Processing math: 100%
Research article

Sharper bounds and new proofs of the exponential function with cotangent

  • Received: 28 May 2020 Accepted: 06 September 2020 Published: 09 September 2020
  • MSC : 33B10, 26D05

  • This paper provides a Páde interpolation based method for finding improved bounds for the exponential function with cotangent. In principle, it can recover many results in prevailing methods. A new method for proving the corresponding bounds is also proposed, which can also be applied for proving more other bounding functions. Numerical experiments show that the new bounds are better than those of prevailing methods.

    Citation: Xiangyang Wu, Kang Yang, Nichang Jiang, Xiao-Diao Chen. Sharper bounds and new proofs of the exponential function with cotangent[J]. AIMS Mathematics, 2020, 5(6): 7014-7040. doi: 10.3934/math.2020450

    Related Papers:

    [1] Lakhlifa Sadek, Ali Akgül, Ahmad Sami Bataineh, Ishak Hashim . A cotangent fractional Gronwall inequality with applications. AIMS Mathematics, 2024, 9(4): 7819-7833. doi: 10.3934/math.2024380
    [2] Lakhlifa Sadek, Ali Algefary . Extended Hermite–Hadamard inequalities. AIMS Mathematics, 2024, 9(12): 36031-36046. doi: 10.3934/math.20241709
    [3] Lakhlifa Sadek, Tania A Lazǎr . On Hilfer cotangent fractional derivative and a particular class of fractional problems. AIMS Mathematics, 2023, 8(12): 28334-28352. doi: 10.3934/math.20231450
    [4] Muhammmad Ghaffar Khan, Wali Khan Mashwani, Lei Shi, Serkan Araci, Bakhtiar Ahmad, Bilal Khan . Hankel inequalities for bounded turning functions in the domain of cosine Hyperbolic function. AIMS Mathematics, 2023, 8(9): 21993-22008. doi: 10.3934/math.20231121
    [5] Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379
    [6] Xiaojun Hu, Qihan Wang, Boyong Long . Bohr-type inequalities for bounded analytic functions of Schwarz functions. AIMS Mathematics, 2021, 6(12): 13608-13621. doi: 10.3934/math.2021791
    [7] Li Yin, Liguo Huang, Xiuli Lin . Inequalities and bounds for the $ p $-generalized trigonometric functions. AIMS Mathematics, 2021, 6(10): 11097-11108. doi: 10.3934/math.2021644
    [8] Ling Zhu . New inequalities of Wilker’s type for circular functions. AIMS Mathematics, 2020, 5(5): 4874-4888. doi: 10.3934/math.2020311
    [9] Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . $ k $-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460
    [10] Muhammad Ghaffar Khan, Sheza.M. El-Deeb, Daniel Breaz, Wali Khan Mashwani, Bakhtiar Ahmad . Sufficiency criteria for a class of convex functions connected with tangent function. AIMS Mathematics, 2024, 9(7): 18608-18624. doi: 10.3934/math.2024906
  • This paper provides a Páde interpolation based method for finding improved bounds for the exponential function with cotangent. In principle, it can recover many results in prevailing methods. A new method for proving the corresponding bounds is also proposed, which can also be applied for proving more other bounding functions. Numerical experiments show that the new bounds are better than those of prevailing methods.


    In 1978, Becker and Stark [1] proved the double inequality

    8π24x2<tan(x)x<π2π24x2, (1.1)
    4x2π2<xcot(x)1F(x)<(π28)4x28. (1.2)

    holds for all x(0,π/2). It is clear that the product of xcot(x) and tan(x)x is equal to 1, while F(0)=0. In [16], it proves that

    1<sinh(x)x<excothx1<coshx. (1.3)

    Since then, many inequalities for cotangent function were established by different ideas and methods; see e.g. [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18], including the following inequality

    cos(x)<excotx1<sinxx<1. (1.4)

    Recently, a new type of bounds for

    G(x)=excot(x)1 (1.5)

    is proposed in [7], see more details in Theorems 1 and 2.

    Theorem 1. [7] Let p,q(,4/π2], p0.13484 be the unique zero of the function αp(π/2)1 on (,4/π2), where αp(x)=G(x)/(1px2)1/(3p) if p0 and α0(x)=excot(x)1+x2/3. Then the double inequality

    (1px2)1/(3p)<G(x)=excot(x)1<(1qx2)1/(3q) (1.6)

    holds for all x(0,π/2) if and only if pp and q2/150.13333.

    Theorem 2. [7] For x(0,π/2), one has that the double inequality

    (143π2x2)π2/4<G(x)<(1215x2)5/2. (1.7)

    Very recently, Zhu [17] proposed the following results in Theorems 3 and 4, where h(p)=ln(1π230π664p)8(45π4p+32)15π6p+32π2960,

    p3=32(30π2)15π60.04467,p2=4708755.6437×105,p1=64(1π2/30e2/5)π64.6143×105,p03.799533×105, (1.8)

    and p0 is the unique zero of the function h(p).

    Theorem 3. [17] Let 0<p<p3 and x(0,π/2).

    (ⅰ) If p2p<p3, then the function xln(12x2/15px6)xcotx1:=f(x)g(x) is strictly increasing on (0,π/2), and therefore the double inequality

    (12x215px6)5/2<G(x)<(12x215px6)1/λp (1.9)

    holds, where λp=ln(1π230π664p).

    (ⅱ) If p0<p<p2, then there is an x0(0,π/2) such that the function f/g is strictly decreasing on (0,x0) and strictly increasing on (x0,π/2). Consequently, the inequality

    G(x)<(12x215px6)1/θp (1.10)

    holds, where θp=max(2/5,λp). In particular, we have

    G(x)<(12x215px6)5/2,forp0<pp1, (1.11)
    G(x)<(12x215px6)1/λp,forp1<pp2. (1.12)

    (ⅲ) If 0<p<p0, then the function f/g is strictly decreasing on (0,π/2), and therefore the double inequality (1.9) is reversed.

    Theorem 4. [17] Let p2p<p3 and p0<qp1. Then the double inequality

    (1215x2px6)5/2<excot(x)1<(1215x2qx6)5/2

    holds for all x(0,π/2) with the best coefficients p=p2 and q=p1. In particularly, we have

    LZhu(x)=lzhu(x)5/2=(1215x2470875x6)5/2<excot(x)1<(1215x264(1130π2e2/5)x6π6)5/2=uzhu(x)5/2=UZhu(x), (1.13)

    for all x(0,π/2).

    In this paper, we present a new method for finding new bounds of both F(x) and G(x), and also provide a new method for the proofs. The first thing is to find four polynomials such that 0l1(x)F(x)l2(x) and 0l3(x)ρG(x)l4(x)ρ, where x(0,π/2) and ρ=8/3 in this paper. Our method for finding the bounds is as follows. Suppose that B(x)=ni=0bixi is a bounding polynomial of degree n to be found. Let h(x)=(xcot(x)1B(x))sin(x)=xcos(x)(1+B(x))sin(x), where h(0)=0. By selecting a suitable k(0,n), the unknown parameter of bi can be determined by the following constraints

    h(i)(0)=0,h(j)(π/2)=0,i=1,2,,k,j=0,1,,nk, (1.14)

    which are linear in bi. On the other hand, let H(x)=G(x)1/ρB(x). By selecting a suitable l(0,n), the unknown parameter of bi can be determined by the following constraints

    H(i)(0)=0,H(j)(π/2)=0,i=0,1,,l,j=0,1,,nl, (1.15)

    which are linear in bi. Through the above way, together with the Maple software, one can find better bounds for both F(x) and G(x).

    The main results are as follows, see also the details of Theorems 5 and 6. We also present a new method for proving the new bounds, see more details in the proofs.

    Theorem 5. For all x(0,π/2), we have that

    l1(x)=13x2145x4+445π4+60π2720π6x6F(x)13x2145x4+445π4+210π22160π5x5445π4+360π23600π6x6=l2(x). (1.16)

    Theorem 6. For all x(0,π/2), we have that

    LC(x)=l3(x)8/3G(x)l4(x)8/3=UC(x). (1.17)

    where

    τ=π4+960π230720(1e3/8)480π67.4e5,l3(x)=118x211920x4564512x61951609600x8andl4(x)=118x211920x4+τx6.

    Remark 1. This paper uses Maple software to deduce and verify the formulae and inequalities.

    We introduce Theorem 3.5.1 in Page 67, Chapter 3.5 of [19] as follows.

    Theorem 7. [19] Let w0, w1, , wr be r+1 distinct points in [a,b], and n0, , nr be r+1 integers 0. Let N=n0++nr+r. Suppose that γ(t) is a polynomial of degree N such that

    γ(i)(wj)=β(i)(wj),i=0,,nj,j=0,,r.

    Then there exists ξ1(t)[a,b] such that

    β(t)γ(t)=β(N+1)(ξ1(t))(N+1)!ri=0(twi)ni+1.

    Lemma 1. For all x(0,π/2), we have that

    Lcos(x)<cos(x)<Ucos(x),Lsin(x)<sin(x)<Usin(x), (2.1)

    where

    Lcos(x)=112x2+124x41720x6+552960+61440π+40320π2400π4+π6120π7x7967680+115200π+67200π2600π4+π660π8x8+1290240+161280π+86400π2720π4+π690π9x9,Ucos(x)=112x2+124x41720x6+138240+7680π+13440π2200π4+π660π8x8184320+11520π+17280π2240π4+π645π9x9,Lsin(x)=x16x3+1120x523040+8960π+80π2200π3+π55π7x7+8(30240+11520π+120π2240π3+π5)15π8x82(107520+40320π+480π2800π3+3π5)15π9x9,Usin(x)=x16x3+1120x515040x7+29030401290240π+40320π3336π5+π71260π8x851609602257920π+67200π3504π5+π71260π9x9. (2.2)

    Proof. By using Maple software, it can be verified that

    L(i)cos(0)=cos(i)(0),L(j)cos(π/2)=cos(j)(π/2),i=0,1,,6,j=0,1,2,U(i)cos(0)=cos(i)(0),U(j)cos(π/2)=cos(j)(π/2),i=0,1,,7,j=0,1,L(i)sin(0)=sin(i)(0),L(j)sin(π/2)=sin(j)(π/2),i=0,1,,6,j=0,1,2,U(i)sin(0)=sin(i)(0),U(j)sin(π/2)=sin(j)(π/2),i=0,1,,7,j=0,1. (2.3)

    Combining Eq (2.3) with Theorem 7, for all x(0,π/2), there exists ξj(x)(0,π/2) such that

    cos(x)Lcos(x)=cos(ξ2(x))10!(x0)7(xπ/2)3>0,cos(x)Ucos(x)=cos(ξ3(x))10!(x0)8(xπ/2)2<0,sin(x)Lsin(x)=sin(ξ4(x))10!(x0)7(xπ/2)3>0,sin(x)Usin(x)=sin(ξ5(x))10!(x0)8(xπ/2)2<0. (2.4)

    From Eq (2.4), we have completed the proof.

    Lemma 2. For all x(0,π/2), we have that

    L1(x)<cos(x)<U1(x),L2(x)<sin(x)<U2(x), (2.5)

    where

    L1(x)=112x2+124x41720x6+140320x81135411209461760π9676800π2+125440π4560π6+π81680π10x10+15482880012902400π213547520π+161280π4672π6+π8630π11x1156770560046448640π251609600π+564480π42240π6+3π82520π12x12,U1(x)=112x2+124x41720x6+140320x813628800x10+22295347200+928972800π+2322432000π238707200π4+241920π6720π8+π10907200π11x1140874803200+1857945600π+4180377600π267737600π4+403200π61080π8+π10907200π12x12,L2(x)=x16x3+1120x515040x7+1362880x9743178240+340623360π11612160π3+112896π5480π7+π930240π11x11+1021870080+464486400π15482880π3+145152π5576π7+π922680π12x12,U2(x)=x16x3+1120x515040x7+1362880x9139916800x11+π11440π9+126720π721288960π5+1703116800π340874803200π+8174960640019958400π12x12.

    Proof. By using Maple software, it can be verified that

    L(i)1(0)=cos(i)(0),L(j)1(π/2)=cos(j)(π/2),i=0,1,,9,j=0,1,2,U(i)1(0)=cos(i)(0),U(j)1(π/2)=cos(j)(π/2),i=0,1,,10,j=0,1,L(i)2(0)=sin(i)(0),L(j)2(π/2)=sin(j)(π/2),i=0,1,,10,j=0,1,U(i)2(0)=sin(i)(0),U2(π/2)=sin(π/2),i=0,1,,11, (2.6)

    Combining Eq (2.6) with Theorem 7, for all x(0,π/2), there exists ξj(x)(0,π/2) such that

    cos(x)L1(x)=sin(ξ6(x))13!(x0)10(xπ/2)3>0,cos(x)U1(x)=sin(ξ7(x))13!(x0)11(xπ/2)2<0,sin(x)L2(x)=cos(ξ8(x))13!(x0)11(xπ/2)2>0,sin(x)U2(x)=cos(ξ9(x))13!(x0)12(xπ/2)<0. (2.7)

    From Eq (2.7), we have completed the proof.

    Lemma 3. For all x(0,π/2), we have that

    D(15)i(x)<0,i=1,2. (2.8)

    where D1(x)=ln(l3(x)) and D2(x)=ln(l4(x)).

    Proof. By using Maple software, it can be verified that Di(x)=li+2(x)li+2(x) is a rational polynomial,

    li(x)>0,i=3,4, for allx(0,π/2). (2.9)

    and for all x(0,π/2],

    κ1(x)=601357663510275943710064566985421952632540401x100(361x41140000x2+5946259200)<0,κ2(x)=980837x801965735739340225123543047(71781353358054263567x18+18964520360911280155176x16+33375031220654552055567360x14+14106841255622101997491281920x12+3248943776681967096074187571200x10654959394752487417649222542950400x8785699728765653327813332252491776000x6308271189865003934985922050916142284800x468195596361920188144587177147655782400000x27305787082896788623187918918629059461120000)980837x801965735739340225123543047(71781353358054263567(π2)18+18964520360911280155176(π2)16+33375031220654552055567360(π2)14+14106841255622101997491281920(π2)12+3248943776681967096074187571200(π2)107305787082896788623187918918629059461120000)<0, (2.10)
    κ3(x)=143x662383768320020(39615448364964663661602091341417x12+25924702930522607920453711065067326x10+4152800481023073830237366768877141760x8+231631903261303024243219800545753015520x625827272873676080892589660652890180684800x45719039369320516436256950595322540776448000x2345338587141699368149962328958128651059200000)143x662383768320020(39615448364964663661602091341417(π2)12+25924702930522607920453711065067326(π2)10+4152800481023073830237366768877141760(π2)8+231631903261303024243219800545753015520(π2)6345338587141699368149962328958128651059200000)<0,κ4(x)=143x564582189212530597(22684720993522154880577344552574181x8+5172108906700221488632662399149638400x6+155423030137100025158843435168244172800x413720914824276998512226838815949728972800x2901096344078465844454326452674876532326400)143x564582189212530597(22684720993522154880577344552574181(π2)8+5172108906700221488632662399149638400(π2)6+155423030137100025158843435168244172800(π2)4901096344078465844454326452674876532326400)<0,κ5(x)=143x481651517824(5276194557590127438354017962781x6+679047775805399648766007542598188x48051331322034766931611685378561920x21023064843093424843631332985958417920)143x481651517824(5276194557590127438354017962781(π2)6+679047775805399648766007542598188(π2)41023064843093424843631332985958417920)<0,κ6(x)=143x401777789(115757114711216805713108695715x6+6832160916251525607179902820304x4266942123356478045770045817856000x23863174129353738557505948552516800)143x401777789(115757114711216805713108695715(π2)6+6832160916251525607179902820304(π2)43863174129353738557505948552516800)<0,κ7(x)=635462099385960525911937625063110229986056738920652958769673666560000000000x382019015656130x36689759112x3437279634173x321369025426x304394435314x282707294593x264083260341x241489610948x227949130792x201622036657x181233318183x167302979551x141013794704x127631873987x103711347352x89472723488x67881473400x4402023670016x286015174817327680635462099385960525911937625063110229986056738920652958769673666560000000000(π2)3886015174817327680262497<0, (2.11)
    E1(x)=D(15)1(x)(l3(x))15x=7i=1κi(x)<0, (2.12)
    η0=501275174400τ2+29031052054τ32934084183163840257631<0,η1=355687428096000τ33436731698400τ2+21858537600964τ104721087170713107201071474<0,η2=1867358997504000τ35984900366445τ2+504250928181128τ3764597507380715242880001044095<0,η3=2906894736345600τ3348388034044058τ2+299108147080743163840τ23823291663171104857600387838<0,η4=422112055292928000τ4+2065840809832800τ3216419474310039128τ2+57764529541719131072τ623749352521595320132659200073853<0,η5=432771562903680000τ4+824412507343425τ3204729959729295512τ2+2095534282151313276800τ11368036950660395368709120009414<0,η6=220814343293544000τ4+4136972167077752τ3201256973206789532768τ2+2396774801321901419430400τ10786238873527117128849018880000937<0,η7=34194277665580032000τ563764878829652000τ4+223136765119768564τ31662186846325005262144τ2+2084314737751145967108864000τ691375329715073221225472000076.36<0,η8=8888648443234560000τ5250788222177743252τ4+1045272345672555256τ346209424989618891104857600τ2+35670703901132333554432000τ47649140865716391236950581248000005.3228<0,η9=3251404599835392000τ52662964961018862516τ4+1105187833069620332768τ32112612139196559104857600τ2+393340550790487316106127360000τ5036794528235479895604649984000000.32518<0,η10=649691097802306560000τ6+364099278440898000τ541967486562066065256τ4+63946728967621532768τ3204066233468097335544320τ2+341906440205338589934592000τ2918901394108756998682783907840000.1752e1<0,η11=9788423214810240000τ6+1247666988027710252τ51425514496781375128τ4+10158075254136811310720τ310560561112101838860800τ2+1318010516812992748779069440000τ1905905828827474989023199232000000.8660e3<0,η12=25628792198079470400τ6+3114031445965440τ547521145583942038192τ4+109050917144469352428800τ315017093339938698053063680000τ2+2415102778988954975581388800000τ1888286409139137599824371187712000000000.3843e4<0,η13=4296253386506425344000τ7+948846727455026400τ6+1142627403795777932τ5123941262221676965536τ4+989335201624870125165824000τ38752384054313942949672960000τ2+309148868798779895604649984000000τ149035744557712159718993900339200000001.443e6<0, (2.13)
    η14=552784421551025664000τ7285875484512337720τ6+1291924461885057256τ51382681237317680326214400τ4+34332694695599367108864000τ370496415876586741231686041600000τ2+109798311723163331869759897600000τ472031088529972777519512027136000000007.042e8<0,η15=129088195162140614400τ7+476858584150398454τ6+2850905743355369740960τ5652812345105921104857600τ4+90542878684157916106127360000τ3687104056538965970697666560000τ2+35891718373511455989462271262720000000τ65144989914377498837804122112000000001.38e9<0,η16=11748882745396532736000τ811376739291162845600τ791416241580694038τ6930716732606661163840τ56601548445401914194304000τ4+726707595313725769803776000τ33001905859252347498902319923200000τ2+4177122779831823957849085050880000000τ443176206473100857573223006973460480000000005.275e11<0,η17=1988151406283794752000τ8+1046938847799834990τ7+20136540963736197512τ6+874739950870886116384000τ5+12256533198912684354560τ4+205267872439634947802324992000τ32770404536937999121855938560000τ2+10444320987187549976756082442240000000τ7660753153790705718937052512256000000005.76e12<0,η18=295437322452046975200τ82247650852545548454τ73228389009358212720480τ641588393342195752428800τ5298013423998291073741824000τ41183803150538246337208320000τ359397407769730399297484750848000000τ24436131723346660468288651264000000τ56940984112909769372544892602941440000000001.784e13>0,η19=14318971616152659456000τ9+24560500189075250400τ8+15926830688875005964τ7+225102378844242965536τ6+13123877739142178388608000τ5+9212968754994294967296000τ4+271687633317111874725579980800000τ3+171523652327021597764222976000000τ2+11237273047672383821486713156403200000000τ+93193112909769372544892602941440000000003.839e15<0,η20=2447107716176323200000τ961094280671543369254τ836228261480215805512τ739483589177842816553600τ69974464207808167108864000τ53104215118104116492674416640000τ463361007717036874417766400000τ3939528690132425917317067571200000000τ235614478913447676429734263128064000000000τ11722711123933785976430968988237824000000000004.579e16<0, (2.14)
    η21=272910404440674000000τ9+197760704080246807532τ8+115145550376766918192τ7+1316464105777821209715200τ6+579226419361595368709120000τ5+1002435525091131941395333120000τ4+1383124041299455989462271262720000000τ3+5069354291167333023414432563200000000τ2+42742714941862699704736808960000000000τ+7007330490095937149250635300864000000000002.181e17>0,η22=7883647560616988160000τ1017858968644337821000τ9857120550698457045512τ8109982711929790765536τ7217696396358541150331648000τ691996855850921474836480000τ5203410622314994997804639846400000τ4974652679227994731135631360000000τ313547964433361919107433565782016000000000τ216116125819538745089785205882880000000000τ70073569293036121211906861249331200000000000001.598e19<0,η23=1183810760430217920000τ10+30445655179658969254τ9+6859153306380375256τ8+316513671387213326214400τ7+570908930491933554432000τ6+296631140705927487790694400000τ5+5406229829189995609279692800000τ4+1535577043437749883780412211200000000τ3+230530326895352859468526256128000000000τ2+700712393378597643096898823782400000000000τ2.277e20<0,η24=97249615182395676000τ101554237627956763758τ91492499187357878765536τ8101999314766349209715200τ71290882779886732212254720000τ644934917027329853488332800000τ519243247023911978924542525440000000τ4637637875499767560824422400000000τ3490496454884686272446301470720000000000τ26.297e22>0,η25=1880145000711065088000τ11+4435430454446191200τ10+850967115775276532τ9+523781479434213524288τ8+18686098941511677721600τ7+834475541917179869184000τ6+1103112011187472557998080000τ5+312442137295831396340203520000000τ4+63763710085757322300697346048000000000τ34.511e24>0,η26=218958438542747904000τ112270153842610103452τ1014607844288087051024τ99742692879819941943040τ83528746921726843545600τ7509918308916492674416640000τ67014007379991218559385600000τ56376371750999535121648844800000000τ43.972e25<0,η27=11986574582580998400τ11+2167838641767298516τ10+23606728244599565536τ9+570631798737209715200τ8+2550994345932212254720000τ7+1192381191979120929996800000τ6+70140074559894622712627200000000τ52.113e27>0, (2.15)
    η28=172947490910498304000τ12316520163620060400τ11997201323635517256τ101123302183003262144τ9211137719793134217728000τ81302601385899345920000τ770140071424967069597696000000τ69.467e29>0,η29=13223813566227264000τ12+68484847135354652τ11+2682756587511512τ10+12751147308952428800τ9+3187414231073741824000τ8+100200182463372083200000τ78.915e31<0,η30=388408468866818400τ12298162781566658τ11894298105701327680τ10373900527838860800τ96004999257698037760000τ89.443e33<0,η31=4747592868834816000τ13+3829002679101600τ12+127080143194τ11+15896290412621440τ10+14665651402653184000τ99.574e35>0,η32=21021(8665683185369088000000τ323413972008960000τ26349824000τ1001)τ1010485760003.464e37>0,η33=63063(7978167042048000τ2+4690483200τ+611)τ113276803.151e39<0,η34=3972969(2611740672000τ234099200τ13)τ125123.656e42<0,η35=42567525(12441600τ7)τ1342.017e44>0,η36=6810804000τ141.0457e48>0,η37=523069747200τ155.959e51<0. (2.16)
    E2(x)=D(15)2(x)(l4(x))15x=37i=0ηix2i<x66(η36(π2)6+η35(π2)4+η33)+x58(η32(π2)6+η31(π2)4+η29)+x52(η28(π2)4+η27(π2)2+η26)+x44(η25(π2)6+η24(π2)4+η22)+x38(η21(π2)4+η19)+x34(η18(π2)2+η17)<0, (2.17)

    Combining Eq (2.12) with (2.17), we have that

    Ei(x)<0andD(15)i(x)<0,i=1,2,x(0,π/2),

    and complete the proof.

    Lemma 4. For all x(0,π/2), we have that

    LD,1(x)=14i=2μ1,ixi<ln(l3(x))=D1(x)<UD,1(x)=14i=2μ2,ixi,LD,2(x)=14i=2μ3,ixi<ln(l4(x))=D2(x)<UD,2(x)=14i=2μ4,ixi, (2.18)

    where

    ν1=ln(13212057600),ν2=(13212057600412876800π2430080π416000π619π8),ν3=ln(ν2),η1=3779309π24+6720029440π22+3475345121280π20+622471793868800π18+187109607473152000π16+15736038067745587200π14+2798286910500372480000π12+109303272939592876032000π10+7680310667432542863360000π88133028049070241873920000π6+27977616488801632046284800000π44809547467098178234561331200000π2+104935581100323888754065408000000,η2=3779309π24+6791004928π22+3602453504000π20+689363492536320π18+199672880902963200π16+19431451283108659200π14+3141898967936139264000π12+163065427523543236608000π10+10634276308752751656960000π811261115760251104133120000π6+38738238215263798217932800000π46659373415982092940161843200000π2+145295419985063845967167488000000,η3=3779309π24+6838321920π22+3687823319040π20+735100007874560π18+208667771771289600π16+22021651288188518400π14+3405862907714469888000π12+201890529314863054848000π10+13166246858455787765760000π813942333798406128926720000π6+47961628266517083507916800000π48244938515025448402105139200000π2+179889567600555237864112128000000,η4=3779309π24+6791004928π22+3602453504000π20+689363492536320π18+199672880902963200π16+19431451283108659200π14+3141898967936139264000π12+163065427523543236608000π10+10634276308752751656960000π811261115760251104133120000π6+38738238215263798217932800000π46659373415982092940161843200000π2+145295419985063845967167488000000,η5=233918951325696000π8+196984380063744000000π6+5294940136113438720000π4+5083142530668901171200000π2162660560981404837478400000,η6=4128377π18+3922088640π16+496550154240π14+124846787788800π12+8842476362137600π10+408845184663552000π8+21520543521964032000π6+795816895457525760000π4+74129161905588142080000π25083142530668901171200000,μ1,2=18,μ1,3=0,μ1,4=1120,μ1,5=0,μ1,6=11260,μ1,7=0,μ1,8=112600,μ1,9=0,μ1,10=104691238630400,μ1,11=0,μ1,12=19236755865600(ν1+ν3)51609600π12+η151609600π10(ν3)2,μ1,13=26635508121600(ν1ν3)19353600π13η219353600(ν2)2π11,μ1,14=32977295769600(ν3ν1)25804800π14+η325804800(ν2)2π12,μ2,2=18,μ2,3=0,μ2,4=1120,μ2,5=0,μ2,6=11260,μ2,7=0,μ2,8=112600,μ2,9=0,μ2,10=104691238630400,μ2,11=0,μ2,12=217283231211008000,μ2,13=26635508121600ν2(ν1+ν3)173408256000π13+η4173408256000π11ν2,μ2,14=η5(ν1ν3)57802752000π14(ν2)+η657802752000π12ν2,
    η7=98304030720π232π4+11π6983040e3/8,η8=589824001843200π21920π4+511π658982400e3/8,η9=30474240952320π2992π4+211π630474240e3/8,η10=1315543449600+25008537600π2+210370560π4+1643520π6+58344π8+633π10+(271790899200+11324620800π2112066560π4122880π632π8)e3/4,+(149484994560029255270400π214254080π4)e3/8,+(4227858432007077888000π291422720π4)e3/8,η11=(645503385600+11324620800π2+93388800π4+983040π6+23536π8+211π10)+(135895449600+5662310400π256033280π461440π616π8)e3/4+(72477573120014155776000π26881280π4)e3/8+(2831155200π218119393280030474240π4)e3/8,η12=2514065817600+41523609600π2+342097920π4+3932160π6+78784π8+633π10+(543581798400+22649241600π2224133120π4245760π664π8)e3/4+(280850595840054735667200π226542080π4)e3/8+(6341787648009437184000π291422720π4)e3/8,η13=(5435817984000169869312000π2176947200π4+176947200π6)e3/82717908992000e3/42717908992000+169869312000π22477260800π4182476800π6+5526720π8+5760π101021π12,η14=6115295232000679477248000π210970726400π466355200π6+1468800π870200π101021π12+(16307453952000+339738624000π2+176947200π4)e3/82717908992000e3/4+(27179089920000+339738624000π2+10793779200π4+176947200π6)e3/8,η15=183458856960001358954496000π216633036800π466355200π61296000π8108180π101021π12+(43486543872000+679477248000π2+16279142400π4+176947200π6)e3/8+(32614907904000+679477248000π2+353894400π4)e3/82717908992000e3/4,μ3,2=18,μ3,3=0,μ3,4=1120,μ3,5=0,μ3,6=η715360π6,μ3,7=0,μ3,8=η87372800π6,μ3,9=0,μ3,10=η929491200π6,μ3,11=0,μ3,12=η103686400π12,μ3,13=η11460800π13,μ3,14=η121843200π14,μ4,i=μ3,i,i=2,3,,11,μ4,12=η131327104000π12,μ4,13=η14331776000π14,μ4,14=η15331776000π14.

    Proof. By using Maple software, it can be verified that

    L(i)D,1(0)=D(i)1(0),L(j)D,1(π/2)=D(j)1(π/2),i=0,1,,11,j=0,1,2,U(i)D,1(0)=D(i)1(0),U(j)D,1(π/2)=D(j)1(π/2),i=0,1,,12,j=0,1,L(i)D,2(0)=D(i)2(0),L(j)D,2(π/2)=D(j)2(π/2),i=0,1,,11,j=0,1,2,U(i)D,2(0)=D(i)2(0),U(j)D,2(π/2)=D(j)2(π/2),i=0,1,,12,j=0,1. (2.19)

    Combing Eq (2.19) with Theorem 7, for all x(0,π/2), there exists ξi(x)(0,π/2) such that

    {D1(x)LD,1(x)=D(15)1(ξ10(x))15!(x0)12(xπ/2)3,D1(x)UD,1(x)=D(15)1(ξ11(x))15!(x0)13(xπ/2)2,D2(x)LD,2(x)=D(15)2(ξ12(x))15!(x0)12(xπ/2)3,D2(x)UD,2(x)=D(15)2(ξ13(x))15!(x0)13(xπ/2)2. (2.20)

    Combining Eq (2.20) with Lemma 3, we have that

    {D1(x)LD,1(x)>0,D1(x)UD,1(x)<0,D2(x)LD,2(x)>0,D2(x)UD,2(x)<0,x(0,π/2). (2.21)

    which is equivalent to Eq (2.18), and we complete the proof.

    Prove that F(x)l1(x)>0 and F(x)l2(x)<0, for all x(0,π/2).

    Let Ei+2(x)=(F(x)li(x))sin(x)=xcos(x)(1+li(x))sin(x), i=1,2. It is equivalent to prove

    E3(x)>0andE4(x)<0,for allx(0,π/2). (3.1)

    For x(0,π/2), note that 1+li(x)>0, i=1,2, combining with Lemma 1, we have that

    ι0=480π8(π6+42π4+2520π230240)1.4e+9>0,ι1=30π6(25π724528π5+2217600π3+3870720π226127360π17418240)9.1e+8>0,ι2=9π5(3π9+140π7+100800π512364800π322579200π2+187084800π12902400)9.1e+7<0,ι3=6π4(19π92520π7+403200π513708800π3+29030400π2+19353600π38707200)6.0e+7<0,ι4=π3(π11+10080π7927360π5+29030400π338707200π2232243200π+464486400)2.4e+6>0,ι5=2π2(π11672π9+70560π71653120π5+5806080π429030400π3+38707200π2+232243200π464486400)1.5e+6>0,ι6=4π(π7168π5+13440π3322560π+645120)(π4+60π2720)38685<0,ι7=8(π4+60π2720)(π7504π5+67200π32257920π+5160960)23533<0,E3(x)xLcos(x)(1+l1(x))Usin(x)=(7i=0ιixi)(π2x)x7226800π15[(ι0+ι2(π2)2+ι3(π2)3)+x4(ι4+ι6(π2)2+ι7(π2)3)](π2x)x7226800π15>0, (3.2)
    ω0=960π8(π4+210π22160)9.1e+7<0,ω1=5π6(5π7+144π5+178560π334560π24838400π+9953280)3.6e+7<0,ω2=60π5(π7+480π528800π3+368640π414720)5.9e+6>0,ω3=2π4(π9180π7+86400π528800π43974400π3+8985600π2+12441600π27648000)2.3e+6>0,ω4=240π3(7π7792π5+28800π346080π2230400π+506880)155620<0,ω5=48π2(π9120π7+80π6+120π523040π4+316800π3499200π22534400π+5529600)62280<0,ω6=64π(2π9+15π7+240π694800π510080π4+6422400π314227200π253913600π+140313600)2448>0,ω7=(32(π4+360π23600))(3π5800π3+480π2+40320π107520)866>0,E4(x)xUcos(x)(1+l2(x))Lsin(x)=(7i=0ωixi)(π2x)2x610800π15[(ω0+ω2(π2)2+ω3(π2)3)+x4(ω4+ω6(π2)2+ω7(π2)3)](π2x)2x610800π15<0, (3.3)

    Combining with Eq (3.2) and Eq (3.3), we have that E3(x)>0 and E4(x)<0, x(0,π/2), and complete the proof of Eq (3.1).

    It is equivalent to prove that for all x(0,π/2)

    {8/3D1(x)=8/3ln(l3(x))<xcot(x)1,xcot(x)1<8/3ln(l4(x))=8/3D2(x),x(0,π/2). (4.1)

    Let Ei+4(x)=(xcot(x)18/3Di(x))sin(x)=xcos(x)(1+8/3Di(x))sin(x), i=1,2. Eq (4.1) is equivalent to

    E5(x)>0andE6(x)<0,x(0,π/2). (4.2)

    By using Maple software, it can be verified that li(x)e3/8 and 1+8/3ln(li(x))>0, i=3,4. For all x(0,π/2), combining with Lemmas 2 and 4, we have that

    E5(x)=xcos(x)(1+8/3Di(x))sin(x)>xL1(x)(1+8/3UD,1(x))U2(x)=(15i=0μ5,ixi(π/2x)15i)1467775π26x11,E6(x)=xcos(x)(1+8/3D2(x))sin(x)<xU1(x)(1+8/3LD,2(x))L2(x)=(19i=0μ6,ixi(π/2x)19i)x7. (4.3)

    For all x(0,π/2), i=0,1,,15 and j=0,1,,19, we have that

    xi(π/2x)15i>0,π12x11>0,xj(π/2x)19j>0,π11x7(π/2x)>0,μ5,0=2048μ2,28505π15+16384μ2,4945π1532768μ2,645π15+131072μ2,89π15262144μ2,103π151.3e9>0,μ5,1=2048μ2,2567π151024μ2,38505π14+16384μ2,463π15+8192μ2,5945π1432768μ2,63π1516384μ2,745π14+655360μ2,83π15+65536μ2,99π141310720μ2,10π15131072μ2,113π141.9e8>0,μ5,2=256(π246200)μ2,2467775π152048μ2,31215π14512(π230240)μ2,48505π15+16384μ2,5135π14+4096(π217640)μ2,6945π15229376μ2,745π148192(π28400)μ2,845π15+917504μ2,99π14+32768(π22520)μ2,109π151835008μ2,113π1465536μ2,123π131.3e7>0,μ5,3=1024(3π1149940π931680π7+5322240π5425779200π3+10218700800π20437401600)μ2,2467775π24+128(π240040)μ2,3467775π146656(π210080)μ2,48505π15256(π226208)μ2,58505π14+53248(π25880)μ2,6945π15+2048(π215288)μ2,7945π14106496(π22800)μ2,845π154096(π27280)μ2,945π14+425984(π2840)μ2,109π15+16384(π22184)μ2,119π14851968μ2,123π1332768μ2,133π126.0e7>0,μ5,4=1024(3π1149940π931680π7+5322240π5425779200π3+10218700800π20437401600)μ2,2467775π24+128(π240040)μ2,3467775π146656(π210080)μ2,48505π15256(π226208)μ2,58505π14+53248(π25880)μ2,6945π15+2048(π215288)μ2,7945π14106496(π22800)μ2,845π154096(π27280)μ2,945π14+425984(π2840)μ2,109π15+16384(π22184)μ2,119π14851968μ2,123π1332768μ2,133π121.8e6>0,μ5,5=1024(π115874π938016π7+6386688π5510935040π3+12262440960π24524881920)μ2,28505π24+128(π117920π925344π7+4257792π5340623360π3+8174960640π16349921280)μ2,38505π23+128(π1112540π9+38041344π7+2128896π5170311680π3+4087480320π8174960640)μ2,493555π22+32(π429040π2+126846720)μ2,5467775π141408(π47488π2+13208832)μ2,68505π1564(π419008π2+48432384)μ2,78505π14+11264(π44368π2+3669120)μ2,8945π15+512(π411088π2+13453440)μ2,9945π1422528(π42080π2+524160)μ2,1045π151024(π45280π2+1921920)μ2,1145π14+90112(π2624)μ2,129π13+4096(π21584)μ2,139π12180224μ2,143π113.9e6>0,μ5,6=256(3π1112760π9168960π7+28385280π52270822400π3+54499737600π108999475200)μ2,22835π24+128(π115192π942240π7+7096320π5567705600π3+13624934400π27249868800)μ2,32835π23+64(3π1120680π9+42197760π7+14192640π51135411200π3+27249868800π54499737600)μ2,431185π22+32(3π1132120π9+84522240π7+7096320π5567705600π3+13624934400π27249868800)μ2,5155925π21+16(π624200π4+90604800π2106551244800)μ2,6467775π15128(5π431680π2+48432384)μ2,78505π1432(π615840π4+34594560π219372953600)μ2,88505π15+1024(π43696π2+2690688)μ2,9189π14+256(π69240π4+9609600π21614412800)μ2,10945π152048(π41760π2+384384)μ2,119π14512(π44400π2+1372800)μ2,1245π13+40960(π2528)μ2,139π12+2048(π21320)μ2,149π116.6e6>0, (4.4)
    μ5,7=2048(π113300π979200π7+13305600π51064448000π3+25546752000π51093504000)μ2,24725π24+256(π113784π963360π7+10644480π5851558400π3+20437401600π40874803200)μ2,32835π23+512(π114554π9+6747840π7+7983360π5638668800π3+15328051200π30656102400)μ2,431185π22+128(π115940π9+10538880π7+5322240π5425779200π3+10218700800π20437401600)μ2,551975π21+128(π119020π9+20370240π717121646080π5212889600π3+5109350400π10218700800)μ2,6467775π20+8(π619800π4+62726400π263930746880)μ2,7467775π1432(π65280π4+6918912π22767564800)μ2,8945π1516(π612960π4+23950080π211623772160)μ2,98505π14+256(π63080π4+1921920π2230630400)μ2,10105π15+128(π67560π4+6652800π2968647680)μ2,11945π14512(3π44400π2+823680)μ2,1215π13256(π43600π2+950400)μ2,1345π12+2048(π2440)μ2,14π118.5e6>0,μ5,8=1024(7π1118810π9760320π7+127733760π510218700800π3+245248819200π490497638400)μ2,214175π24+256(7π1120680π9633600π7+106444800π58515584000π3+204374016000π408748032000)μ2,314175π23+128(7π1123408π9+26674560π7+85155840π56812467200π3+163499212800π326998425600)μ2,431185π22+128(7π1127720π9+35861760π7+63866880π55109350400π3+122624409600π245248819200)μ2,5155925π21+64(π115060π9+7729920π74886576640π5486604800π3+11678515200π23357030400)μ2,666825π20+8(π117480π9+14319360π710434631680π5243302400π3+5839257600π11678515200)μ2,766825π19+4(π815840π6+41817600π436531855360π2+10959556608000)μ2,8467775π15128(π64320π4+4790016π21660538880)μ2,98505π148(π810368π6+15966720π46642155520π2+597793996800)μ2,108505π15+1024(π62520π4+1330560π2138378240)μ2,11945π14+64(π66048π4+4435200π2553512960)μ2,12945π132048(π41200π2+190080)μ2,1345π12128(π22640)(π2240)μ2,1445π118.5e6>0,μ5,9=2048(9π1120405π91330560π7+223534080π517882726400π3+429185433600π858370867200)μ2,242525π24+256(π112420π9126720π7+21288960π51703116800π3+40874803200π81749606400)μ2,32025π23+256(21π1155220π9+50635200π7+372556800π529804544000π3+715309056000π1430618112000)μ2,4155925π22+64(3π118800π9+8807040π7+42577920π53406233600π3+81749606400π163499212800)μ2,522275π21+128(7π1123870π9+26737920π713244394240π55960908800π3+143061811200π286123622400)μ2,6467775π20+8(3π1112760π9+16600320π79111674880π51703116800π3+40874803200π81749606400)μ2,766825π19+8(3π1118260π9+29208960π718255283200π5+4261198233600π3+20437401600π40874803200)μ2,8467775π18+2(π812320π6+26611200π419670999040π2+5114459750400)μ2,9467775π148(π83456π6+3193344π4948879360π2+66421555200)μ2,101215π154(π88064π6+10160640π43576545280π2+278970531840)μ2,118505π14+64(π62016π4+887040π279073280)μ2,12135π13+32(π64704π4+2822400π2298045440)μ2,13945π12896(π4960π2+126720)μ2,1445π116.7e6>0, (4.5)
    μ5,10=256(3π115896π9608256π7+102187008π58174960640π3+196199055360π392398110720)μ2,22835π24+256(3π116160π9532224π7+89413632π57153090560π3+171674173440π343348346880)μ2,38505π23+128(7π1115180π9+11620224π7+178827264π514306181120π3+343348346880π686696693760)μ2,431185π22+64(7π1116280π9+13207040π7+149022720π511921817600π3+286123622400π572247244800)μ2,551975π21+32(7π1117864π9+15599232π76273856512π59537454080π3+228898897920π457797795840)μ2,693555π20+8(7π1120328π9+19540224π78434685952π57153090560π3+171674173440π343348346880)μ2,793555π19+4(π113520π9+3852288π71818077184π5+340282736640π3+16349921280π32699842560)μ2,831185π18+2(π114840π9+6361344π73367913472π5+681587343360π3+8174960640π16349921280)μ2,993555π17+(π109240π8+15966720π69835499520π4+2191911321600π2122747034009600)μ2,10467775π158(π82688π6+2032128π4510935040π2+30996725760)μ2,112835π142(π86048π6+6096384π41788272640π2+119558799360)μ2,128505π13+64(π61568π4+564480π242577920)μ2,13315π12+16(π63528π4+1693440π2149022720)μ2,14945π114.2e6>0,μ5,11=1024(π111740π9285120π7+47900160π53832012800π3+91968307200π183936614400)μ2,28505π24+128(3π115368π9760320π7+127733760π510218700800π3+245248819200π490497638400)μ2,38505π23+512(3π115555π9+3659040π7+111767040π58941363200π3+214592716800π429185433600)μ2,493555π22+128(7π1113530π9+9240000π7+223534080π517882726400π3+429185433600π858370867200)μ2,5155925π21+128(7π1114300π9+10216800π73446150400π514902272000π3+357654528000π715309056000)μ2,6467775π20+8(7π1115400π9+11658240π74113027072π511921817600π3+286123622400π572247244800)μ2,793555π19+16(π112442π9+1995840π7745113600π5+114960384000π3+30656102400π61312204800)μ2,893555π18+4(π112860π9+2597760π71043159040π5+169630433280π3+20437401600π40874803200)μ2,993555π17+4(π113740π9+3960000π71751016960π5+304006348800π313938307891200π20437401600)μ2,10467775π16+(π106600π8+8870400π64470681600π4+843042816000π240915678003200)μ2,11935550π142(5π810080π6+6096384π41277337600π2+66421555200)μ2,128505π13(π84320π6+3386880π4812851200π2+45984153600)μ2,138505π12+16(π61176π4+338688π221288960)μ2,14189π112.0e6>0,μ5,12=512(3π114700π91267200π7+212889600π517031168000π3+408748032000π817496064000)μ2,242525π24+128(π111592π9380160π7+63866880π55109350400π3+122624409600π245248819200)μ2,38505π23+64(9π1114608π9+8490240π7+510935040π540874803200π3+980995276800π1961990553600)μ2,493555π22+128(9π1114960π9+8870400π7+447068160π535765452800π3+858370867200π1716741734400)μ2,5467775π21+64(7π1111990π9+7286400π72123573760π523843635200π3+572247244800π1144494489600)μ2,6467775π20+8(21π1137400π9+23443200π77004067840π559609088000π3+1430618112000π2861236224000)μ2,7467775π19+4(3π115632π9+3674880π71132572672π5+148171161600π3+163499212800π326998425600)μ2,893555π18+4(π112024π9+1393920π7447068160π5+60290334720π3+40874803200π81749606400)μ2,993555π17+2(3π116820π9+5068800π71713761280π5+240139468800π39217268121600π163499212800)μ2,10467775π16+(3π118360π9+6969600π72533386240π5+372982579200π314837553561600π81749606400)μ2,11935550π15 (4.6)
    +(π104400π8+4435200π61788272640π4+281014272000π211690193715200)μ2,121871100π134(π81440π6+677376π4116121600π2+5109350400)μ2,138505π12(π82880π6+1693440π4325140480π2+15328051200)μ2,1417010π117.1e7>0,μ5,13=1024(π111430π9696960π7+117089280π59367142400π3+224811417600π449622835200)μ2,2155925π24+128(π111440π9633600π7+106444800π58515584000π3+204374016000π408748032000)μ2,342525π23+128(π111452π9+760320π7+95800320π57664025600π3+183936614400π367873228800)μ2,493555π22+32(3π114400π9+2323200π7+255467520π520437401600π3+490497638400π980995276800)μ2,5155925π21+128(π111485π9+792000π7204906240π55960908800π3+143061811200π286123622400)μ2,6467775π20+8(7π1110560π9+5702400π71490227200π535765452800π3+858370867200π1716741734400)μ2,7467775π19+8(π111540π9+844800π7223534080π5+25546752000π3+102187008000π204374016000)μ2,8155925π18+2(π111584π9+887040π7238436352π5+27590492160π3+81749606400π163499212800)μ2,993555π17+4(π111650π9+950400π7260789760π5+30656102400π31011651379200π122624409600)μ2,10467775π16+(π111760π9+1056000π7298045440π5+35765452800π31198994227200π81749606400)μ2,11311850π15+(π111980π9+1267200π7372556800π5+45984153600π31573679923200π40874803200)μ2,12935550π14+π102640π8+1900800π6596090880π4+76640256000π22697737011200)μ2,133742200π12(π8960π6+338688π446448640π2+1703116800)μ2,145670π111.7e7>0,μ5,14=256(π111320π91520640π7+255467520π520437401600π3+490497638400π980995276800)μ2,2467775π24+128(π111320π91393920π7+234178560π518734284800π3+449622835200π899245670400)μ2,3467775π23+64(π111320π9+633600π7+212889600π517031168000π3+408748032000π817496064000)μ2,4467775π22+32(π111320π9+633600π7+191600640π515328051200π3+367873228800π735746457600)μ2,5467775π21+16(π111320π9+633600π7149022720π513624934400π3+326998425600π653996851200)μ2,6467775π20+8(π111320π9+633600π7149022720π511921817600π3+286123622400π572247244800)μ2,7467775π19+4(π111320π9+633600π7149022720π5+15328051200π3+245248819200π490497638400)μ2,8467775π18+2(π111320π9+633600π7149022720π5+15328051200π3+204374016000π408748032000)μ2,9467775π17+(π111320π9+633600π7149022720π5+15328051200π3449622835200π326998425600)μ2,10467775π16+(π111320π9+633600π7149022720π5+15328051200π3449622835200π245248819200)μ2,11935550π15+(π111320π9+633600π7149022720π5+15328051200π3449622835200π163499212800)μ2,121871100π14+(π111320π9+633600π7149022720π5+15328051200π3449622835200π81749606400)μ2,133742200π13+(π101320π8+633600π6149022720π4+15328051200π2449622835200)μ2,147484400π112.7e8>0,μ5,15=65536(π7168π5+13440π3322560π+645120)μ2,2945π2432768(π7168π5+13440π3322560π+645120)μ2,3945π23+131072(π580π3+1920π3840)μ2,445π22+65536(π580π3+1920π3840)μ2,545π21524288(π324π+48)μ2,69π20262144(π324π+48)μ2,79π19+1048576(π2)μ2,83π18+524288(π2)μ2,93π17524288μ2,103π16262144μ2,113π15131072μ2,123π1465536μ2,133π1332768μ2,143π121.9e9>0, (4.7)
    μ6,0=524288μ3,245π19+2097152μ3,49π194194304μ3,63π197.5e8<0;μ6,1=9961472μ3,245π19262144μ3,345π18+39845888μ3,49π19+1048576μ3,59π1879691776μ3,63π192097152μ3,73π181.4e6<0;μ6,2=65536(π228728)μ3,2945π19524288μ3,35π18131072(π213680)μ3,445π19+2097152μ3,5π18+524288(π24104)μ3,69π1912582912μ3,7π181048576μ3,83π171.2e5<0;μ6,3=1114112(π29576)μ3,2945π19+32768(π225704)μ3,3945π182228224(π24560)μ3,445π1965536(π212240)μ3,545π18+8912896(π21368)μ3,69π19+262144(π23672)μ3,79π1817825792μ3,83π17524288μ3,93π167.3e5<0;μ6,4=2048(π439168π2+187536384)μ3,28505π19+524288(π28568)μ3,3945π18+16384(π422848π2+52093440)μ3,4945π191048576(π24080)μ3,545π1832768(π410880π2+7441920)μ3,645π19+4194304(π21224)μ3,79π18+131072(π23264)μ3,89π178388608μ3,93π16262144μ3,103π152.9e4<0;μ6,5=2048(5π465280π2+187536384)μ3,22835π191024(π434560π2+148055040)μ3,38505π18+16384μ3,463π19(π47616π2+10418688)+8192(π420160π2+41126400)μ3,5945π1832768(3π410880π2+4465152)μ3,69π1916384(π49600π2+5875200)μ3,745π18+655360(π21088)μ3,83π17+65536(π22880)μ3,99π161310720μ3,10π15131072μ3,113π148.7e4<0;μ6,6=4096(17π9114000π7+218736000π5+5806080π3170311680π+371589120)μ3,22835π242048(π411520π2+29611008)μ3,31215π18512(π630240π4+115153920π2105020375040)μ3,48505π19+16384(π46720π2+8225280)μ3,5135π18+4096(π617640π4+31987200π28751697920)μ3,6945π19229376(π43200π2+1175040)μ3,745π188192(π48400π2+4569600)μ3,845π17+917504(π2960)μ3,99π16+32768(π22520)μ3,109π151835008μ3,113π1465536μ3,123π132.0e3<0;μ6,7=4096(209π9882288π7+1216930176π5+210954240π36177669120π+13470105600)μ3,28505π248192(11π965340π7+112232736π5+4354560π3127733760π+278691840)μ3,38505π236656(π610080π4+23030784π215002910720)μ3,48505π19256(π626208π4+88058880π271856046080)μ3,58505π18+53248(π65880π4+6397440π21250242560)μ3,6945π19+2048(π615288π4+24460800π25988003840)μ3,7945π18106496(π42800π2+913920)μ3,845π174096(π47280π2+3494400)μ3,945π16+425984(π2840)μ3,109π15+16384(π22184)μ3,119π14851968μ3,123π1332768μ3,133π123.7e3<0;μ6,8=2048(385π91155264π7+1211341824π5+781885440π322852730880π+49792942080)μ3,22835π242048(55π9206976π7+255999744π5+64512000π31888911360π+4118446080)μ3,32835π23512(25π9130560π7+199487232π597507307520π3340623360π+743178240)μ3,42835π221024(π68736π4+17611776π210265149440)μ3,52835π18 (4.8)
    128(π822464π6+66044160π447904030720π2+7021362216960)μ3,68505π19+8192(π65096π4+4892160π2855429120)μ3,7315π18+1024(π613104π4+18345600π23992002560)μ3,8945π1716384(3π47280π2+2096640)μ3,945π162048(π46240π2+2620800)μ3,1045π15+65536(π2728)μ3,113π14+8192(π21872)μ3,129π13131072μ3,13π1216384μ3,143π115.6e3<0;μ6,9=22528(23π953184π7+44362752π5+79994880π32332753920π+5078384640)μ3,2945π2411264(25π967392π7+63576576π5+59351040π31734082560π+3777822720)μ3,32835π23512(85π9283392π7+312512256π5119072378880π33437199360π+7493713920)μ3,42835π22256(7π931872π7+43013376π518815569920π3113541120π+247726080)μ3,5945π211408(π87488π6+13208832π46843432960π2+780151357440)μ3,68505π1964(π819008π6+48432384π430996725760π2+4064999178240)μ3,78505π18+11264(π64368π4+3669120π2570286080)μ3,8945π17+512(π611088π4+13453440π22583060480)μ3,9945π1622528(π42080π2+524160)μ3,1045π151024(π45280π2+1921920)μ3,1145π14+90112(π2624)μ3,129π13+4096(π21584)μ3,139π12180224μ3,143π116.8e3<0;μ6,10=90112(25π947160π7+32510016π5+137088000π33986841600π+8670412800)μ3,22835π2445056(11π923040π7+17377920π5+45158400π31316044800π+2864332800)μ3,32835π231024(19π945792π7+38683008π511865434112π31563770880π+3406233600)μ3,4567π2216384(π92934π7+2866752π5978526080π348384000π+105477120)μ3,52835π21512(13π951120π7+60455808π523515591680π3+2145160765440π+557383680)μ3,68505π20128(5π831680π6+48432384π422140518400π2+2258332876800)μ3,78505π1832(π815840π6+34594560π419372953600π2+2258332876800)μ3,88505π17+1024(π63696π4+2690688π2369008640)μ3,9189π16+256(π69240π4+9609600π21614412800)μ3,10945π152048(π41760π2+384384)μ3,119π14512(π44400π2+1372800)μ3,1245π13+40960(π2528)μ3,139π12+2048(π21320)μ3,149π116.8e3<0;μ6,11=8192(99π9158840π7+93465792π5+819624960π323758479360π+51604439040)μ3,2945π2490112(7π912060π7+7566048π5+45964800π31335398400π+2903040000)μ3,32835π231024(49π992640π7+62966400π516011233280π37044710400π+15328051200)μ3,4945π22512(π92144π7+1613952π5444672000π399532800π+216760320)μ3,545π21512(5π912816π7+11021184π53350522880π3+250467655680π+643645440)μ3,61215π20 (4.9)
    128(π93360π7+3451392π51185269760π3+96761364480π+53084160)μ3,7405π1932(π85280π6+6918912π42767564800π2+250925875200)μ3,8945π1716(π812960π6+23950080π411623772160π2+1195587993600)μ3,98505π16+256(π63080π4+1921920π2230630400)μ3,10105π15+128(π67560π4+6652800π2968647680)μ3,11945π14512(3π44400π2+823680)μ3,1215π13256(π43600π2+950400)μ3,1345π12+2048(π2440)μ3,14π115.5e3<0;μ6,12=2048(319π9449152π7+231856128π5+3917168640π3113086955520π+245248819200)μ3,2945π244096(143π9211200π7+113944320π5+1447649280π341896673280π+90946437120)μ3,32835π231024(161π9252720π7+144006912π531209615360π337623398400π+81749606400)μ3,42835π222048(7π911904π7+7268352π51668280320π31238630400π+2694021120)μ3,5945π21256(17π932256π7+21534336π55305098240π3+332253757440π+4565237760)μ3,61215π20128(7π915552π7+11688192π53145236480π3+210651217920π+1128038400)μ3,71215π1932(11π931200π7+27562752π58291082240π3+601881477120π+743178240)μ3,82835π18128(π84320π6+4790016π41660538880π2+132843110400)μ3,98505π168(π810368π6+15966720π46642155520π2+597793996800)μ3,108505π15+1024(π62520π4+1330560π2138378240)μ3,11945π14+64(π66048π4+4435200π2553512960)μ3,12945π132048(π41200π2+190080)μ3,1345π12128(π22640)(π2240)μ3,1445π113.6e3<0;μ6,13=2048(1705π92157696π7+999806976π5+31167037440π3895158190080π+1937465671680)μ3,28505π241024(55π971808π7+34255872π5+851558400π324524881920π+53137244160)μ3,3405π231024(125π9169680π7+83881728π515904788480π346169948160π+100143267840)μ3,42835π22512(11π915696π7+8112384π51598607360π33251404800π+7060193280)μ3,5405π21256(133π9202752π7+110920320π522922403840π3+1230331576320π+65028096000)μ3,68505π20256(5π98352π7+4923072π51079930880π3+60801269760π+1718599680)μ3,71215π1932(65π9124128π7+80946432π519160064000π3+1143472619520π+13563002880)μ3,88505π1816(25π959040π7+44368128π511588935680π3+742899548160π+2229534720)μ3,98505π178(π83456π6+3193344π4948879360π2+66421555200)μ3,101215π154(π88064π6+10160640π43576545280π2+278970531840)μ3,118505π14+64(π62016π4+887040π279073280)μ3,12135π13+32(π64704π4+2822400π2298045440)μ3,13945π12 (4.10)
    896(π4960π2+126720)μ3,1445π111.9e3<0;μ6,14=4096(121π9140208π7+59439744π5+3384944640π396566722560π+208461496320)μ3,22835π242048(275π9324864π7+140216832π5+6642155520π3190067834880π+410791772160)μ3,38505π23512(15π918144π7+8003072π51359912960π38814919680π+19074908160)μ3,4315π228192(π91246π7+564480π598219520π3487710720π+1056706560)μ3,5945π21512(49π963432π7+29719872π55324175360π3+250869104640π+41617981440)μ3,68505π20128(7π99536π7+4666368π5867041280π3+42123755520π+4551966720)μ3,7945π1932(25π936576π7+18966528π53692666880π3+186320977920π+11519262720)μ3,82835π18128(5π98136π7+4572288π5946391040π3+50071633920π+1416683520)μ3,98505π1716(π91936π7+1223040π5274821120π3+15441592320π+123863040)μ3,10945π168(π82688π6+2032128π4510935040π2+30996725760)μ3,112835π142(π86048π6+6096384π41788272640π2+119558799360)μ3,128505π13+64(π61568π4+564480π242577920)μ3,13315π12+16(π63528π4+1693440π2149022720)μ3,14945π118.3e4<0;μ6,15=4096(35π937680π7+14845824π5+1596672000π345132595200π+97077657600)μ3,22835π2416384(11π911970π7+4762800π5+439084800π312454041600π+26824089600)μ3,38505π23512(29π931968π7+12870144π52001936384π328426567680π+61312204800)μ3,41701π22256(13π914560π7+5945856π5936714240π310838016000π+23410114560)μ3,5945π21512(23π926280π7+10922688π51747630080π3+74085580800π+34464890880)μ3,68505π20128(35π941040π7+17442432π52844979200π3+122624409600π+42268262400)μ3,78505π1932(17π920640π7+9031680π51509580800π3+66421555200π+15792537600)μ3,82835π1816(7π98928π7+4064256π5701374464π3+31677972480π+4644864000)μ3,91701π1716(11π915120π7+7281792π51312174080π3+61312204800π+4551966720)μ3,108505π1616(π91560π7+818496π5156764160π3+7664025600π+185794560)μ3,112835π152(5π810080π6+6096384π41277337600π2+66421555200)μ3,128505π13π84320π6+3386880π4812851200π2+45984153600)μ3,138505π12+16(π61176π4+338688π221288960)μ3,14189π112.7e4<0;μ6,16=2048(37π937440π7+13886208π5+3150766080π387880826880π+188024094720)μ3,28505π24 (4.11)
    2048(17π917280π7+6435072π5+1277337600π335765452800π+76640256000)μ3,38505π23512(31π931680π7+11854080π51718599680π357131827200π+122624409600)μ3,48505π221024(7π97200π7+2709504π5394813440π311147673600π+23967498240)μ3,58505π21128(25π925920π7+9821952π51439907840π3+56202854400π+72831467520)μ3,68505π20128(11π911520π7+4402944π5650280960π3+25546752000π+26661519360)μ3,78505π1932(19π920160π7+7789824π51161216000π3+45984153600π+37158912000)μ3,88505π18256(π91080π7+423360π563866880π3+2554675200π+1509580800)μ3,98505π178(13π914400π7+5757696π5882524160π3+35765452800π+14120386560)μ3,108505π168(5π95760π7+2370816π5371589120π3+15328051200π+3437199360)μ3,118505π152(7π98640π7+3725568π5603832320π3+25546752000π+2229534720)μ3,128505π144(π81440π6+677376π4116121600π2+5109350400)μ3,138505π12π82880π6+1693440π4325140480π2+15328051200)μ3,1417010π116.8e5<0;μ6,17=2048(π9960π7+338688π5+224501760π36131220480π+13005619200)μ3,22835π241024(π9960π7+338688π5+198696960π35449973760π+11581194240)μ3,32835π23512(π9960π7+338688π546448640π34799692800π+10218700800)μ3,42835π22256(π9960π7+338688π546448640π34180377600π+8918138880)μ3,52835π21128(π9960π7+338688π546448640π3+1703116800π+7679508480)μ3,62835π2064(π9960π7+338688π546448640π3+1703116800π+6502809600)μ3,72835π1932(π9960π7+338688π546448640π3+1703116800π+5388042240)μ3,82835π1816(π9960π7+338688π546448640π3+1703116800π+4335206400)μ3,92835π178(π9960π7+338688π546448640π3+1703116800π+3344302080)μ3,102835π164(π9960π7+338688π546448640π3+1703116800π+2415329280)μ3,112835π152(π9960π7+338688π546448640π3+1703116800π+1548288000)μ3,122835π14π9960π7+338688π546448640π3+1703116800π+743178240)μ3,132835π13π8960π6+338688π446448640π2+1703116800)μ3,145670π111.2e5<0;μ6,18=8388608(7π3184π+384)μ3,23π2416777216(5π3132π+276)μ3,39π23+16777216(21π44)μ3,43π22+16777216(10π21)μ3,53π21167772160μ3,63π2079691776μ3,73π1912582912μ3,8π1817825792μ3,93π178388608μ3,103π161310720μ3,11π151835008μ3,123π14851968μ3,133π13131072μ3,14π121.3e6<0; (4.12)
    μ6,19=8388608(π324π+48)μ3,29π244194304(π324π+48)μ3,39π23+16777216(π2)μ3,43π22+8388608(π2)μ3,53π218388608μ3,63π204194304μ3,73π192097152μ3,83π181048576μ3,93π17524288μ3,103π16262144μ3,113π15131072μ3,123π1465536μ3,133π1332768μ3,143π126.8e8<0. (4.13)

    From Eqs (4.3–4.13), we have that

    E5(x)>0andE6(x)<0,x(0,π/2),

    and complete the proof.

    It can be verified that

    l(i)zhu(0)=ˉG(i)(0),i=0,1,,10, (5.1)
    u(i)zhu(0)=ˉG(i)(0),l(j)zhu(π/2)=ˉG(j)(π/2),i=0,1,,6,j=0,1, (5.2)

    where ˉG(x)=(G(x))2/5. From the constraints in Eq (5.1) and Eq (5.2), we can recover the resulting bounds lzhu(x) and uzhu(x) in Eq (1.13). In principle, one can find much better bounds by adding other more constraints. Figure 1 shows the error plots of LC(x)LZhu(x) and UC(x)UZhu(x). It shows that LZhu(x)<LC(x)<G(x)<UC(x)<UZhu(x), for all x(0,π/2).

    Figure 1.  Error plots of LC(x)LZhu(x) and UC(x)UZhu(x).

    This paper provides a new method to find better bounds for the exponential function with cotangent, by using the interpolation constraints at two end-points of the parametric interval. Many previous results can be recovered by using the new method in this paper. Usually, more constraints, much tighter bounds. In principle, it can be directly extended to more cases with other functions. Moreover, it also presents a new method for proving the corresponding bounds, instead of prevailing methods based on the monotonicity of some special functions.

    We would like to thank you for following the instructions above very closely in advance. It will definitely save us lot of time and expedite the process of your paper's publication. This research work was partially supported by Zhejiang Key Research and Development Project of China (LY19F020041, LY18F020016, 2018C01030), the National Natural Science Foundation of China (61972120, 61672009, 61972122).

    The authors declare that they have no conflict interests.



    [1] M. Becker, E. L. Stark, On a hierarchy of quolynomial inequalities for tan(x), Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz., 602/633 (1978), 133-138.
    [2] F. Qi, Derivatives of tangent function and tangent numbers, Appl. Math. Comput., 268 (2015), 844-858 .
    [3] L. Zhu, J. J. Sun, Six new Redheffer-type inequalities for circular and hyperbolic functions, Comput. Math. Appl., 56 (2008), 522-529. doi: 10.1016/j.camwa.2008.01.012
    [4] L. Zhu, J. K. Hua, Sharpening the Becker-Stark inequalities, J. Inequal. Appl., 2010 (2010), 931275.
    [5] Z. J. Sun, L. Zhu, Simple proofs of the Cusa-Huygens-type and Becker-Stark-type inequalities, J. Math. Inequal., 7 (2013), 563-567.
    [6] L. Debnath, C. Mortici, L. Zhu, Refinements of Jordan-Steckin and Becker-Stark inequalities, Results Math., 67 (2015), 207-215. doi: 10.1007/s00025-014-0405-3
    [7] H. L. Lv, Z. H. Yang, T. Q. Luo, et al. Sharp inequalities for tangent function with applications, J. Inequal. Appl., 2017 (2017), 1-17. doi: 10.1186/s13660-016-1272-0
    [8] L. Zhu, Sharpening Redheffer-type inequalities for circular functions, Appl. Math. Lett., 22 (2009), 743-748. doi: 10.1016/j.aml.2008.08.012
    [9] B. Malesevic, T. Lutovac, M. Rasajski, et al. Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities, Adv. Differ. Equ., 2018 (2018), 1-15. doi: 10.1186/s13662-017-1452-3
    [10] B. Malesevic, T. Lutovac, B. Banjac, A proof of an open problem of Yusuke Nishizawa for a powerexponential function, J. Math. Inequal., 12 (2018), 473-485.
    [11] B. Malesevic, T. Lutovac, B. Banjac, One method for proving some classes of exponential analytical inequalities, Filomat, 32 (2018), 6921-6925. doi: 10.2298/FIL1820921M
    [12] S. Wu, L. Debnath, A generalization of L'Hospital-type rules for monotonicity and its application, Appl. Math. Lett., 22 (2009), 284-290. doi: 10.1016/j.aml.2008.06.001
    [13] Z. H. Yang, Y. M. Chu, M. K. Wang, Monotonicity criterion for the quotient of power series with applications, J. Math. Anal. Appl., 428 (2015), 587-604. doi: 10.1016/j.jmaa.2015.03.043
    [14] L. Zhu, New inequalities for means in two variables, Math. Inequal. Appl., 11 (2008), 229-235.
    [15] L. Zhu, Some new inequalities for means in two variables, Math. Inequal. Appl., 11 (2008), 443- 448.
    [16] L. Zhu, New inequalities for hyperbolic functions and their applications, J. Inequal. Appl., 2012 (2012), 303.
    [17] L. Zhu, New bounds for the exponential function with cotangent, J. Inequal. Appl., 2018 (2018), 1-13. doi: 10.1186/s13660-017-1594-6
    [18] L. Zhu, Sharp inequalities for hyperbolic functions and circular functions, J. Inequal. Appl., 2019 (2019), 221.
    [19] P. Davis, Interpolation and Approximation, Dover Publications, New York, 1975.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3752) PDF downloads(93) Cited by(0)

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog