Citation: A. M. Mishra, D. Kumar, S. D. Purohit. Unified integral inequalities comprising pathway operators[J]. AIMS Mathematics, 2020, 5(1): 399-407. doi: 10.3934/math.2020027
[1] | Wenfeng He, Ghulam Farid, Kahkashan Mahreen, Moquddsa Zahra, Nana Chen . On an integral and consequent fractional integral operators via generalized convexity. AIMS Mathematics, 2020, 5(6): 7632-7648. doi: 10.3934/math.2020488 |
[2] | Sajid Iqbal, Muhammad Samraiz, Gauhar Rahman, Kottakkaran Sooppy Nisar, Thabet Abdeljawad . Some new Grüss inequalities associated with generalized fractional derivative. AIMS Mathematics, 2023, 8(1): 213-227. doi: 10.3934/math.2023010 |
[3] | Sobia Rafeeq, Sabir Hussain, Jongsuk Ro . On fractional Bullen-type inequalities with applications. AIMS Mathematics, 2024, 9(9): 24590-24609. doi: 10.3934/math.20241198 |
[4] | Gauhar Rahman, Muhammad Samraiz, Saima Naheed, Artion Kashuri, Kamsing Nonlaopon . New classes of unified fractional integral inequalities. AIMS Mathematics, 2022, 7(8): 15563-15583. doi: 10.3934/math.2022853 |
[5] | Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589 |
[6] | Zitong He, Xiaolin Ma, Ghulam Farid, Absar Ul Haq, Kahkashan Mahreen . Bounds of a unified integral operator for (s,m)-convex functions and their consequences. AIMS Mathematics, 2020, 5(6): 5510-5520. doi: 10.3934/math.2020353 |
[7] | Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112 |
[8] | Shuang-Shuang Zhou, Saima Rashid, Erhan Set, Abdulaziz Garba Ahmad, Y. S. Hamed . On more general inequalities for weighted generalized proportional Hadamard fractional integral operator with applications. AIMS Mathematics, 2021, 6(9): 9154-9176. doi: 10.3934/math.2021532 |
[9] | Xinghua You, Ghulam Farid, Lakshmi Narayan Mishra, Kahkashan Mahreen, Saleem Ullah . Derivation of bounds of integral operators via convex functions. AIMS Mathematics, 2020, 5(5): 4781-4792. doi: 10.3934/math.2020306 |
[10] | Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648 |
Real world problems deal with mathematical modeling in different discipline of sciences and such mathematical model generally consists of partial differential equations, either in integer form or in fractional form (arbitrary), for instance see [17,18,28,34,35,38,39] and references therein. We often interested to find the bounds of solutions for such partial differential equations which can be achieved by fractional integral inequalities in an efficient manner. Because of this, fractional integral inequalities are always been a focusing area for researchers (see [1,5,4,11,12,25,29]). Many authors have studied a number of generalization of well known integral inequalities for suitable choices of functions [8,10,13,19,20,21,22,23,24]. Tariboon et al. [36], Wang et al. [37] and Saxena et al. [33] studied different types of inequalities for the integrable functions. We try to find a general extensions of the results available in [36] and [37]. We have established new integral inequalities inherent in the integrable functions, concerning pathway fractional integral operators, given by Nair [26]. We have also discussed some ensuing results and special cases of the main results [20,22,21].
Pathway fractional integral operator is a generalized Riemann Liouville fractional integral operator in higher dimensions. Indeed, pathway fractional integral operator has been used to define certain probability density functions and having interesting applications in statistics also, see [20,21].
Let λ be an arbitrary real number preferably less than 1. A class of conformal functions
C(k)λ={f(t)=tp˜f(t);p>λ,˜f∈C(k)([a,b])} |
be Banach space for our consideration for different non negative values of k. The space we have chosen for k=0 [16] induced by the norm
||f||r=[∫ba|f(x)|rdx]1r<∞. |
Suppose ϕ(t)∈C(k)λ for k=0 and ν∈C which has positive real part and a is positive. Pathway fractional integral operator is defined as [20]
P(ν,λ)0+(ϕ(t))=∫ta(1−λ)0tν[1−a(1−λ)ut]ν/(1−λ)ϕ(u)du. | (1.1) |
We call λ the pathway parameter and ν, order of the integral operator. While λ converges to 1 from left side, the operator gets the form
P(ν,1)0+(ϕ(t))=tνLϕ{aνt}, | (1.2) |
where Lϕ{s} is a Laplace transform of the function ϕ(.) with parameter s. Meaning thereby, the fractional integral operator of pathway type reduces to the Laplace transform with factor (aν/t) for a particular value of λ.
Pathway integral operator reduces to left sided Riemann-Liouville fractional integral operator Iν0+(ϕ(t)) for particular value of λ=0 and a=1
∫t0(t−u)ν−1ϕ(u)du=Γ(ν)Iν0+(ϕ(t)), | (1.3) |
by replacing ν to ν−1. The reader may refer the papers of Mathai and Haubold [21,22], Nair [26] and Nisar et al. [27] for more details of pathway operators. Pathway fractional integral operator yields the following expression on an application of polynomial functions:
P(ν,λ)0+(zn)=Γ(n+1)[a(1−λ)]n+1Γ(1+ν1−λ)Γ(2+n+ν1−λ)zν+n+1, | (1.4) |
generally known as image formula. Pathway fractional integral operator acts as vector space over the field of real numbers so value of pathway operator can be evaluated by
P(ν,λ)0+(1)=1a(1−λ)Γ(1+ν1−λ)Γ(2+ν1−λ)zν+1. | (1.5) |
Recently, several extensions of the classical inequalities have been studied by many authors, see [2,3,6,7,30,31] and references therein. Our article has organized as follows: First we state and prove the main inequality of the article and take a specific case when pathway parameters coincide. Moreover, we discuss certain generalized versions of this theorem, associated with the two bounded integrable functions. Special cases of these results have also been discussed in a separate section with some concluding remarks.
The results are stated as the following theorems:
Theorem 2.1. Let F be an integrable bounded function such that
γ1(z)≤F(z)≤γ2(z) |
for all z∈[a,b]. Then,
P(ν′,λ′)0+(γ1(z))P(ν,λ)0+(F(z))+P(ν,λ)0+(γ2(z))P(ν′,λ′)0+(F(z))≥P(ν,λ)0+(γ2(z))P(ν′,λ′)0+(γ1(z))+P(ν,λ)0+(F(z))P(ν′,λ′)0+((F(z)) | (2.1) |
where γ1(z),γ2(z) and F(z) are integrable functions over the interval [a,b].
Proof. Taking into account of the inequality γ1(z)≤F(z)≤γ2(z), for any u,v>0, we have
(γ2(u)−F(u))(F(v)−γ1(v))≥0, | (2.2) |
and it follows that
γ2(u)F(v)+γ1(v)F(u)≥γ1(v)γ2(u)+F(u)F(v). | (2.3) |
Let us consider
F(z,u)=zν[1−a(1−λ)uz]ν/(1−λ), | (2.4) |
u∈[0,z],z>0.
Multiply (2.2) by F(z,u)p(u) (where p(u) is a weight function) and integrate u over 0 to z/a(1−λ), we get
∫z/a(1−λ)0F(z,u)p(u)γ2(u)F(v)du+∫z/a(1−λ)0F(z,u)p(u)γ1(v)F(u)du≥∫z/a(1−λ)0F(z,u)p(u)γ1(v)γ2(u)du+∫z/a(1−λ)0F(z,u)p(u)F(u)F(v)du | (2.5) |
i.e.,
F(v)∫z/a(1−λ)0F(z,u)p(u)γ2(u)du+γ1(v)∫z/a(1−λ)0F(z,u)p(u)F(u)du≥γ1(v)∫z/a(1−λ)0F(z,u)p(u)γ2(u)du+F(v)∫z/a(1−λ)0F(z,u)p(u)F(u)du. | (2.6) |
This implies,
F(v)P(ν,λ)0+(γ2(z))+γ1(v)P(ν,λ)0+(F(z))≥γ1(v)P(ν,λ)0+(γ2(z))+F(v)P(ν,λ)0+(F(z)). | (2.7) |
In the same way, we consider the function
H(z,v)=zν′[1−a(1−λ′)vz]ν′/(1−λ′). | (2.8) |
Now, Multiply (2.7) by H(z,v)p(v) and integrate with respect to v from 0 to ν′/a(1−λ′), we get:
∫z/a(1−λ′)0H(z,v)p(v)F(v)dv(P(ν,λ)0+(γ2(z))+∫z/a(1−λ′)0H(z,v)p(v)γ1(v)dv(P(ν,λ)0+(F(z)))≥∫z/a(1−λ′)0H(z,v)p(v)γ1(v)dv(P(ν,λ)0+(γ2(z)))+∫z/a(1−λ′)0H(z,v)p(v)F(v)dv(P(ν,λ)0+(F(z))) | (2.9) |
or,
P(ν′,λ′)0+(γ1(z))P(ν,λ)0+(F(z))+P(ν,λ)0+(γ2(z))P(ν′,λ′)0+(F(z))≥P(ν,λ)0+(γ2(z))P(ν′,λ′)0+(γ1(z))+P(ν,λ)0+(F(z))P(ν′,λ′)0+((F(z)). | (2.10) |
This proves the theorem.
The following corollary is an immediate result of the above theorem, when both pathway parameter and order of pathway operator coincides.
Corollary 1. Under the hypothesis of Theorem 1, the following inequality holds:
P(ν,λ)0+(γ1(z))P(ν,λ)0+(F(z))+P(ν,λ)0+(γ2(z))P(ν,λ)0+(F(z))≥P(ν,λ)0+(γ2(z))P(ν,λ)0+(γ1(z))+(P(ν,λ)0+(F(z)))2. | (2.11) |
Now, we can also extend this result for two bounded functions.
Theorem 2.2. Suppose F and G are two integrable functions over the interval [a,b] and γ1,γ2,δ1 and δ2 are four integrable functions on [a,b], such that
γ1(z)≤F(z)≤γ2(z),δ1(z)≤G(z)≤δ2(z),forallz∈[a,b]. | (2.12) |
Then the following inequalities holds true:
P(ν,λ)0+δ1(z)P(ν′,λ′)0+F(z)+P(ν′,λ′)0+γ2(z)P(ν,λ)0+G(z)≥P(ν′,λ′)0+γ2(z)P(ν,λ)0+δ1(z)+P(ν′,λ′)0+F(z)P(ν,λ)0+G(z) | (2.13) |
P(ν,λ)0+γ1(z)P(ν′,λ′)0+G(z)+P(ν′,λ′)0+δ2(z)P(ν,λ)0+F(z)≥P(ν′,λ′)0+δ2(z)P(ν,λ)0+γ1(z)+P(ν′,λ′)0+G(z)P(ν,λ)0+F(z) | (2.14) |
P(ν,λ)0+γ2(z)P(ν′,λ′)0+δ2(z)+P(ν′,λ′)0+F(z)P(ν,λ)0+G(z)≥P(ν′,λ′)0+γ2(z)P(ν,λ)0+G(z)+P(ν′,λ′)0+F(z)P(ν,λ)0+δ2(z) | (2.15) |
P(ν,λ)0+γ1(z)P(ν′,λ′)0+δ1(z)+P(ν′,λ′)0+F(z)P(ν,λ)0+G(z)≥P(ν′,λ′)0+γ1(z)P(ν,λ)0+G(z)+P(ν′,λ′)0+F(z)P(ν,λ)0+δ1(z) | (2.16) |
Proof. Assuming F and G are two integrable functions which are satisfying inequality (2.12), then in order to prove (2.13), we can write
(γ2(u)−F(u))(G(v)−δ1(v))≥0, | (2.17) |
or we can deduce
γ2(u)G(v)+δ1(v)F(u)≥δ1(v)γ2(u)+F(u)G(v). | (2.18) |
Multiplying both sides of (2.18) by F(z,u) and integrating with respect to u from 0 to z, we get
G(v)P(ν′,λ′)0+γ2(z)+δ1(v)P(ν′,λ′)0+F(z)≥δ1(v)P(ν′,λ′)0+γ2(z)+G(v)P(ν′,λ′)0+F(z). | (2.19) |
Again we multiply both sides of (2.19) by H(z,v), given in (2.8), and integrate with respect to v from 0 to z, we can easily find the result (2.13).
The proofs of remaining inequalities (2.14), (2.15) and (2.16) follows on similar manners, as we did in the case of (2.13), we can prove other inequalities by taking into account the following identities, respectively:
(δ2(u)−G(u))(F(v)−γ1(v))≥0, |
(γ2(u)−F(u))(G(v)−δ2(v))≥0 |
and
(γ1(u)−F(u))(G(v)−δ1(v))≥0. |
We omit details of the proof.
On the account of general nature of the pathway fractional integral operator, a number of new and known results involving Riemann-Liouville and Laplace transforms follow as special cases of theorems given above. To this end, let us set λ=0, and use the relation (1.3), we recognize that Theorem 1 yields known integral inequality involving Riemann Liouville integral operators, due to [36]
Corollary 2. Suppose F is an integrable bounded function such that
γ1(z)≤F(z)≤γ2(z) |
for all z∈[a,b]. Then,
I(ν′)0+(γ1(z))I(ν)0+(F(z))+I(ν)0+(γ2(z))I(ν′)0+(F(z))≥I(ν)0+(γ2(z))I(ν′)0+(γ1(z))+I(ν)0+(F(z))I(ν′)0+((F(z)) | (3.1) |
where γ1(z),γ2(z) and F(z) are integrable functions over the interval [a,b].
Similarly, if λ tends to 1 from left side then we get the following inequality:
Corollary 3. Suppose F is an integrable bounded function such that
γ1(z)≤F(z)≤γ2(z) |
for all z∈[a,b]. Then,
Lγ1{u}LF{v}+Lγ2{v}LF{u}⩾Lγ1{u}Lγ2{v}+LF{v}LF{u} | (3.2) |
where u=aν′z and v=aνz.
Further, if we set γ1(t)=m,γ2(t)=M,δ1(t)=p and δ2(t)=P, where m,M,p,P∈R,∀t∈[0,∞) and use of equation (1.6), then Theorems 1 & 2 lead to the following inequalities:
Corollary 4. Suppose F is an integrable function defined on [a,b], such that
A≤F(z)≤B,A,B∈Rforallz∈[a,b], |
Thereupon, for z>0, we have
Aa(1−λ′)Γ(1+ν′1−λ′)Γ(2+ν′1−λ′)zν′+1P(ν,λ)0+(F(z))+Aa(1−λ)Γ(1+ν1−λ)Γ(2+ν1−λ)zν+1P(ν′,λ′)0+(F(z))≥ABa2(1−λ)(1−λ′)Γ(1+ν1−λ)Γ(2+ν1−λ)Γ(1+ν′1−λ′)Γ(2+ν′1−λ′)zν′+ν+2+P(ν,λ)0+(F(z))P(ν′,λ′)0+(F(z)). | (3.3) |
Corollary 5. Suppose F and G are two integrable functions over [a,b], such that
A≤F(z)≤B,C≤G(z)≤D,A,B,C,D∈Rforallz∈[a,b] |
Then, for z>0, these results follow:
Ca(1−λ)Γ(1+ν1−λ)Γ(2+ν1−λ)zν+1P(ν′,λ′)0+F(z)+Ba(1−λ′)Γ(1+ν′1−λ′)Γ(2+ν′1−λ′)zν′+1P(ν,λ)0+G(z)≥CBa2(1−λ)(1−λ′)Γ(1+ν1−λ)Γ(2+ν1−λ)Γ(1+ν′1−λ′)Γ(2+ν′1−λ′)zν′+ν+2+P(ν′,λ′)0+F(z)P(ν,λ)0+G(z), | (3.4) |
Aa(1−λ)Γ(1+ν1−λ)Γ(2+ν1−λ)zν+1P(ν′,λ′)0+G(z)+Da(1−λ′)Γ(1+ν′1−λ′)Γ(2+ν′1−λ′)zν′+1P(ν,λ)0+F(z)≥ADa2(1−λ)(1−λ′)Γ(1+ν1−λ)Γ(2+ν1−λ)Γ(1+ν′1−λ′)Γ(2+ν′1−λ′)zν′+ν+2+P(ν′,λ′)0+G(z)P(ν,λ)0+F(z), | (3.5) |
BDa2(1−λ)(1−λ′)Γ(1+ν1−λ)Γ(2+ν1−λ)Γ(1+ν′1−λ′)Γ(2+ν′1−λ′)zν′+ν+2+P(ν′,λ′)0+F(z)P(ν,λ)0+G(z)≥Ba(1−λ′)Γ(1+ν′1−λ′)Γ(2+ν′1−λ′)zν′+1P(ν,λ)0+G(z)+P(ν′,λ′)0+F(z)Da(1−λ)Γ(1+ν1−λ)Γ(2+ν1−λ)zν+1, | (3.6) |
and
ACa2(1−λ)(1−λ′)Γ(1+ν1−λ)Γ(2+ν1−λ)Γ(1+ν′1−λ′)Γ(2+ν′1−λ′)zν′+ν+2+P(ν′,λ′)0+F(z)P(ν,λ)0+G(z)≥Aa(1−λ′)Γ(1+ν′1−λ′)Γ(2+ν′1−λ′)zν′+1P(ν,λ)0+G(z)+Ca(1−λ)Γ(1+ν1−λ)Γ(2+ν1−λ)zν+1P(ν′,λ′)0+F(z). | (3.7) |
By setting specific functions in place of γ1(z) and γ2(z) we can get a number of inequalities. For example, we may take γ1(z)=z and γ2(z)=z+1. Same will work with corollaries, i.e., we can suitably choose δ1(z) and δ2(z). Pathway fractional integral operator converges to Riemann-Liouville fractional integral operator and Laplace transform under suitable values of parameters. Thus we can deduce standard inequalities involving Riemann-Liouville fractional integral operator and Laplace transform from the theorems stated in this paper.
The authors are grateful to the referees for their useful suggestions, which led to a better presentation of this paper.
The authors declare that there is no conflict of interests regarding the publication of this article.
[1] |
N. Ahmadmir, R. Ullah, Some inequalities of Ostrowski and Grüss type for triple integrals on time scales, Tamkang J. Math., 42 (2011), 415-426. doi: 10.5556/j.tkjm.42.2011.685
![]() |
[2] | D. Baleanu, S. D. Purohit, J. C. Prajapati, Integral inequalities involving generalized Erdèlyi-Kober fractional integral operators, Open Math., 14 (2016), 89-99. |
[3] | D. Baleanu, S. D. Purohit, F. Ucar, On Gruss type integral inequality involving the Saigo's fractional integral operators, J. Comput. Anal. Appl., 19 (2015), 480-489. |
[4] | P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98. |
[5] | P. Cerone, S. S. Dragomir, New upper and lower bounds for the Chebyshev functional, J. Inequal. Pure App. Math., 3 (2002), Article 77. |
[6] |
J. Choi, S. D. Purohit, A Gruss type integral inequality associated with Gauss hypergeometric function fractional integral operator, Commun. Korean Math. Soc., 30 (2015), 81-92. doi: 10.4134/CKMS.2015.30.2.081
![]() |
[7] | Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev's functional involving a Riemann-Liouville operator, Bull. Math. Anal. Appl., 3 (2011), 38-44. |
[8] |
S. S. Dragomir, A generalization of Grüss's inequality in inner product spaces and applications, J. Math. Anal. Appl., 237 (1999), 74-82. doi: 10.1006/jmaa.1999.6452
![]() |
[9] | S. S. Dragomir, A Grüss type inequality for sequences of vectors in inner product spaces and applications, J. Inequal. Pure Appl. Math., 1 (2000), 1-11. |
[10] | S. S. Dragomir, Some integral inequalities of Grüss type, Indian J. Pure Appl. Math., 31 (2000), 397-415. |
[11] | S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type, Springer Briefs in Mathematics, Springer, New York, 2012. |
[12] | S. S. Dragomir, S. Wang, An inequality of Ostrowski-Grüss' type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl., 13 (1997), 15-20. |
[13] |
H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl., 47 (2004), 281-300. doi: 10.1016/S0898-1221(04)90025-9
![]() |
[14] | D. Grüss, Uber das maximum des absoluten Betrages von1(b−a)∫baf(x)g(x)dx−1(b−a)2∫baf(x)dx ∫bag(x)dx, Math. Z., 39 (1935), 215-226. |
[15] | S. L. Kalla, A. Rao, On Grüss type inequality for hypergeometric fractional integrals, Le Matematiche, 66 (2011), 57-64. |
[16] | V. Kiryakova, Generalized Fractional Calculus and Applications, (Pitman Res. Notes Math. Ser. 301), Longman Scientific & Technical, Harlow, 1994. |
[17] | D. Kumar, J. Singh, S. D. Purohit, et al. A hybrid analytic algorithm for nonlinear wave-like equations, Math. Model. Nat. Phenom., 14 (2019), 304. |
[18] |
D. Kumar, J. Singh, K. Tanwar, et al. A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler Laws, Int. J. Heat Mass Transf., 138 (2019), 1222-1227. doi: 10.1016/j.ijheatmasstransfer.2019.04.094
![]() |
[19] |
Z. Liu, Some Ostrowski-Grüss type inequalities and applications, Comput. Math. Appl., 53 (2007), 73-79. doi: 10.1016/j.camwa.2006.12.021
![]() |
[20] |
A. M. Mathai, A pathway to matrix-variate gamma and normal densities, Linear Algebra Appl., 396 (2005), 317-328. doi: 10.1016/j.laa.2004.09.022
![]() |
[21] |
A. M. Mathai, H. J. Haubold, Pathway model, superstatistics, Tsallis statistics and a generalize measure of entropy, Phys. A, 375 (2007), 110-122. doi: 10.1016/j.physa.2006.09.002
![]() |
[22] | A. M. Mathai, H. J. Haubold, On generalized distributions and path-ways, Phys. Lett. A, 72 (2008), 2109-2113. |
[23] |
M. Maticć, Improvment of some inequalities of Euler-Grüss type, Comput. Math. Appl., 46 (2003), 1325-1336. doi: 10.1016/S0898-1221(03)90222-7
![]() |
[24] | McD A. Mercer, An improvement of the Grüss inequality, J. Inequa. Pure Appl. Math., 6 (2005), 1-4. |
[25] | D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, 1993. |
[26] | S. S. Nair, Pathway fractional integration operator, Fract. Calc. Appl. Anal., 12 (2009), 237-252. |
[27] |
K. S. Nisar, S. D. Purohit, M. S. Abouzaid, et al. Generalized k-Mittag-Leffler function and its composition with pathway integral operators, J. Nonlinear Sci. Appl., 9 (2016), 3519-3526. doi: 10.22436/jnsa.009.06.07
![]() |
[28] |
K. S. Nisar, S. D. Purohit, S. R. Mondal, Generalized k-Mittag-Leffler function and its composition with pathway integral operators, J. King Saud Univ. Sci., 28 (2016), 167-171. doi: 10.1016/j.jksus.2015.08.005
![]() |
[29] | B. G. Pachpatte, A note on Chebyshev-Grüss inequalities for differential equations, Tamsui Oxf. J. Math. Sci., 22 (2006), 29-36. |
[30] | S. D. Purohit, R. K. Raina, Chebyshev type inequalities for the Saigo fractional integrals and their q-analogues, J. Math. Inequal., 7 (2013), 239-249. |
[31] | S. D. Purohit, R. K. Raina, Certain fractional integral inequalities involving the Gauss hypergeometric function, Rev. Téc. Ing. Univ. Zulia, 37 (2014), 167-175. |
[32] | S. D. Purohit, F. Uçar, R. K. Yadav, On fractional integral inequalities and their q-analogues, Revista Tecnocientifica URU, 6 (2014), 53-66. |
[33] |
R. K. Saxena, S. D. Purohit, D. Kumar, Integral inequalities associated with Gauss hypergeometric function fractional integral operators, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 88 (2018), 27-31. doi: 10.1007/s40010-016-0316-7
![]() |
[34] | J. Singh, D. Kumar, D. Baleanu, New aspects of fractional Biswas-Milovic model with MittagLeffler law, Math. Model. Nat. Phenom., 14 (2019), 303. |
[35] |
J. Singh, D. Kumar, D. Baleanu, et al. On the local fractional wave equation in fractal strings, Math. Method. Appl. Sci., 42 (2019), 1588-1595. doi: 10.1002/mma.5458
![]() |
[36] | J. Tariboon, S. K. Ntouyas, W. Sudsutad, Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Math. Sci., 6 (2014), Article ID 869434. |
[37] |
G. Wang, H. Harsh, S. D. Purohit, et al. A note on Saigo's fractional integral inequalities, Turkish J. Anal. Number Theory, 2 (2014), 65-69. doi: 10.12691/tjant-2-3-2
![]() |
[38] |
G. Wang, K. Pei, Y. Chen, Stability analysis of nonlinear Hadamard fractional differential system, J. Franklin Inst., 356 (2019), 6538-6546. doi: 10.1016/j.jfranklin.2018.12.033
![]() |
[39] |
G. Wang, X. Ren, Z. Bai, et al. Radial symmetry of standing waves for nonlinear fractional HardySchrödinger equation, Appl. Math. Lett., 96 (2019), 131-137. doi: 10.1016/j.aml.2019.04.024
![]() |
1. | Gauhar Rahman, Kottakkaran Sooppy Nisar, Sami Ullah Khan, Dumitru Baleanu, V. Vijayakumar, On the weighted fractional integral inequalities for Chebyshev functionals, 2021, 2021, 1687-1847, 10.1186/s13662-020-03183-x | |
2. | Chang-Jian Zhao, Čebyšev–Grüss inequalities for α-partial derivatives, 2021, 115, 1578-7303, 10.1007/s13398-020-00948-7 | |
3. | Shahid Khan, Muhammad Adil Khan, Saad Ihsan Butt, Yu-Ming Chu, A new bound for the Jensen gap pertaining twice differentiable functions with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02794-8 | |
4. | Kamlesh JANGİD, Sunil Dutt PROHİT, Kottakkaran Sooppy NİSAR, Thabet ABDELJAWAD, Certain Generalized Fractional Integral Inequalities, 2020, 2587-2648, 10.31197/atnaa.775089 | |
5. | Dumitru Baleanu, Pshtiwan Othman Mohammed, Shengda Zeng, Inequalities of trapezoidal type involving generalized fractional integrals, 2020, 59, 11100168, 2975, 10.1016/j.aej.2020.03.039 | |
6. | Hong-Hu Chu, Saima Rashid, Zakia Hammouch, Yu-Ming Chu, New fractional estimates for Hermite-Hadamard-Mercer’s type inequalities, 2020, 59, 11100168, 3079, 10.1016/j.aej.2020.06.040 | |
7. | Abd-Allah Hyder, Areej A. Almoneef, Hüseyin Budak, Improvement in Some Inequalities via Jensen–Mercer Inequality and Fractional Extended Riemann–Liouville Integrals, 2023, 12, 2075-1680, 886, 10.3390/axioms12090886 |