Research article

Inequalities and bounds for the p-generalized trigonometric functions

  • In this paper, we mainly show some bounds and inequalities for the p-generalized trigonometric functions defined by Richter.

    Citation: Li Yin, Liguo Huang, Xiuli Lin. Inequalities and bounds for the p-generalized trigonometric functions[J]. AIMS Mathematics, 2021, 6(10): 11097-11108. doi: 10.3934/math.2021644

    Related Papers:

    [1] Aimin Xu . Some identities involving derangement polynomials and r-Bell polynomials. AIMS Mathematics, 2024, 9(1): 2051-2062. doi: 10.3934/math.2024102
    [2] Feng Qi, Da-Wei Niu, Bai-Ni Guo . Simplifying coefficients in differential equations associated with higher order Bernoulli numbers of the second kind. AIMS Mathematics, 2019, 4(2): 170-175. doi: 10.3934/math.2019.2.170
    [3] Taekyun Kim, Dae San Kim, Hyunseok Lee, Lee-Chae Jang . A note on degenerate derangement polynomials and numbers. AIMS Mathematics, 2021, 6(6): 6469-6481. doi: 10.3934/math.2021380
    [4] Waseem A. Khan, Abdulghani Muhyi, Rifaqat Ali, Khaled Ahmad Hassan Alzobydi, Manoj Singh, Praveen Agarwal . A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties. AIMS Mathematics, 2021, 6(11): 12680-12697. doi: 10.3934/math.2021731
    [5] Hye Kyung Kim . Note on r-central Lah numbers and r-central Lah-Bell numbers. AIMS Mathematics, 2022, 7(2): 2929-2939. doi: 10.3934/math.2022161
    [6] Bai-Ni Guo, Dongkyu Lim, Feng Qi . Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions. AIMS Mathematics, 2021, 6(7): 7494-7517. doi: 10.3934/math.2021438
    [7] Jongkyum Kwon, Patcharee Wongsason, Yunjae Kim, Dojin Kim . Representations of modified type 2 degenerate poly-Bernoulli polynomials. AIMS Mathematics, 2022, 7(6): 11443-11463. doi: 10.3934/math.2022638
    [8] Rabeb Sidaoui, Abdulghani Muhyi, Khaled Aldwoah, Ayman Alahmade, Mohammed Rabih, Amer Alsulami, Khidir Mohamed . A family of trivariate Gould-Hopper-Bell-Apostol-Type polynomials: Construction and properties. AIMS Mathematics, 2025, 10(6): 13251-13277. doi: 10.3934/math.2025594
    [9] Dojin Kim, Patcharee Wongsason, Jongkyum Kwon . Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions. AIMS Mathematics, 2022, 7(6): 9716-9730. doi: 10.3934/math.2022541
    [10] Hye Kyung Kim, Dmitry V. Dolgy . Degenerate Catalan-Daehee numbers and polynomials of order r arising from degenerate umbral calculus. AIMS Mathematics, 2022, 7(3): 3845-3865. doi: 10.3934/math.2022213
  • In this paper, we mainly show some bounds and inequalities for the p-generalized trigonometric functions defined by Richter.



    Some special polynomials and numbers are diversely used in physics and engineering as well as in mathematics. For example, Bell polynomials play an important role in the studies of water waves which help energy development, mechanical engineering, marine/offshore engineering, hydraulic engineering, etc (see [9,10,11,12,22]). There are various ways of studying special numbers and polynomials, to mention a few, generating functions, combinatorial methods, p-adic analysis, umbral calculus, differential equations, probability theory, special functions and analytic number theory (see [1,2]).

    The aim of this paper is to introduce several special polynomials and numbers, and to study their explicit expressions, recurrence relations and identities involving those polynomials and numbers by using generating functions.

    Indeed, we introduce Bell polynomials and numbers of the second kind (see (2.3), (2.5)) and poly-Bell polynomials and numbers of the second kind (see (4.1)). The generating function of Bell numbers of the second kind is the compositional inverse of the generating function of Bell numbers minus the constant term. Then Bell polynomials of the second kind are natural extensions of those numbers (see [23]). The poly-Bell polynomials of the second kind, which are defined with the help of polylogarithm, become the Bell polynomials of the second kind up to sign when the index of the polylogarithm is k=1.

    We also consider degenerate versions of those numbers and polynomials, namely degenerate Bell numbers and polynomials of the second (see (3.3), (3.5)) and degenerate poly-Bell numbers and polynomials (see (5.1)), and derive similar results. It is worthwhile to note that degenerate versions of many special numbers and polynomials have been explored in recent years with aforementioned tools and many interesting arithmetical and combinatorial results have been obtained (see [14,15,18,19,26]). In fact, studying degenerate versions can be done not only for polynomials and numbers but also for transcendental functions like gamma functions. For the rest of this section, we recall the necessary facts that are needed throughout this paper.

    The Stirling numbers of the first kind, S1(n,k), are given by

    1k!(log(1+t))k=n=kS1(n,k)tnn!,(k0),(see [7,25]), (1.1)

    As the inversion formula of (1.1), the Stirling numbers of the second kind, S2(n,k), are given by

    1k!(et1)k=n=kS2(n,k)tnn!,(k0),(see [3,1320]). (1.2)

    It is well known that the Bell polynomials are defined as

    Beln(x)=nk=0S2(n,k)xk,(n0),(see [24,25]). (1.3)

    From (1.3), we note that

    ex(et1)=n=0Beln(x)tnn!,(see [4,7,8,17,27]). (1.4)

    When x=1, Beln=Beln(1), (n0) are called the Bell numbers.

    For any λR, the degenerate exponential function is given by

    exλ(t)=n=0(x)n,λn!tn,(see [5,6,7,26,27]), (1.5)

    where (x)0,λ=1, (x)n,λ=x(xλ)(x(n1)λ), (n1).

    When x=1, we write eλ(t)=e1λ(t).

    The degenerate Stirling numbers of the first kind are defined by

    1k!(logλ(1+t))k=n=kS1,λ(n,k)tnn!, (k0), (see [15]), (1.6)

    where

    logλ(1+t)=n=1λn1(1)n,1/λtnn!,(see [15]). (1.7)

    In view of (1.2), the degenerate Stirling numbers of the second kind are defined by

    1k!(eλ(t)1)k=n=kS2(n,k)tnn!,(see [15]). (1.8)

    In [17], the degenerate Bell polynomials are defined by

    exλ(eλ(t)1)=n=0Beln,λ(x)tnn!. (1.9)

    When x=1, Beln,λ=Beln,λ(1), (n0), are called the Bell numbers.

    From (1.8) and (1.9), we note that

    Beln,λ(x)=nk=0S2,λ(n,k)(x)k,λ, (n0), (see [17]). (1.10)

    The polylogarithm of index k is given by

    Lik(x)=n=1xnnk,(kZ, |x|<1),(see [3,13,14,16,21]). (1.11)

    Note that Li1(x)=log(1x).

    Recently, the degenerate polylogarithm is defined as

    Lik,λ(x)=n=1(λ)n1(1)n,1/λ(n1)!nkxn,(|x|<1, kZ),(see [15]). (1.12)

    Note that Li1,λ(x)=logλ(1x).

    Here we mention that, to our best knowledge, the results of this paper are new.

    From (1.4), we note that

    ex(et1)=n=0Beln(x)tnn!

    Let x=1. Then we have

    eet11=n=1Belntnn!. (2.1)

    Let f(t)=eet11. Then the compositional inverse of f(t) is given by

    f1(t)=log(1+log(1+t)). (2.2)

    We consider the new type Bell numbers, called Bell numbers of the second kind, defined by

    log(1+log(1+t))=n=1belntnn!. (2.3)

    Now, we observe that

    log(1+log(1+t))=k=1(1)k1k(log(1+t))k=k=1(1)k1(k1)!1k!(log(1+t))k=k=1(1)k1(k1)!n=kS1(n,k)tnn!=n=1(nk=1(1)k1(k1)!S1(n,k))tnn!. (2.4)

    Therefore, by (2.3) and (2.4), we obtain the following theorem.

    Theorem 1. For n1, we have

    (1)n1beln=nk=1(k1)![nk],

    where [nk] are the unsigned Stirling numbers of the first kind.

    Also, we consider the new type Bell polynomials, called Bell polynomials of the second kind, defined by

    beln(x)=nk=1(1)k1(k1)!S1(n,k)xk,(n1). (2.5)

    From (2.5), we can derive the following equation.

    n=1beln(x)tnn!=n=1(nk=1(1)k1(k1)!S1(n,k)xk)tnn!=k=1(1)k1(k1)!xkn=kS1(n,k)tnn!=k=1(1)k1k!kxk1k!(log(1+t))k=k=1(1)k1kxk(log(1+t))k=log(1+xlog(1+t)). (2.6)

    Thus the generating function of Bell polynomials of the second kind is given by

    log(1+xlog(1+t))=n=1beln(x)tnn!. (2.7)

    Note here that beln=beln(1). From (2.7), we note that

    x(1+xlog(1+t))(1+t)=ddtlog(1+xlog(1+t))=n=0beln+1(x)tnn!. (2.8)

    Replacing t by et1 in (2.8), we get

    x1+xtet = k=0belk+1(x)1k!(et1)k= k=0belk+1(x)n=kS2(n,k)tnn!= n=0(nk=0belk+1(x)S2(n,k))tnn!. (2.9)

    Taking x=1 in (2.9), we have

    n=0(nk=0belk+1(1)S2(n,k))tnn!=11tet=n=0dntnn!, (2.10)

    where dn is the derangement number (see [19]).

    Therefore, by comparing the coefficients on both sides of (2.10), we obtain the following theorem.

    Theorem 2. For n0, we have

    nk=0belk+1(1)S2(n,k)=dn.

    Replacing t by eet11 in (2.3), we get

    t=k=1belk1k!(eet11)k=k=1belkj=kS2(j,k)1j!(et1)j=j=1jk=1belkS2(j,k)n=jS2(n,k)tnn!=n=1(nj=1jk=1belkS2(j,k)S2(n,j))tnn!. (2.11)

    Thus we obtain following theorem.

    Theorem 3. For n2, we have

    nj=1jk=1belkS2(j,k)S2(n,j)=0,andbel1=1.

    Replacing t by et1 in (2.7), we get

    log(1+xt) = k=1belk(x)1k!(et1)k= k=1belk(x)n=kS2(n,k)tnn!= n=1(nk=1belk(x)S2(n,k))tnn!. (2.12)

    On the other hand,

    log(1+xt)=n=1(1)n1nxntn. (2.13)

    Therefore, by (2.12) and (2.13), we obtain the following theorem.

    Theorem 4. For n1, we have

    xn=(1)n1(n1)!nk=1belk(x)S2(n,k).

    In particular,

    1=(1)n1(n1)!nk=1belkS2(n,k).

    From (1.3), we note that

    eλ(eλ(t)1)1=n=1Beln,λtnn!. (3.1)

    Let fλ(t)=eλ(eλ(t)1)1. Then the compositional inverse of fλ(t) is given by

    f1λ(t)=logλ(1+logλ(1+t)). (3.2)

    We consider the new type degenerate Bell numbers, called degenerate Bell numbers of the second kind, defined by

    logλ(1+logλ(1+t))=n=1beln,λtnn!. (3.3)

    Now, we observe that

    logλ(1+logλ(1+t)) = k=1λk1(1)k,1/λ1k!(logλ(1+t))k= k=1λk1(1)k,1/λn=kS1,λ(n,k)tnn!.= n=1(nk=1λk1(1)k,1/λS1,λ(n,k))tnn!. (3.4)

    Therefore, by (3.3) and (3.4), we obtain the following theorem.

    Theorem 5. For n1, we have

    beln,λ=nk=1λk1(1)k,1/λS1,λ(n,k).

    Also, we define the degenerate Bell polynomials of second kind by

    beln,λ(x)=nk=1λk1(1)k,1/λS1,λ(n,k)xk. (3.5)

    Note that beln,λ=beln,λ(1).

    From (3.5), we note that

    n=1beln,λ(x)tnn! = n=1(nk=1λk1(1)k,1/λS1,λ(n,k)xk)tnn!= k=1λk1(1)k,1/λxkn=kS1,λ(n,k)tnn!= k=1λk1(1)k,1/λxk1k!(logλ(1+t))k= logλ(1+xlogλ(1+t)). (3.6)

    Thus the generating function of beln,λ(x) is given by

    logλ(1+xlogλ(1+t))=n=1beln,λ(x)tnn!. (3.7)

    Replacing t by eλ(t)1 in (3.7), we get

    logλ(1+xt) = k=1belk,λ(x)1k!(eλ(t)1)k= k=1belk,λ(x)n=kS2,λ(n,k)tnn!= n=1(nk=1belk,λ(x)S2,λ(n,k))tnn!. (3.8)

    On the other hand,

    logλ(1+xt)=n=1λn1(1)n,1/λxntnn!. (3.9)

    Therefore, by (3.8) and (3.9), we obtain the following theorem.

    Theorem 6. For n1, we have

    xn=λ1n(1)n,1/λnk=1belk,λ(x)S2,λ(n,k).

    In particular,

    λn1(1)n,1/λ=nk=1belk,λS2,λ(n,k).

    Replacing t by eλ(eλ(t)1)1 in (3.3), we have

    t =k=1belk,λ1k!(eλ(eλ(t)1)1)k=k=1belk,λj=kS2,λ(j,k)1j!(eλ(t)1)j= j=1(jk=1belk,λS2,λ(j,k))n=jS2,λ(n,j)tnn!= n=1(nj=1jk=1belk,λS2,λ(j,k)S2,λ(n,j))tnn!. (3.10)

    Therefore, by comparing the coefficients on both sides of (3.10), we obtain the following theorem.

    Theorem 7. For n2, we have

    nj=1jk=1belk,λS2,λ(j,k)S2,λ(n,j)=0,andbel1,λ=1.

    Now, we consider the poly-Bell polynomials of the second kind which are defined as

    Lik(xlog(1t))=n=1bel(k)n(x)tnn!. (4.1)

    When x=1, bel(k)n=bel(k)n(1) are called the poly-Bell numbers of the second kind.

    From (1.11), we note that

    Lik(xlog(1t)) = l=1(1)llkxll!1l!(log(1t))l= l=1(1)llk1(l1)!xln=l(1)nS1(n,l)tnn!= n=1(nl=1(1)nllk1(l1)!xlS1(n,l))tnn!. (4.2)

    Therefore, by (4.1) and (4.2), we obtain the following theorem.

    Theorem 8. For n1, we have

    bel(k)n(x)=nl=1xllk1(l1)![nl].

    In particular,

    bel(k)n=nl=11lk1(l1)![nl].

    Note that

    bel(1)n(x)=nl=1xl(l1)![nl]=(1)n1beln(x).

    Indeed,

    Li1(xlog(1t)) = log(1+xlog(1t))= n=1beln(x)(1)n1tnn!.

    Replacing t by 1et in (4.1), we get

    Lik(xt) = l=1bel(k)l(x)1l!(1et)l= l=1bel(k)l(x)(1)ln=lS2(n,l)(1)ntnn!.= n=1(nl=1(1)nlbel(k)l(x)S2(n,l))tnn!. (4.3)

    From (1.11) and (4.3), we note that

    xnnk=1n!nl=1(1)nlbel(k)l(x)S2(n,l). (4.4)

    Therefore, by (4.4), we obtain the following theorem.

    Theorem 9. For n1, we have

    xn=nk1(n1)!nl=1(1)nlbel(k)l(x)S2(n,l).

    We define the degenerate poly-Bell polynomials of the second kind by

    Lik,λ(xlogλ(1t))=n=1bel(k)n,λ(x)tnn!. (5.1)

    When x=1, bel(k)n,λ=bel(k)n,λ(1) are called the degenerate poly-Bell numbers of the second.

    From (2.1), we note that

    Lik,λ(xlogλ(1t) = l=1(λ)l1(1)l,1/λ(l1)!lk(xlogλ(1t))l= l=1(1)l,1/λlk1λl1xl1l!(logλ(1t))l.=l=1(1)l,1/λlk1λl1xln=lS1,λ(n,l)(1)ntnn!= n=1((1)n1nl=11lk1(1)l,1/λλl1xlS1,λ(n,l))tnn!. (5.2)

    Therefore, by (5.1) and (5.2), we obtain the following theorem.

    Theorem 10. For n1, we have

    (1)n1bel(k)n,λ(x)=nl=11lk1(1)l,1/λλl1xlS1,λ(n,l).

    For k=1, we have

    (1)n1bel(1)n,λ(x)=nl=1(1)l,1/λλl1xlS1,λ(n,l)=beln,λ(x),(n0).

    Indeed,

    Li1,λ(xlogλ(1t))=logλ(1+xlogλ(1t))=n=1(1)n1beln,λ(x)tnn!.

    Replacing t by 1eλ(t) in (5.1), we get

    Lik,λ(xt) = l=1bel(k)l,λ(x)1l!(1eλ(t))l= l=1bel(k)l,λ(x)(1)l1l!(eλ(t)1)l= l=1bel(k)l,λ(x)(1)ln=lS2,λ(n,l)(1)ntnn!= n=1(nl=1(1)nlbel(k)l,λ(x)S2,λ(n,l))tnn!. (5.3)

    On the other hand,

    Lik,λ(xt)=n=1(λ)n1(1)n,1/λ(n1)!nkxntn=n=1(λ)n1(1)n,1/λnk1xntnn!. (5.4)

    From (5.3) and (5.4), we get the following result.

    Theorem 11. For n1, we have

    (λ)n1(1)n,1/λnk1xn=nl=1(1)nlbel(k)l,λ(x)S2,λ(n,l).

    Many special polynomials and numbers are widely used in physics and engineering as well as in mathematics. In recent years, degenerate versions of some special polynomials and numbers have been studied by means of various different tools. Here we introduced Bell polynomials of the second kind, poly-Bell polynomials of the second kind and their degenerate versions, namely degenerate Bell polynomials of the second kind and degenerate poly-Bell polynomials of the second kind. By using generating functions, we explored their explicit expressions, recurrence relations and some identities involving those polynomials and numbers.

    It is one of our future projects to continue this line of research, namely to explore many special numbers and polynomials and their degenerate versions with the help of various different tools.

    This work was supported by the Basic Science Research Program, the National Research Foundation of Korea, (NRF-2021R1F1A1050151).

    The authors declare no conflict of interest.



    [1] Á. Baricz, B. A. Bhayo, T. K. Pogány, Functional inequalities for generalized inverse trigonometric and hyperbolic functions, J. Math. Anal. Appl., 417 (2014), 244-259. Available from: http://arXiv.org/abs/1401.4863.
    [2] Á. Baricz, B. A. Bhayo, M. Vuorinen, Turán type inequalities for generalized inverse trigonometric functions, Filomat, 29 (2015), 303-313. Available from: http://arXiv.org/abs/1209.1696.
    [3] Á. Baricz, B. A. Bhayo, R. Klén, Convexity properties of generalized trigonometric and hyperbolic functions, Aequat. Math., 89 (2015), 473-484. Available from: http://arXiv.org/abs/1301.0699.
    [4] Á. Baricz, B. A. Bhayo, T. K. Pogány, Convexity properties of generalized trigonometric and hyperbolic functions, J. Math. Anal. Appl., 417 (2014), 244-259. doi: 10.1016/j.jmaa.2014.03.039
    [5] B. A. Bhayo, M. Vuorinen, Inequalities for eigenfunctions of the p-Laplacian, Issues of Analysis, 20 (2013), 13-35. Available from: http://arXiv.org/abs/1101.3911.
    [6] B. A. Bhayo, M. Vuorinen, Power mean inequalities generalized trigonometric functions, Math. Vesnik, 67 (2015), 17-25. Available from: http://arXiv.org/abs/1209.0983.
    [7] A. Elbert, A half-linear second order differential equation. Colloqia Mathematica Societatis Jonos Bolyai, 30. Qualitiative Theory of Differential Equations, Szeged (Hungary) (1979), 153-180.
    [8] M. R. Eslahchi, M. Masjed-Jamei, E. Babolian, On numerical improvement of Gauss-Lobatto quadrature rules, Appl. Math. Comput., 164 (2005), 707-717.
    [9] M. Dehghan, M. Masjed-Jamei, M. R. Eslahchi, On numerical improvement of closed Newton-Cotes quadrature rules, Appl. Math. Comput., 165 (2005), 251-260.
    [10] R. Klén, M. Vuorinen, X. H. Zhang, Inequalities for the generalized trigonometric and hyperbolic functions, J. Math. Anal. Appl., 409 (2014), 521-529. Available from: http://arXiv.org/abs/1210.6749.
    [11] B. A. Bhayo, L. Yin, Logarithmic mean inequality for generalized trigonometric and hyperbolic functions, Acta. Univ. Sapientiae Math., 6 (2014), 135-145. Available from: http://arXiv.org/abs/1404.6732.
    [12] B. A. Bhayo, L. Yin, On the generalized convexity and concavity, Probl. Anal., 22 (2015), 1-9. Available from: http://arXiv.org/abs/1411.6586.
    [13] B. A. Bhayo, L. Yin, On the conjecture of generalized trigonometric and hyperbolic functions, Math. Pannon., 24 (2013), 1-8. Available from: http://arXiv.org/abs/1402.7331.
    [14] M. Masjed-Jamei, S. S. Dragomir, A new generalization of the Ostrowski inequality and applications, Filomat, 25 (2011), 115-123. doi: 10.2298/FIL1101115M
    [15] M. Masjed-Jamei, S. S. Dragomir, H. M. Srivastava, Some generalizations of the Cauchy-Schwarz and the Cauchy-Bunyakovsky inequalities involving four free parameters and their applications, Math. Comput. Model., 49, (2009), 1960-1968.
    [16] L. G. Huang, L. Yin, Y. L. Wang, X. L. Lin, Some new Wilker and Cusa type inequalities for generalized trigonometric and hyperbolic functions, J. Inequal. Appl., 2018 (2018), 52. doi: 10.1186/s13660-018-1644-8
    [17] D. B. Karp, E. G. Prilepkina, Parameter convexity and concavity of generalized trigonometric functions, J. Math. Anal. Appl., 421 (2015), 370-382. Available from: http://arXiv.org/abs/1402.3357.
    [18] J. C. Kuang, Applied inequalities (Second edition). Shan Dong Science and Technology Press. Jinan, 2002.
    [19] P. Lindqvist, Some remarkable sine and cosine functions, Ricerche di Math., XLIV (1995), 269-290.
    [20] T. J. Mildorf, A sharp bound on the two variable powers mean, Math. Reflections, 2 (2006), 3-7.
    [21] D. S. Mitrinovic, Analytic inequalities, Springer-verlag, New York, 1970.
    [22] W. D. Richter, Generalized spherical and simplicial coordinates, J. Math. Anal. Appl., 336 (2007), 1187-1202. doi: 10.1016/j.jmaa.2007.03.047
    [23] W. D. Richter, Continuous ln,p-symmetric distributions, Lithuanian Math. J., 49 (2009), 93-108.
    [24] J. Sándor, On some new Wilker and Huygens type trigonometric-hyperbolic inequalities, Proceedings of the Jangjeon Mathematical Society, 15 (2012). Available from: http://arXiv.org/abs/1105.0859.
    [25] S. Takeuchi, Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian, J. Math. Anal. Appl., 385 (2012), 24-35. doi: 10.1016/j.jmaa.2011.06.063
    [26] T. Kamiya, S. Takeuchi, Complete (p,q)-elliptic integrals with application to a family of means, J. Classical Anal., 10 (2015), 15-25. Available from: http://arXiv.org/abs/1507.01383.
    [27] S. Takeuchi, The complete p-elliptic integrals and a computation formula of πp for p=4, Ramanujan J., 46 (2018), 309-321. Available from: http://arXiv.org/abs/1503.02394.
    [28] S. Takeuchi, A new form of the generalized complete elliptic integrals, Kodai J. Math., 39 (2016), 202-226. Available from: http://arXiv.org/abs/1411.4778.
    [29] S. Takeuchi, Multiple-angle formulas of generalized trigonometric functions with two parameters, J. Math. Anal. Appl., 444 (2016), 1000-1014. Available from: http://arXiv.org/abs/1603.06709.
    [30] S. Takeuchi, Legendre-type relations for generalized complete elliptic integrals, J. Classical Anal., 9 (2016), 35-42. Available from: http://arXiv.org/abs/1606.05115.
    [31] M. K. Wang, Z. Y. He, Y. M. Chu, Sharp Power Mean Inequalities for the Generalized Elliptic Integral of the First Kind, Comput. Methods Funct. Theory, 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
    [32] M. K. Wang, H. H. Chu, Y. M. Chu, Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals, J. Math. Anal. Appl., 480 (2019), 123388. doi: 10.1016/j.jmaa.2019.123388
    [33] M. K. Wang, W. Zhang, Y. M. Chu, Monotonicity, convexity and inequalities involving the generalized elliptic integrals, Acta Math. Sci., 39(B) (2019), 1440-1450.
    [34] T. R. Huang, S. Y. Tan, X. Y. Ma, Y. M. Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, J. Inequal. Appl., 2018 (2018), Article ID 239, 11.
    [35] Z. H. Yang, Y. M. Chu, A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., 20 (2017), 729-735.
    [36] L. Yin, L. G. Huang, Y. L. Wang, X. L. Lin, A survey for generalized trigonometric and hyperbolic functions, J. Math. Inequal., 13 (2019), 833-854.
  • This article has been cited by:

    1. Rashad A. Al-Jawfi, Abdulghani Muhyi, Wadia Faid Hassan Al-shameri, On Generalized Class of Bell Polynomials Associated with Geometric Applications, 2024, 13, 2075-1680, 73, 10.3390/axioms13020073
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2720) PDF downloads(113) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog