.915e−31<0,η30=−388408468866818400τ12−298162781566658τ11−894298105701327680τ10−373900527838860800τ9−6004999257698037760000τ8≈−9.443e−33<0,η31=4747592868834816000τ13+3829002679101600τ12+127080143194τ11+15896290412621440τ10+14665651402653184000τ9≈9.574e−35>0,η32=21021(−8665683185369088000000τ3−23413972008960000τ2−6349824000τ−1001)τ101048576000≈3.464e−37>0,η33=−63063(7978167042048000τ2+4690483200τ+611)τ11327680≈−3.151e−39<0,η34=−3972969(2611740672000τ2−34099200τ−13)τ12512≈−3.656e−42<0,η35=42567525(−12441600τ−7)τ134≈2.017e−44>0,η36=6810804000τ14≈1.0457e−48>0,η37=523069747200τ15≈−5.959e−51<0. | (2.16) |
E2(x)=D(15)2(x)⋅(l4(x))15x=37∑i=0ηix2i<x66(η36(π2)6+η35(π2)4+η33)+x58(η32(π2)6+η31(π2)4+η29)+x52(η28(π2)4+η27(π2)2+η26)+x44(η25(π2)6+η24(π2)4+η22)+x38(η21(π2)4+η19)+x34(η18(π2)2+η17)<0, | (2.17) |
Combining Eq (2.12) with (2.17), we have that
Ei(x)<0andD(15)i(x)<0,i=1,2,∀x∈(0,π/2), |
and complete the proof.
Lemma 4. For all x∈(0,π/2), we have that
LD,1(x)=14∑i=2μ1,ixi<ln(l3(x))=D1(x)<UD,1(x)=14∑i=2μ2,ixi,LD,2(x)=14∑i=2μ3,ixi<ln(l4(x))=D2(x)<UD,2(x)=14∑i=2μ4,ixi, | (2.18) |
where
ν1=ln(13212057600),ν2=(13212057600−412876800π2−430080π4−16000π6−19π8),ν3=ln(ν2),η1=3779309π24+6720029440π22+3475345121280π20+622471793868800π18+187109607473152000π16+15736038067745587200π14+2798286910500372480000π12+109303272939592876032000π10+7680310667432542863360000π8−8133028049070241873920000π6+27977616488801632046284800000π4−4809547467098178234561331200000π2+104935581100323888754065408000000,η2=3779309π24+6791004928π22+3602453504000π20+689363492536320π18+199672880902963200π16+19431451283108659200π14+3141898967936139264000π12+163065427523543236608000π10+10634276308752751656960000π8−11261115760251104133120000π6+38738238215263798217932800000π4−6659373415982092940161843200000π2+145295419985063845967167488000000,η3=3779309π24+6838321920π22+3687823319040π20+735100007874560π18+208667771771289600π16+22021651288188518400π14+3405862907714469888000π12+201890529314863054848000π10+13166246858455787765760000π8−13942333798406128926720000π6+47961628266517083507916800000π4−8244938515025448402105139200000π2+179889567600555237864112128000000,η4=3779309π24+6791004928π22+3602453504000π20+689363492536320π18+199672880902963200π16+19431451283108659200π14+3141898967936139264000π12+163065427523543236608000π10+10634276308752751656960000π8−11261115760251104133120000π6+38738238215263798217932800000π4−6659373415982092940161843200000π2+145295419985063845967167488000000,η5=233918951325696000π8+196984380063744000000π6+5294940136113438720000π4+5083142530668901171200000π2−162660560981404837478400000,η6=4128377π18+3922088640π16+496550154240π14+124846787788800π12+8842476362137600π10+408845184663552000π8+21520543521964032000π6+795816895457525760000π4+74129161905588142080000π2−5083142530668901171200000,μ1,2=−18,μ1,3=0,μ1,4=−1120,μ1,5=0,μ1,6=−11260,μ1,7=0,μ1,8=−112600,μ1,9=0,μ1,10=−104691238630400,μ1,11=0,μ1,12=19236755865600(−ν1+ν3)51609600π12+η151609600π10(ν3)2,μ1,13=26635508121600(ν1−ν3)19353600π13−η219353600(ν2)2π11,μ1,14=32977295769600(ν3−ν1)25804800π14+η325804800(ν2)2π12,μ2,2=−18,μ2,3=0,μ2,4=−1120,μ2,5=0,μ2,6=−11260,μ2,7=0,μ2,8=−112600,μ2,9=0,μ2,10=−104691238630400,μ2,11=0,μ2,12=−217283231211008000,μ2,13=26635508121600ν2(−ν1+ν3)173408256000π13+η4173408256000π11ν2,μ2,14=η5⋅(ν1−ν3)57802752000π14(−ν2)+η657802752000π12ν2, |
η7=983040−30720π2−32π4+11π6−983040e−3/8,η8=589824001843200π2−1920π4+511π6−58982400e−3/8,η9=30474240−952320π2−992π4+211π6−30474240e−3/8,η10=−1315543449600+25008537600π2+210370560π4+1643520π6+58344π8+633π10+(−271790899200+11324620800π2−112066560π4−122880π6−32π8)⋅e3/4,+(1494849945600−29255270400π2−14254080π4)⋅e3/8,+(−422785843200−7077888000π2−91422720π4)e−3/8,η11=(−645503385600+11324620800π2+93388800π4+983040π6+23536π8+211π10)+(−135895449600+5662310400π2−56033280π4−61440π6−16π8)e3/4+(724775731200−14155776000π2−6881280π4)e3/8+(−2831155200π2−181193932800−30474240π4)e−3/8,η12=−2514065817600+41523609600π2+342097920π4+3932160π6+78784π8+633π10+(−543581798400+22649241600π2−224133120π4−245760π6−64π8)e3/4+(2808505958400−54735667200π2−26542080π4)e3/8+(−634178764800−9437184000π2−91422720π4)e−3/8,η13=(5435817984000−169869312000π2−176947200π4+176947200π6)e−3/8−2717908992000e−3/4−2717908992000+169869312000π2−2477260800π4−182476800π6+5526720π8+5760π10−1021π12,η14=6115295232000−679477248000π2−10970726400π4−66355200π6+1468800π8−70200π10−1021π12+(−16307453952000+339738624000π2+176947200π4)e3/8−2717908992000e−3/4+(27179089920000+339738624000π2+10793779200π4+176947200π6)e−3/8,η15=18345885696000−1358954496000π2−16633036800π4−66355200π6−1296000π8−108180π10−1021π12+(43486543872000+679477248000π2+16279142400π4+176947200π6)e−3/8+(−32614907904000+679477248000π2+353894400π4)e3/8−2717908992000e−3/4,μ3,2=−18,μ3,3=0,μ3,4=−1120,μ3,5=0,μ3,6=−η715360π6,μ3,7=0,μ3,8=−η87372800π6,μ3,9=0,μ3,10=−η929491200π6,μ3,11=0,μ3,12=η103686400π12,μ3,13=−η11460800π13,μ3,14=η121843200π14,μ4,i=μ3,i,i=2,3,⋯,11,μ4,12=η131327104000π12,μ4,13=−η14331776000π14,μ4,14=η15331776000π14. |
Proof. By using Maple software, it can be verified that
L(i)D,1(0)=D(i)1(0),L(j)D,1(π/2)=D(j)1(π/2),i=0,1,⋯,11,j=0,1,2,U(i)D,1(0)=D(i)1(0),U(j)D,1(π/2)=D(j)1(π/2),i=0,1,⋯,12,j=0,1,L(i)D,2(0)=D(i)2(0),L(j)D,2(π/2)=D(j)2(π/2),i=0,1,⋯,11,j=0,1,2,U(i)D,2(0)=D(i)2(0),U(j)D,2(π/2)=D(j)2(π/2),i=0,1,⋯,12,j=0,1. | (2.19) |
Combing Eq (2.19) with Theorem 7, for all x∈(0,π/2), there exists ξi(x)∈(0,π/2) such that
{D1(x)−LD,1(x)=D(15)1(ξ10(x))15!(x−0)12(x−π/2)3,D1(x)−UD,1(x)=D(15)1(ξ11(x))15!(x−0)13(x−π/2)2,D2(x)−LD,2(x)=D(15)2(ξ12(x))15!(x−0)12(x−π/2)3,D2(x)−UD,2(x)=D(15)2(ξ13(x))15!(x−0)13(x−π/2)2. | (2.20) |
Combining Eq (2.20) with Lemma 3, we have that
{D1(x)−LD,1(x)>0,D1(x)−UD,1(x)<0,D2(x)−LD,2(x)>0,D2(x)−UD,2(x)<0,∀x∈(0,π/2). | (2.21) |
which is equivalent to Eq (2.18), and we complete the proof.
Prove that F(x)−l1(x)>0 and F(x)−l2(x)<0, for all x∈(0,π/2).
Let Ei+2(x)=(F(x)−li(x))⋅sin(x)=xcos(x)−(1+li(x))sin(x), i=1,2. It is equivalent to prove
E3(x)>0andE4(x)<0,for allx∈(0,π/2). | (3.1) |
For ∀x∈(0,π/2), note that 1+li(x)>0, i=1,2, combining with Lemma 1, we have that
ι0=−480π8(π6+42π4+2520π2−30240)≈1.4e+9>0,ι1=30π6(25π7−24528π5+2217600π3+3870720π2−26127360π−17418240)≈9.1e+8>0,ι2=9π5(3π9+140π7+100800π5−12364800π3−22579200π2+187084800π−12902400)≈−9.1e+7<0,ι3=6π4(19π9−2520π7+403200π5−13708800π3+29030400π2+19353600π−38707200)≈−6.0e+7<0,ι4=−π3(π11+10080π7−927360π5+29030400π3−38707200π2−232243200π+464486400)≈2.4e+6>0,ι5=2π2(π11−672π9+70560π7−1653120π5+5806080π4−29030400π3+38707200π2+232243200π−464486400)≈1.5e+6>0,ι6=4π(π7−168π5+13440π3−322560π+645120)(π4+60π2−720)≈−38685<0,ι7=−8(π4+60π2−720)(π7−504π5+67200π3−2257920π+5160960)≈−23533<0,E3(x)≥xLcos(x)−(1+l1(x))Usin(x)=(7∑i=0ιixi)⋅(π−2x)x7226800π15≥[(ι0+ι2(π2)2+ι3(π2)3)+x4(ι4+ι6(π2)2+ι7(π2)3)]⋅(π−2x)x7226800π15>0, | (3.2) |
ω0=−960π8(π4+210π2−2160)≈−9.1e+7<0,ω1=−5π6(5π7+144π5+178560π3−34560π2−4838400π+9953280)≈−3.6e+7<0,ω2=60π5(π7+480π5−28800π3+368640π−414720)≈5.9e+6>0,ω3=2π4(π9−180π7+86400π5−28800π4−3974400π3+8985600π2+12441600π−27648000)≈2.3e+6>0,ω4=−240π3(7π7−792π5+28800π3−46080π2−230400π+506880)≈−155620<0,ω5=−48π2(π9−120π7+80π6+120π5−23040π4+316800π3−499200π2−2534400π+5529600)≈−62280<0,ω6=64π(2π9+15π7+240π6−94800π5−10080π4+6422400π3−14227200π2−53913600π+140313600)≈2448>0,ω7=−(32(π4+360π2−3600))(3π5−800π3+480π2+40320π−107520)≈866>0,E4(x)≤xUcos(x)−(1+l2(x))Lsin(x)=(7∑i=0ωixi)⋅(π−2x)2x610800π15≤[(ω0+ω2(π2)2+ω3(π2)3)+x4(ω4+ω6(π2)2+ω7(π2)3)]⋅(π−2x)2x610800π15<0, | (3.3) |
Combining with Eq (3.2) and Eq (3.3), we have that E3(x)>0 and E4(x)<0, ∀x∈(0,π/2), and complete the proof of Eq (3.1).
It is equivalent to prove that for all x∈(0,π/2)
{8/3⋅D1(x)=8/3⋅ln(l3(x))<xcot(x)−1,xcot(x)−1<8/3⋅ln(l4(x))=8/3⋅D2(x),∀x∈(0,π/2). | (4.1) |
Let Ei+4(x)=(xcot(x)−1−8/3⋅Di(x))⋅sin(x)=xcos(x)−(1+8/3⋅Di(x))⋅sin(x), i=1,2. Eq (4.1) is equivalent to
E5(x)>0andE6(x)<0,∀x∈(0,π/2). | (4.2) |
By using Maple software, it can be verified that li(x)≥e−3/8 and 1+8/3⋅ln(li(x))>0, i=3,4. For all x∈(0,π/2), combining with Lemmas 2 and 4, we have that
E5(x)=xcos(x)−(1+8/3⋅Di(x))⋅sin(x)>xL1(x)−(1+8/3⋅UD,1(x))U2(x)=(15∑i=0μ5,ixi(π/2−x)15−i)⋅1467775π26x11,E6(x)=xcos(x)−(1+8/3⋅D2(x))⋅sin(x)<xU1(x)−(1+8/3⋅LD,2(x))⋅L2(x)=(19∑i=0μ6,ixi(π/2−x)19−i)⋅x7. | (4.3) |
For all ∀x∈(0,π/2), i=0,1,⋯,15 and j=0,1,⋯,19, we have that
xi(π/2−x)15−i>0,π−12x11>0,xj(π/2−x)19−j>0,π−11x7(π/2−x)>0,μ5,0=−2048μ2,28505π15+16384μ2,4945π15−32768μ2,645π15+131072μ2,89π15−262144μ2,103π15≈1.3e−9>0,μ5,1=−2048μ2,2567π15−1024μ2,38505π14+16384μ2,463π15+8192μ2,5945π14−32768μ2,63π15−16384μ2,745π14+655360μ2,83π15+65536μ2,99π14−1310720μ2,10π15−131072μ2,113π14≈1.9e−8>0,μ5,2=256(π2−46200)μ2,2467775π15−2048μ2,31215π14−512(π2−30240)μ2,48505π15+16384μ2,5135π14+4096(π2−17640)μ2,6945π15−229376μ2,745π14−8192(π2−8400)μ2,845π15+917504μ2,99π14+32768(π2−2520)μ2,109π15−1835008μ2,113π14−65536μ2,123π13≈1.3e−7>0,μ5,3=1024(3π11−49940π9−31680π7+5322240π5−425779200π3+10218700800π−20437401600)μ2,2467775π24+128(π2−40040)μ2,3467775π14−6656(π2−10080)μ2,48505π15−256(π2−26208)μ2,58505π14+53248(π2−5880)μ2,6945π15+2048(π2−15288)μ2,7945π14−106496(π2−2800)μ2,845π15−4096(π2−7280)μ2,945π14+425984(π2−840)μ2,109π15+16384(π2−2184)μ2,119π14−851968μ2,123π13−32768μ2,133π12≈6.0e−7>0,μ5,4=1024(3π11−49940π9−31680π7+5322240π5−425779200π3+10218700800π−20437401600)μ2,2467775π24+128(π2−40040)μ2,3467775π14−6656(π2−10080)μ2,48505π15−256(π2−26208)μ2,58505π14+53248(π2−5880)μ2,6945π15+2048(π2−15288)μ2,7945π14−106496(π2−2800)μ2,845π15−4096(π2−7280)μ2,945π14+425984(π2−840)μ2,109π15+16384(π2−2184)μ2,119π14−851968μ2,123π13−32768μ2,133π12≈1.8e−6>0,μ5,5=1024(π11−5874π9−38016π7+6386688π5−510935040π3+12262440960π−24524881920)μ2,28505π24+128(π11−7920π9−25344π7+4257792π5−340623360π3+8174960640π−16349921280)μ2,38505π23+128(π11−12540π9+38041344π7+2128896π5−170311680π3+4087480320π−8174960640)μ2,493555π22+32(π4−29040π2+126846720)μ2,5467775π14−1408(π4−7488π2+13208832)μ2,68505π15−64(π4−19008π2+48432384)μ2,78505π14+11264(π4−4368π2+3669120)μ2,8945π15+512(π4−11088π2+13453440)μ2,9945π14−22528(π4−2080π2+524160)μ2,1045π15−1024(π4−5280π2+1921920)μ2,1145π14+90112(π2−624)μ2,129π13+4096(π2−1584)μ2,139π12−180224μ2,143π11≈3.9e−6>0,μ5,6=256(3π11−12760π9−168960π7+28385280π5−2270822400π3+54499737600π−108999475200)μ2,22835π24+128(π11−5192π9−42240π7+7096320π5−567705600π3+13624934400π−27249868800)μ2,32835π23+64(3π11−20680π9+42197760π7+14192640π5−1135411200π3+27249868800π−54499737600)μ2,431185π22+32(3π11−32120π9+84522240π7+7096320π5−567705600π3+13624934400π−27249868800)μ2,5155925π21+16(π6−24200π4+90604800π2−106551244800)μ2,6467775π15−128(5π4−31680π2+48432384)μ2,78505π14−32(π6−15840π4+34594560π2−19372953600)μ2,88505π15+1024(π4−3696π2+2690688)μ2,9189π14+256(π6−9240π4+9609600π2−1614412800)μ2,10945π15−2048(π4−1760π2+384384)μ2,119π14−512(π4−4400π2+1372800)μ2,1245π13+40960(π2−528)μ2,139π12+2048(π2−1320)μ2,149π11≈6.6e−6>0, | (4.4) |
μ5,7=2048(π11−3300π9−79200π7+13305600π5−1064448000π3+25546752000π−51093504000)μ2,24725π24+256(π11−3784π9−63360π7+10644480π5−851558400π3+20437401600π−40874803200)μ2,32835π23+512(π11−4554π9+6747840π7+7983360π5−638668800π3+15328051200π−30656102400)μ2,431185π22+128(π11−5940π9+10538880π7+5322240π5−425779200π3+10218700800π−20437401600)μ2,551975π21+128(π11−9020π9+20370240π7−17121646080π5−212889600π3+5109350400π−10218700800)μ2,6467775π20+8(π6−19800π4+62726400π2−63930746880)μ2,7467775π14−32(π6−5280π4+6918912π2−2767564800)μ2,8945π15−16(π6−12960π4+23950080π2−11623772160)μ2,98505π14+256(π6−3080π4+1921920π2−230630400)μ2,10105π15+128(π6−7560π4+6652800π2−968647680)μ2,11945π14−512(3π4−4400π2+823680)μ2,1215π13−256(π4−3600π2+950400)μ2,1345π12+2048(π2−440)μ2,14π11≈8.5e−6>0,μ5,8=1024(7π11−18810π9−760320π7+127733760π5−10218700800π3+245248819200π−490497638400)μ2,214175π24+256(7π11−20680π9−633600π7+106444800π5−8515584000π3+204374016000π−408748032000)μ2,314175π23+128(7π11−23408π9+26674560π7+85155840π5−6812467200π3+163499212800π−326998425600)μ2,431185π22+128(7π11−27720π9+35861760π7+63866880π5−5109350400π3+122624409600π−245248819200)μ2,5155925π21+64(π11−5060π9+7729920π7−4886576640π5−486604800π3+11678515200π−23357030400)μ2,666825π20+8(π11−7480π9+14319360π7−10434631680π5−243302400π3+5839257600π−11678515200)μ2,766825π19+4(π8−15840π6+41817600π4−36531855360π2+10959556608000)μ2,8467775π15−128(π6−4320π4+4790016π2−1660538880)μ2,98505π14−8(π8−10368π6+15966720π4−6642155520π2+597793996800)μ2,108505π15+1024(π6−2520π4+1330560π2−138378240)μ2,11945π14+64(π6−6048π4+4435200π2−553512960)μ2,12945π13−2048(π4−1200π2+190080)μ2,1345π12−128(π2−2640)(π2−240)μ2,1445π11≈8.5e−6>0,μ5,9=2048(9π11−20405π9−1330560π7+223534080π5−17882726400π3+429185433600π−858370867200)μ2,242525π24+256(π11−2420π9−126720π7+21288960π5−1703116800π3+40874803200π−81749606400)μ2,32025π23+256(21π11−55220π9+50635200π7+372556800π5−29804544000π3+715309056000π−1430618112000)μ2,4155925π22+64(3π11−8800π9+8807040π7+42577920π5−3406233600π3+81749606400π−163499212800)μ2,522275π21+128(7π11−23870π9+26737920π7−13244394240π5−5960908800π3+143061811200π−286123622400)μ2,6467775π20+8(3π11−12760π9+16600320π7−9111674880π5−1703116800π3+40874803200π−81749606400)μ2,766825π19+8(3π11−18260π9+29208960π7−18255283200π5+4261198233600π3+20437401600π−40874803200)μ2,8467775π18+2(π8−12320π6+26611200π4−19670999040π2+5114459750400)μ2,9467775π14−8(π8−3456π6+3193344π4−948879360π2+66421555200)μ2,101215π15−4(π8−8064π6+10160640π4−3576545280π2+278970531840)μ2,118505π14+64(π6−2016π4+887040π2−79073280)μ2,12135π13+32(π6−4704π4+2822400π2−298045440)μ2,13945π12−896(π4−960π2+126720)μ2,1445π11≈6.7e−6>0, | (4.5) |
μ5,10=256(3π11−5896π9−608256π7+102187008π5−8174960640π3+196199055360π−392398110720)μ2,22835π24+256(3π11−6160π9−532224π7+89413632π5−7153090560π3+171674173440π−343348346880)μ2,38505π23+128(7π11−15180π9+11620224π7+178827264π5−14306181120π3+343348346880π−686696693760)μ2,431185π22+64(7π11−16280π9+13207040π7+149022720π5−11921817600π3+286123622400π−572247244800)μ2,551975π21+32(7π11−17864π9+15599232π7−6273856512π5−9537454080π3+228898897920π−457797795840)μ2,693555π20+8(7π11−20328π9+19540224π7−8434685952π5−7153090560π3+171674173440π−343348346880)μ2,793555π19+4(π11−3520π9+3852288π7−1818077184π5+340282736640π3+16349921280π−32699842560)μ2,831185π18+2(π11−4840π9+6361344π7−3367913472π5+681587343360π3+8174960640π−16349921280)μ2,993555π17+(π10−9240π8+15966720π6−9835499520π4+2191911321600π2−122747034009600)μ2,10467775π15−8(π8−2688π6+2032128π4−510935040π2+30996725760)μ2,112835π14−2(π8−6048π6+6096384π4−1788272640π2+119558799360)μ2,128505π13+64(π6−1568π4+564480π2−42577920)μ2,13315π12+16(π6−3528π4+1693440π2−149022720)μ2,14945π11≈4.2e−6>0,μ5,11=1024(π11−1740π9−285120π7+47900160π5−3832012800π3+91968307200π−183936614400)μ2,28505π24+128(3π11−5368π9−760320π7+127733760π5−10218700800π3+245248819200π−490497638400)μ2,38505π23+512(3π11−5555π9+3659040π7+111767040π5−8941363200π3+214592716800π−429185433600)μ2,493555π22+128(7π11−13530π9+9240000π7+223534080π5−17882726400π3+429185433600π−858370867200)μ2,5155925π21+128(7π11−14300π9+10216800π7−3446150400π5−14902272000π3+357654528000π−715309056000)μ2,6467775π20+8(7π11−15400π9+11658240π7−4113027072π5−11921817600π3+286123622400π−572247244800)μ2,793555π19+16(π11−2442π9+1995840π7−745113600π5+114960384000π3+30656102400π−61312204800)μ2,893555π18+4(π11−2860π9+2597760π7−1043159040π5+169630433280π3+20437401600π−40874803200)μ2,993555π17+4(π11−3740π9+3960000π7−1751016960π5+304006348800π3−13938307891200π−20437401600)μ2,10467775π16+(π10−6600π8+8870400π6−4470681600π4+843042816000π2−40915678003200)μ2,11935550π14−2(5π8−10080π6+6096384π4−1277337600π2+66421555200)μ2,128505π13−(π8−4320π6+3386880π4−812851200π2+45984153600)μ2,138505π12+16(π6−1176π4+338688π2−21288960)μ2,14189π11≈2.0e−6>0,μ5,12=512(3π11−4700π9−1267200π7+212889600π5−17031168000π3+408748032000π−817496064000)μ2,242525π24+128(π11−1592π9−380160π7+63866880π5−5109350400π3+122624409600π−245248819200)μ2,38505π23+64(9π11−14608π9+8490240π7+510935040π5−40874803200π3+980995276800π−1961990553600)μ2,493555π22+128(9π11−14960π9+8870400π7+447068160π5−35765452800π3+858370867200π−1716741734400)μ2,5467775π21+64(7π11−11990π9+7286400π7−2123573760π5−23843635200π3+572247244800π−1144494489600)μ2,6467775π20+8(21π11−37400π9+23443200π7−7004067840π5−59609088000π3+1430618112000π−2861236224000)μ2,7467775π19+4(3π11−5632π9+3674880π7−1132572672π5+148171161600π3+163499212800π−326998425600)μ2,893555π18+4(π11−2024π9+1393920π7−447068160π5+60290334720π3+40874803200π−81749606400)μ2,993555π17+2(3π11−6820π9+5068800π7−1713761280π5+240139468800π3−9217268121600π−163499212800)μ2,10467775π16+(3π11−8360π9+6969600π7−2533386240π5+372982579200π3−14837553561600π−81749606400)μ2,11935550π15 | (4.6) |
+(π10−4400π8+4435200π6−1788272640π4+281014272000π2−11690193715200)μ2,121871100π13−4(π8−1440π6+677376π4−116121600π2+5109350400)μ2,138505π12−(π8−2880π6+1693440π4−325140480π2+15328051200)μ2,1417010π11≈7.1e−7>0,μ5,13=1024(π11−1430π9−696960π7+117089280π5−9367142400π3+224811417600π−449622835200)μ2,2155925π24+128(π11−1440π9−633600π7+106444800π5−8515584000π3+204374016000π−408748032000)μ2,342525π23+128(π11−1452π9+760320π7+95800320π5−7664025600π3+183936614400π−367873228800)μ2,493555π22+32(3π11−4400π9+2323200π7+255467520π5−20437401600π3+490497638400π−980995276800)μ2,5155925π21+128(π11−1485π9+792000π7−204906240π5−5960908800π3+143061811200π−286123622400)μ2,6467775π20+8(7π11−10560π9+5702400π7−1490227200π5−35765452800π3+858370867200π−1716741734400)μ2,7467775π19+8(π11−1540π9+844800π7−223534080π5+25546752000π3+102187008000π−204374016000)μ2,8155925π18+2(π11−1584π9+887040π7−238436352π5+27590492160π3+81749606400π−163499212800)μ2,993555π17+4(π11−1650π9+950400π7−260789760π5+30656102400π3−1011651379200π−122624409600)μ2,10467775π16+(π11−1760π9+1056000π7−298045440π5+35765452800π3−1198994227200π−81749606400)μ2,11311850π15+(π11−1980π9+1267200π7−372556800π5+45984153600π3−1573679923200π−40874803200)μ2,12935550π14+π10−2640π8+1900800π6−596090880π4+76640256000π2−2697737011200)μ2,133742200π12−(π8−960π6+338688π4−46448640π2+1703116800)μ2,145670π11≈1.7e−7>0,μ5,14=256(π11−1320π9−1520640π7+255467520π5−20437401600π3+490497638400π−980995276800)μ2,2467775π24+128(π11−1320π9−1393920π7+234178560π5−18734284800π3+449622835200π−899245670400)μ2,3467775π23+64(π11−1320π9+633600π7+212889600π5−17031168000π3+408748032000π−817496064000)μ2,4467775π22+32(π11−1320π9+633600π7+191600640π5−15328051200π3+367873228800π−735746457600)μ2,5467775π21+16(π11−1320π9+633600π7−149022720π5−13624934400π3+326998425600π−653996851200)μ2,6467775π20+8(π11−1320π9+633600π7−149022720π5−11921817600π3+286123622400π−572247244800)μ2,7467775π19+4(π11−1320π9+633600π7−149022720π5+15328051200π3+245248819200π−490497638400)μ2,8467775π18+2(π11−1320π9+633600π7−149022720π5+15328051200π3+204374016000π−408748032000)μ2,9467775π17+(π11−1320π9+633600π7−149022720π5+15328051200π3−449622835200π−326998425600)μ2,10467775π16+(π11−1320π9+633600π7−149022720π5+15328051200π3−449622835200π−245248819200)μ2,11935550π15+(π11−1320π9+633600π7−149022720π5+15328051200π3−449622835200π−163499212800)μ2,121871100π14+(π11−1320π9+633600π7−149022720π5+15328051200π3−449622835200π−81749606400)μ2,133742200π13+(π10−1320π8+633600π6−149022720π4+15328051200π2−449622835200)μ2,147484400π11≈2.7e−8>0,μ5,15=−65536(π7−168π5+13440π3−322560π+645120)μ2,2945π24−32768(π7−168π5+13440π3−322560π+645120)μ2,3945π23+131072(π5−80π3+1920π−3840)μ2,445π22+65536(π5−80π3+1920π−3840)μ2,545π21−524288(π3−24π+48)μ2,69π20−262144(π3−24π+48)μ2,79π19+1048576(π−2)μ2,83π18+524288(π−2)μ2,93π17−524288μ2,103π16−262144μ2,113π15−131072μ2,123π14−65536μ2,133π13−32768μ2,143π12≈1.9e−9>0, | (4.7) |
μ6,0=−524288μ3,245π19+2097152μ3,49π19−4194304μ3,63π19≈−7.5e−8<0;μ6,1=−9961472μ3,245π19−262144μ3,345π18+39845888μ3,49π19+1048576μ3,59π18−79691776μ3,63π19−2097152μ3,73π18≈−1.4e−6<0;μ6,2=65536(π2−28728)μ3,2945π19−524288μ3,35π18−131072(π2−13680)μ3,445π19+2097152μ3,5π18+524288(π2−4104)μ3,69π19−12582912μ3,7π18−1048576μ3,83π17≈−1.2e−5<0;μ6,3=1114112(π2−9576)μ3,2945π19+32768(π2−25704)μ3,3945π18−2228224(π2−4560)μ3,445π19−65536(π2−12240)μ3,545π18+8912896(π2−1368)μ3,69π19+262144(π2−3672)μ3,79π18−17825792μ3,83π17−524288μ3,93π16≈−7.3e−5<0;μ6,4=−2048(π4−39168π2+187536384)μ3,28505π19+524288(π2−8568)μ3,3945π18+16384(π4−22848π2+52093440)μ3,4945π19−1048576(π2−4080)μ3,545π18−32768(π4−10880π2+7441920)μ3,645π19+4194304(π2−1224)μ3,79π18+131072(π2−3264)μ3,89π17−8388608μ3,93π16−262144μ3,103π15≈−2.9e−4<0;μ6,5=−2048(5π4−65280π2+187536384)μ3,22835π19−1024(π4−34560π2+148055040)μ3,38505π18+16384μ3,463π19⋅(π4−7616π2+10418688)+8192(π4−20160π2+41126400)μ3,5945π18−32768(3π4−10880π2+4465152)μ3,69π19−16384(π4−9600π2+5875200)μ3,745π18+655360(π2−1088)μ3,83π17+65536(π2−2880)μ3,99π16−1310720μ3,10π15−131072μ3,113π14≈−8.7e−4<0;μ6,6=−4096(17π9−114000π7+218736000π5+5806080π3−170311680π+371589120)μ3,22835π24−2048(π4−11520π2+29611008)μ3,31215π18−512(π6−30240π4+115153920π2−105020375040)μ3,48505π19+16384(π4−6720π2+8225280)μ3,5135π18+4096(π6−17640π4+31987200π2−8751697920)μ3,6945π19−229376(π4−3200π2+1175040)μ3,745π18−8192(π4−8400π2+4569600)μ3,845π17+917504(π2−960)μ3,99π16+32768(π2−2520)μ3,109π15−1835008μ3,113π14−65536μ3,123π13≈−2.0e−3<0;μ6,7=−4096(209π9−882288π7+1216930176π5+210954240π3−6177669120π+13470105600)μ3,28505π24−8192(11π9−65340π7+112232736π5+4354560π3−127733760π+278691840)μ3,38505π23−6656(π6−10080π4+23030784π2−15002910720)μ3,48505π19−256(π6−26208π4+88058880π2−71856046080)μ3,58505π18+53248(π6−5880π4+6397440π2−1250242560)μ3,6945π19+2048(π6−15288π4+24460800π2−5988003840)μ3,7945π18−106496(π4−2800π2+913920)μ3,845π17−4096(π4−7280π2+3494400)μ3,945π16+425984(π2−840)μ3,109π15+16384(π2−2184)μ3,119π14−851968μ3,123π13−32768μ3,133π12≈−3.7e−3<0;μ6,8=−2048(385π9−1155264π7+1211341824π5+781885440π3−22852730880π+49792942080)μ3,22835π24−2048(55π9−206976π7+255999744π5+64512000π3−1888911360π+4118446080)μ3,32835π23−512(25π9−130560π7+199487232π5−97507307520π3−340623360π+743178240)μ3,42835π22−1024(π6−8736π4+17611776π2−10265149440)μ3,52835π18 | (4.8) |
−128(π8−22464π6+66044160π4−47904030720π2+7021362216960)μ3,68505π19+8192(π6−5096π4+4892160π2−855429120)μ3,7315π18+1024(π6−13104π4+18345600π2−3992002560)μ3,8945π17−16384(3π4−7280π2+2096640)μ3,945π16−2048(π4−6240π2+2620800)μ3,1045π15+65536(π2−728)μ3,113π14+8192(π2−1872)μ3,129π13−131072μ3,13π12−16384μ3,143π11≈−5.6e−3<0;μ6,9=−22528(23π9−53184π7+44362752π5+79994880π3−2332753920π+5078384640)μ3,2945π24−11264(25π9−67392π7+63576576π5+59351040π3−1734082560π+3777822720)μ3,32835π23−512(85π9−283392π7+312512256π5−119072378880π3−3437199360π+7493713920)μ3,42835π22−256(7π9−31872π7+43013376π5−18815569920π3−113541120π+247726080)μ3,5945π21−1408(π8−7488π6+13208832π4−6843432960π2+780151357440)μ3,68505π19−64(π8−19008π6+48432384π4−30996725760π2+4064999178240)μ3,78505π18+11264(π6−4368π4+3669120π2−570286080)μ3,8945π17+512(π6−11088π4+13453440π2−2583060480)μ3,9945π16−22528(π4−2080π2+524160)μ3,1045π15−1024(π4−5280π2+1921920)μ3,1145π14+90112(π2−624)μ3,129π13+4096(π2−1584)μ3,139π12−180224μ3,143π11≈−6.8e−3<0;μ6,10=−90112(25π9−47160π7+32510016π5+137088000π3−3986841600π+8670412800)μ3,22835π24−45056(11π9−23040π7+17377920π5+45158400π3−1316044800π+2864332800)μ3,32835π23−1024(19π9−45792π7+38683008π5−11865434112π3−1563770880π+3406233600)μ3,4567π22−16384(π9−2934π7+2866752π5−978526080π3−48384000π+105477120)μ3,52835π21−512(13π9−51120π7+60455808π5−23515591680π3+2145160765440π+557383680)μ3,68505π20−128(5π8−31680π6+48432384π4−22140518400π2+2258332876800)μ3,78505π18−32(π8−15840π6+34594560π4−19372953600π2+2258332876800)μ3,88505π17+1024(π6−3696π4+2690688π2−369008640)μ3,9189π16+256(π6−9240π4+9609600π2−1614412800)μ3,10945π15−2048(π4−1760π2+384384)μ3,119π14−512(π4−4400π2+1372800)μ3,1245π13+40960(π2−528)μ3,139π12+2048(π2−1320)μ3,149π11≈−6.8e−3<0;μ6,11=−8192(99π9−158840π7+93465792π5+819624960π3−23758479360π+51604439040)μ3,2945π24−90112(7π9−12060π7+7566048π5+45964800π3−1335398400π+2903040000)μ3,32835π23−1024(49π9−92640π7+62966400π5−16011233280π3−7044710400π+15328051200)μ3,4945π22−512(π9−2144π7+1613952π5−444672000π3−99532800π+216760320)μ3,545π21−512(5π9−12816π7+11021184π5−3350522880π3+250467655680π+643645440)μ3,61215π20 | (4.9) |
−128(π9−3360π7+3451392π5−1185269760π3+96761364480π+53084160)μ3,7405π19−32(π8−5280π6+6918912π4−2767564800π2+250925875200)μ3,8945π17−16(π8−12960π6+23950080π4−11623772160π2+1195587993600)μ3,98505π16+256(π6−3080π4+1921920π2−230630400)μ3,10105π15+128(π6−7560π4+6652800π2−968647680)μ3,11945π14−512(3π4−4400π2+823680)μ3,1215π13−256(π4−3600π2+950400)μ3,1345π12+2048(π2−440)μ3,14π11≈−5.5e−3<0;μ6,12=−2048(319π9−449152π7+231856128π5+3917168640π3−113086955520π+245248819200)μ3,2945π24−4096(143π9−211200π7+113944320π5+1447649280π3−41896673280π+90946437120)μ3,32835π23−1024(161π9−252720π7+144006912π5−31209615360π3−37623398400π+81749606400)μ3,42835π22−2048(7π9−11904π7+7268352π5−1668280320π3−1238630400π+2694021120)μ3,5945π21−256(17π9−32256π7+21534336π5−5305098240π3+332253757440π+4565237760)μ3,61215π20−128(7π9−15552π7+11688192π5−3145236480π3+210651217920π+1128038400)μ3,71215π19−32(11π9−31200π7+27562752π5−8291082240π3+601881477120π+743178240)μ3,82835π18−128(π8−4320π6+4790016π4−1660538880π2+132843110400)μ3,98505π16−8(π8−10368π6+15966720π4−6642155520π2+597793996800)μ3,108505π15+1024(π6−2520π4+1330560π2−138378240)μ3,11945π14+64(π6−6048π4+4435200π2−553512960)μ3,12945π13−2048(π4−1200π2+190080)μ3,1345π12−128(π2−2640)(π2−240)μ3,1445π11≈−3.6e−3<0;μ6,13=−2048(1705π9−2157696π7+999806976π5+31167037440π3−895158190080π+1937465671680)μ3,28505π24−1024(55π9−71808π7+34255872π5+851558400π3−24524881920π+53137244160)μ3,3405π23−1024(125π9−169680π7+83881728π5−15904788480π3−46169948160π+100143267840)μ3,42835π22−512(11π9−15696π7+8112384π5−1598607360π3−3251404800π+7060193280)μ3,5405π21−256(133π9−202752π7+110920320π5−22922403840π3+1230331576320π+65028096000)μ3,68505π20−256(5π9−8352π7+4923072π5−1079930880π3+60801269760π+1718599680)μ3,71215π19−32(65π9−124128π7+80946432π5−19160064000π3+1143472619520π+13563002880)μ3,88505π18−16(25π9−59040π7+44368128π5−11588935680π3+742899548160π+2229534720)μ3,98505π17−8(π8−3456π6+3193344π4−948879360π2+66421555200)μ3,101215π15−4(π8−8064π6+10160640π4−3576545280π2+278970531840)μ3,118505π14+64(π6−2016π4+887040π2−79073280)μ3,12135π13+32(π6−4704π4+2822400π2−298045440)μ3,13945π12 | (4.10) |
−896(π4−960π2+126720)μ3,1445π11≈−1.9e−3<0;μ6,14=−4096(121π9−140208π7+59439744π5+3384944640π3−96566722560π+208461496320)μ3,22835π24−2048(275π9−324864π7+140216832π5+6642155520π3−190067834880π+410791772160)μ3,38505π23−512(15π9−18144π7+8003072π5−1359912960π3−8814919680π+19074908160)μ3,4315π22−8192(π9−1246π7+564480π5−98219520π3−487710720π+1056706560)μ3,5945π21−512(49π9−63432π7+29719872π5−5324175360π3+250869104640π+41617981440)μ3,68505π20−128(7π9−9536π7+4666368π5−867041280π3+42123755520π+4551966720)μ3,7945π19−32(25π9−36576π7+18966528π5−3692666880π3+186320977920π+11519262720)μ3,82835π18−128(5π9−8136π7+4572288π5−946391040π3+50071633920π+1416683520)μ3,98505π17−16(π9−1936π7+1223040π5−274821120π3+15441592320π+123863040)μ3,10945π16−8(π8−2688π6+2032128π4−510935040π2+30996725760)μ3,112835π14−2(π8−6048π6+6096384π4−1788272640π2+119558799360)μ3,128505π13+64(π6−1568π4+564480π2−42577920)μ3,13315π12+16(π6−3528π4+1693440π2−149022720)μ3,14945π11≈−8.3e−4<0;μ6,15=−4096(35π9−37680π7+14845824π5+1596672000π3−45132595200π+97077657600)μ3,22835π24−16384(11π9−11970π7+4762800π5+439084800π3−12454041600π+26824089600)μ3,38505π23−512(29π9−31968π7+12870144π5−2001936384π3−28426567680π+61312204800)μ3,41701π22−256(13π9−14560π7+5945856π5−936714240π3−10838016000π+23410114560)μ3,5945π21−512(23π9−26280π7+10922688π5−1747630080π3+74085580800π+34464890880)μ3,68505π20−128(35π9−41040π7+17442432π5−2844979200π3+122624409600π+42268262400)μ3,78505π19−32(17π9−20640π7+9031680π5−1509580800π3+66421555200π+15792537600)μ3,82835π18−16(7π9−8928π7+4064256π5−701374464π3+31677972480π+4644864000)μ3,91701π17−16(11π9−15120π7+7281792π5−1312174080π3+61312204800π+4551966720)μ3,108505π16−16(π9−1560π7+818496π5−156764160π3+7664025600π+185794560)μ3,112835π15−2(5π8−10080π6+6096384π4−1277337600π2+66421555200)μ3,128505π13−π8−4320π6+3386880π4−812851200π2+45984153600)μ3,138505π12+16(π6−1176π4+338688π2−21288960)μ3,14189π11≈−2.7e−4<0;μ6,16=−2048(37π9−37440π7+13886208π5+3150766080π3−87880826880π+188024094720)μ3,28505π24 | (4.11) |
−2048(17π9−17280π7+6435072π5+1277337600π3−35765452800π+76640256000)μ3,38505π23−512(31π9−31680π7+11854080π5−1718599680π3−57131827200π+122624409600)μ3,48505π22−1024(7π9−7200π7+2709504π5−394813440π3−11147673600π+23967498240)μ3,58505π21−128(25π9−25920π7+9821952π5−1439907840π3+56202854400π+72831467520)μ3,68505π20−128(11π9−11520π7+4402944π5−650280960π3+25546752000π+26661519360)μ3,78505π19−32(19π9−20160π7+7789824π5−1161216000π3+45984153600π+37158912000)μ3,88505π18−256(π9−1080π7+423360π5−63866880π3+2554675200π+1509580800)μ3,98505π17−8(13π9−14400π7+5757696π5−882524160π3+35765452800π+14120386560)μ3,108505π16−8(5π9−5760π7+2370816π5−371589120π3+15328051200π+3437199360)μ3,118505π15−2(7π9−8640π7+3725568π5−603832320π3+25546752000π+2229534720)μ3,128505π14−4(π8−1440π6+677376π4−116121600π2+5109350400)μ3,138505π12−π8−2880π6+1693440π4−325140480π2+15328051200)μ3,1417010π11≈−6.8e−5<0;μ6,17=−2048(π9−960π7+338688π5+224501760π3−6131220480π+13005619200)μ3,22835π24−1024(π9−960π7+338688π5+198696960π3−5449973760π+11581194240)μ3,32835π23−512(π9−960π7+338688π5−46448640π3−4799692800π+10218700800)μ3,42835π22−256(π9−960π7+338688π5−46448640π3−4180377600π+8918138880)μ3,52835π21−128(π9−960π7+338688π5−46448640π3+1703116800π+7679508480)μ3,62835π20−64(π9−960π7+338688π5−46448640π3+1703116800π+6502809600)μ3,72835π19−32(π9−960π7+338688π5−46448640π3+1703116800π+5388042240)μ3,82835π18−16(π9−960π7+338688π5−46448640π3+1703116800π+4335206400)μ3,92835π17−8(π9−960π7+338688π5−46448640π3+1703116800π+3344302080)μ3,102835π16−4(π9−960π7+338688π5−46448640π3+1703116800π+2415329280)μ3,112835π15−2(π9−960π7+338688π5−46448640π3+1703116800π+1548288000)μ3,122835π14−π9−960π7+338688π5−46448640π3+1703116800π+743178240)μ3,132835π13−π8−960π6+338688π4−46448640π2+1703116800)μ3,145670π11≈−1.2e−5<0;μ6,18=−8388608(7π3−184π+384)μ3,23π24−16777216(5π3−132π+276)μ3,39π23+16777216(21π−44)μ3,43π22+16777216(10π−21)μ3,53π21−167772160μ3,63π20−79691776μ3,73π19−12582912μ3,8π18−17825792μ3,93π17−8388608μ3,103π16−1310720μ3,11π15−1835008μ3,123π14−851968μ3,133π13−131072μ3,14π12≈−1.3e−6<0; | (4.12) |
μ6,19=−8388608(π3−24π+48)μ3,29π24−4194304(π3−24π+48)μ3,39π23+16777216(π−2)μ3,43π22+8388608(π−2)μ3,53π21−8388608μ3,63π20−4194304μ3,73π19−2097152μ3,83π18−1048576μ3,93π17−524288μ3,103π16−262144μ3,113π15−131072μ3,123π14−65536μ3,133π13−32768μ3,143π12≈−6.8e−8<0. | (4.13) |
From Eqs (4.3–4.13), we have that
E5(x)>0andE6(x)<0,∀x∈(0,π/2), |
and complete the proof.
It can be verified that
l(i)zhu(0)=ˉG(i)(0),i=0,1,⋯,10, | (5.1) |
u(i)zhu(0)=ˉG(i)(0),l(j)zhu(π/2)=ˉG(j)(π/2),i=0,1,⋯,6,j=0,1, | (5.2) |
where ˉG(x)=(G(x))2/5. From the constraints in Eq (5.1) and Eq (5.2), we can recover the resulting bounds lzhu(x) and uzhu(x) in Eq (1.13). In principle, one can find much better bounds by adding other more constraints. Figure 1 shows the error plots of LC(x)−LZhu(x) and UC(x)−UZhu(x). It shows that LZhu(x)<LC(x)<G(x)<UC(x)<UZhu(x), for all x∈(0,π/2).
This paper provides a new method to find better bounds for the exponential function with cotangent, by using the interpolation constraints at two end-points of the parametric interval. Many previous results can be recovered by using the new method in this paper. Usually, more constraints, much tighter bounds. In principle, it can be directly extended to more cases with other functions. Moreover, it also presents a new method for proving the corresponding bounds, instead of prevailing methods based on the monotonicity of some special functions.
We would like to thank you for following the instructions above very closely in advance. It will definitely save us lot of time and expedite the process of your paper's publication. This research work was partially supported by Zhejiang Key Research and Development Project of China (LY19F020041, LY18F020016, 2018C01030), the National Natural Science Foundation of China (61972120, 61672009, 61972122).
The authors declare that they have no conflict interests.
[1] | M. Becker, E. L. Stark, On a hierarchy of quolynomial inequalities for tan(x), Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz., 602/633 (1978), 133-138. |
[2] | F. Qi, Derivatives of tangent function and tangent numbers, Appl. Math. Comput., 268 (2015), 844-858 . |
[3] |
L. Zhu, J. J. Sun, Six new Redheffer-type inequalities for circular and hyperbolic functions, Comput. Math. Appl., 56 (2008), 522-529. doi: 10.1016/j.camwa.2008.01.012
![]() |
[4] | L. Zhu, J. K. Hua, Sharpening the Becker-Stark inequalities, J. Inequal. Appl., 2010 (2010), 931275. |
[5] | Z. J. Sun, L. Zhu, Simple proofs of the Cusa-Huygens-type and Becker-Stark-type inequalities, J. Math. Inequal., 7 (2013), 563-567. |
[6] |
L. Debnath, C. Mortici, L. Zhu, Refinements of Jordan-Steckin and Becker-Stark inequalities, Results Math., 67 (2015), 207-215. doi: 10.1007/s00025-014-0405-3
![]() |
[7] |
H. L. Lv, Z. H. Yang, T. Q. Luo, et al. Sharp inequalities for tangent function with applications, J. Inequal. Appl., 2017 (2017), 1-17. doi: 10.1186/s13660-016-1272-0
![]() |
[8] |
L. Zhu, Sharpening Redheffer-type inequalities for circular functions, Appl. Math. Lett., 22 (2009), 743-748. doi: 10.1016/j.aml.2008.08.012
![]() |
[9] |
B. Malesevic, T. Lutovac, M. Rasajski, et al. Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities, Adv. Differ. Equ., 2018 (2018), 1-15. doi: 10.1186/s13662-017-1452-3
![]() |
[10] | B. Malesevic, T. Lutovac, B. Banjac, A proof of an open problem of Yusuke Nishizawa for a powerexponential function, J. Math. Inequal., 12 (2018), 473-485. |
[11] |
B. Malesevic, T. Lutovac, B. Banjac, One method for proving some classes of exponential analytical inequalities, Filomat, 32 (2018), 6921-6925. doi: 10.2298/FIL1820921M
![]() |
[12] |
S. Wu, L. Debnath, A generalization of L'Hospital-type rules for monotonicity and its application, Appl. Math. Lett., 22 (2009), 284-290. doi: 10.1016/j.aml.2008.06.001
![]() |
[13] |
Z. H. Yang, Y. M. Chu, M. K. Wang, Monotonicity criterion for the quotient of power series with applications, J. Math. Anal. Appl., 428 (2015), 587-604. doi: 10.1016/j.jmaa.2015.03.043
![]() |
[14] | L. Zhu, New inequalities for means in two variables, Math. Inequal. Appl., 11 (2008), 229-235. |
[15] | L. Zhu, Some new inequalities for means in two variables, Math. Inequal. Appl., 11 (2008), 443- 448. |
[16] | L. Zhu, New inequalities for hyperbolic functions and their applications, J. Inequal. Appl., 2012 (2012), 303. |
[17] |
L. Zhu, New bounds for the exponential function with cotangent, J. Inequal. Appl., 2018 (2018), 1-13. doi: 10.1186/s13660-017-1594-6
![]() |
[18] | L. Zhu, Sharp inequalities for hyperbolic functions and circular functions, J. Inequal. Appl., 2019 (2019), 221. |
[19] | P. Davis, Interpolation and Approximation, Dover Publications, New York, 1975. |