Research article

Approximation of Jakimovski-Leviatan-Beta type integral operators via q-calculus

  • Received: 22 November 2020 Accepted: 13 March 2020 Published: 20 March 2020
  • MSC : Primary: 41A2, 41A36; Secondary: 33C45

  • We construct Jakimovski-Leviatan-Beta type q-integral operators and show that these positive linear operators are uniformly convergent to a continuous functions. We obtain the Korovkin type results, the rate of convergence as well as some direct theorems.

    Citation: Abdullah Alotaibi, M. Mursaleen. Approximation of Jakimovski-Leviatan-Beta type integral operators via q-calculus[J]. AIMS Mathematics, 2020, 5(4): 3019-3034. doi: 10.3934/math.2020196

    Related Papers:

  • We construct Jakimovski-Leviatan-Beta type q-integral operators and show that these positive linear operators are uniformly convergent to a continuous functions. We obtain the Korovkin type results, the rate of convergence as well as some direct theorems.


    加载中


    [1] P. Appell, Une classe de polynômes, Ann. Sci. École Norm. Sup., 9 (1880), 119-144. doi: 10.24033/asens.186
    [2] İ. Büyükyazıcı, H. Tanberkan, S. Serenbay, et al. Approximation by Chlodowsky type JakimovskiLeviatan operators, J. Comput. Appl. Math., 259 (2014), 153-163. doi: 10.1016/j.cam.2013.04.021
    [3] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
    [4] V. Kac, P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.
    [5] V. Kac, A. De Sole, On integral representations of q-gamma and q-beta functions, Mathematica, 9 (2005), 11-29.
    [6] W. A. Al-Salam, q-Appell polynomials, Ann. Mat. Pura Appl., 4 (1967), 31-45.
    [7] M. E. Keleshteri, N. I. Mahmudov, A study on q-Appell polynomials from determinantal point of view, Appl. Math. Comput., 260 (2015), 351-369.
    [8] M. Mursaleen, K. J. Ansari, M. Nasiruzzaman, Approximation by q-analogue of JakimovskiLeviatan operators involving q-Appell polynomials, Iranian J. Sci. Tech. A, 41 (2017), 891-900. doi: 10.1007/s40995-017-0331-9
    [9] M. Mursaleen, T. Khan, On approximation by Stancu type Jakimovski-Leviatan-Durrmeyer operators, Azerbaijan J. Math., 7 (2017), 16-26.
    [10] V. N. Mishra, P. Patel, On generalized integral Bernstein operators based on q-integers, Appl. Math. Comput., 242 (2014), 931-944.
    [11] M. Mursaleen, M. Ahasan, The Dunkl generalization of Stancu type q-Szász-Mirakjan-Kantrovich operators and some approximation results, Carpathian J. Math., 34 (2018) 363-370.
    [12] M. Mursaleen, S. Rahman, Dunkl generalization of q-Szász-Mirakjan operators which preserve x2, Filomat, 32 (2018), 733-747.
    [13] N. Rao, A. Wafi, A. M. Acu, q-Szász-Durrmeyer type operators based on Dunkl analogue, Complex Anal. Oper. Theory, 13 (2019), 915-934. doi: 10.1007/s11785-018-0816-3
    [14] P. P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi 1960.
    [15] A. D. Gadžiev, A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P. P. Korovkin's theorem, Dokl. Akad. Nauk SSSR (Russian), 218 (1974), 1001-1004.
    [16] A. D. Gadžiev, Weighted approximation of continuous functions by positive linear operators on the whole real axis, Izv. Akad. Nauk Azerbaijan. SSR Ser. Fiz. Tehn. Mat. Nauk (Russian), 5 (1975), 41-45.
    [17] E. Ibikli, A. D. Gadžiev, The order of approximation of some unbounded functions by the sequence of positive linear operators, Turk. J. Math. 19 (1995), 331-337.
    [18] J. Peetre, Noteas de mathematica 39, Rio de Janeiro, Instituto de Mathematica Pura e Applicada, Conselho Nacional de Pesquidas, 1968.
    [19] A. Ciupa, A class of integral Favard-Szász type operators, Stud. Univ. Babeş-Bolyai, Math., 40 (1995), 39-47.
    [20] C. Atakut, N. Ispir, Approximation by modified Szász-Mirakjan operators on weighted spaces, Proc. Indian Acad. Sci. Math. Sci., 112 (2002), 571-578. doi: 10.1007/BF02829690
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(570) PDF downloads(364) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog