Loading [MathJax]/jax/output/SVG/jax.js
Research article

Partial sums of generalized q-Mittag-Leffler functions

  • Received: 04 October 2019 Accepted: 25 November 2019 Published: 02 December 2019
  • MSC : Primary 05A30, 30C45; Secondary 11B65, 47B38

  • In the present investigation, our main aim is to give lower bounds for the ratio of some normalized q-Mittag-Leffler function and their sequences of partial sums. We consider various corollaries and consequences of our main results.

    Citation: Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, Hari M. Srivastava, Bilal Khan, Nazar Khan. Partial sums of generalized q-Mittag-Leffler functions[J]. AIMS Mathematics, 2020, 5(1): 408-420. doi: 10.3934/math.2020028

    Related Papers:

    [1] Chunhong Li, Dandan Yang, Chuanzhi Bai . Some Opial type inequalities in (p, q)-calculus. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377
    [2] İbrahim Aktaş . On some geometric properties and Hardy class of q-Bessel functions. AIMS Mathematics, 2020, 5(4): 3156-3168. doi: 10.3934/math.2020203
    [3] Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067
    [4] Xiaoli Zhang, Shahid Khan, Saqib Hussain, Huo Tang, Zahid Shareef . New subclass of q-starlike functions associated with generalized conic domain. AIMS Mathematics, 2020, 5(5): 4830-4848. doi: 10.3934/math.2020308
    [5] Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073
    [6] Khadeejah Rasheed Alhindi, Khalid M. K. Alshammari, Huda Ali Aldweby . Classes of analytic functions involving the q-Ruschweyh operator and q-Bernardi operator. AIMS Mathematics, 2024, 9(11): 33301-33313. doi: 10.3934/math.20241589
    [7] Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, H. M. Srivastava, Nazar Khan, Maslina Darus, Bilal Khan . Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Mathematics, 2021, 6(2): 1110-1125. doi: 10.3934/math.2021067
    [8] Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386
    [9] Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469
    [10] Waseem Ahmad Khan, Kottakkaran Sooppy Nisar, Dumitru Baleanu . A note on (p, q)-analogue type of Fubini numbers and polynomials. AIMS Mathematics, 2020, 5(3): 2743-2757. doi: 10.3934/math.2020177
  • In the present investigation, our main aim is to give lower bounds for the ratio of some normalized q-Mittag-Leffler function and their sequences of partial sums. We consider various corollaries and consequences of our main results.


    Let A denote the class of all functions f which are analytic in the open unit disk

    U={z:zC   and    |z|<1}

    and normalized by the following condition:

    f(0)=0=f(0)1,

    that is, a function fA has the following Taylor-Maclaurin series representation:

    f(z)=z+n=2anzn         (zU). (1.1)

    Let S be the subclass of A consisting of all univalent functions in U.

    We denote the class of starlike functions by S, which is the usual subclass of the normalized univalent function class S. That is, S consists of functions fA that satisfy the following inequality:

    (zf(z)f(z))>0         (zU).

    We now recall some basic definitions and concept details of the q-calculus, which are used in this paper. We suppose throughout the paper that 0<q<1 and that

    N={1,2,3,...}=N0{0}       (N0={0,1,2,...}).

    Definition 1.1. Let q(0,1) and define the q-number [λ]q by

    [λ]q={1qλ1q(λC)n1k=0qk=1+q+q2+...+qn1(λ=nN).

    Definition 1.2. Let q(0,1) and define the q-factorial [n]q! by

    [n]q!={1                    n=0nk=1[k]qnN.

    Definition 1.3. Let q(0,1) and define q-generalized Pochhammer symbol by

    ([t]q)n={1                             (n=0)nk=0[t+k]q(nN).

    We note that

    ([t]q)n=[t]q([t+1]q)n1           (nN) (1.2)

    and

    ([t]q)n([t]q)n        (nN). (1.3)

    Definition 1.4. For t>0, let the q-gamma function be defined by

    Γq(t+1)=[t]qΓq(t)     and      Γq(1)=1.

    Definition 1.5. (see [9] and [10]; see also [1,20] and [27]) The q-derivative (or the q-difference) operator Dq for a function fA in given subset of C is defined by

    Dqf(z)={f(z)f(qz)(1q)z          (z0)f(0)(z=0), (1.4)

    provided that f(0) exists.

    We deduce from Definition 1.5 that

    limq1(Dqf)(z)=limq1(f(z)f(qz)(1q)z)=f(z)

    for a differentiable function f in a given subset of C. It can be easily seen from (1.1) and (1.4) that

    (Dqf)(z)=1+n=2[n]qanzn1. (1.5)

    In geometric function theory, the operator Dq (see Definition 1.5) provides an important tool that has been used in order to investigate various subclasses of the class S of normalized univalent functions. Historically speaking, Ismail et al. (see [8]) were the first who introduced a q-analogue of the class S of normalized starlike functions in U (see Definition 1.6 below). However, an important usage of the q-calculus in the context of geometric function theory was actually provided and the basic (or q-) hypergeometric functions were first used in geometric function theory in a book chapter by Srivastava (see, for details, [22,pp. 347 et seq.] (see also some more recent works [13,24].

    Definition 1.6. (see [8] and [27]) A function fA is said to belong to the class Sq if

    f(0)=0=f(0)1 (1.6)

    and

    |zf(z)(Dqf)(z)11q|11q         (zU). (1.7)

    It is readily observed that, as q1, the closed disk

    |w11q|11q

    becomes the right-half complex plane and the class Sq reduces to the above-mentioned well-known class S of normalized starlike functions in U.

    We note that the notation Sq was first used by Sahoo and Sharma (see [19]).

    We now recall the familiar Mittag-Leffler function Eα(z) (see [14]) and its two-parameter extension Eα,β(z) having similar properties to those of the Mittag-Leffler function Eα(z) (see [28] and [29]), which are defined (as usual) by means of the following series:

    Eα(z)=n=0znΓ(αn+1)     (zC;α>0) (1.8)

    and

    Eα,β(z)=n=0znΓ(αn+β)     (zC;α>0;β>0), (1.9)

    respectively. For a detailed account of the properties, generalizations and applications of the functions in (1.8) and (1.9), one may refer to [6,7,17,25].

    The above-defined Mittag-Leffler functions Eα(z) and Eα,β(z) can be normalized as follows:

    Eα,β(z)=zΓ(β)Eα,β(z)=n=0Γ(β)Γ(αn+β)zn+1(zU;α>0;β>0).

    We note that

    {(Eα,β)0(z)=z(Eα,β)j(z)=z+jn=1ωnzn+1    (jN), (1.10)

    where

    ωn=Γ(β)Γ(αn+β)       (α>0;β>0nN).

    Geometric properties including starlikeness, convexity and close-to-convexity for the Mittag-Leffler function Eα,β(z) were investigated by Bansal and Prajapat in [3] and, more recently, by Srivastava and Bansal (see [24]). In fact, the generalized Mittag-Leffler function Eα,β(z) and its extensions and generalizations continue to be used in many different contexts in geometric function theory (see, for details, [23]).

    The q-Mittag-Leffler function Mα,β(z;q) is normalized as follows (see, for example, [21]) :

    Mα,β(z;q)=zΓq(β)Eα,β(z)=n=0Γq(β)Γq(αn+β)zn+1,(zC;α>0;βC{0,1,2,...}). (1.11)

    Some special cases of the normalized q-Mittag-Leffler function Mα,β(z;q) are listed below:

    {M0,β(z;q)=z1zM1,1(z;q)=zezq M1,2(z;q)=ezq1M1,3(z;q)=(ezqz1)(1+q)zM1,4(z;q)=(1+q)(1+q+q2)z2(ezqz1z21+q), (1.12)

    where ezq is one of the q-analogues of the exponential function ez, which is given by (see [25, p. 488, Eq. 6.3 (7)])

    ezq=n=0znΓq(n+1). (1.13)

    Recently, several results were given such as those related to partial sums of special functions, such as the Struve function [30], meromorphic functions (see [11] and [2]), the Bessel function [15], the Lommel function [4] and the Wright functions [5]. Several other works dealing with partial sums of various subclasses of the analytic function class A, the interested reader may refer (for example) to [12,16] and [26].

    Motivated by the above-mentioned results, in this paper we investigate the ratio of the normalized q-Mittag-Leffler function Mα,β(z;q) defined by (1.11) to its sequence of partial sums:

    {(Mα,β)0(z;q)=z(Mα,β)j(z;q)=z+jn=1Knzn+1    (jN), (1.14)

    where

    Kn=Γq(β)Γq(αn+β)       (α>0, β>0 nN).

    We obtain the lower bounds on such ratios as those given below:

    {Mα,β(z;q)(Mα,β)j(z;q)},   {(Mα,β)j(z;q)Mα,β(z;q)}{DqMα,β(z;q)Dq(Mα,β)j(z;q)},    {Dq(Mα,β)j(z;q)DqMα,β(z;q)}.

    The following lemma will be required in order to derive our main results.

    Lemma 2.1. Let q(0,1), α1 and β1. Then the function Mα,β(z;q) satisfies the following inequalities:

    |Mα,β(z;q)|1+(qβ+q3)qβ+1(1qβ)2q (2.1)

    and

    |DqMα,β(z;q)|6+q2β+3qβ+15qβ+2q27q(1qβ)2. (2.2)

    Proof. It is well-known that

    Γq(α+β)Γq(αn+β).

    Therefore, we have

    Γq(β)Γq(αn+β)Γq(β)Γq(α+β)=(1[β]q)n. (2.3)

    By making use of (1.3), (2.3) and well-known triangle inequality for (zU), we find that

    |Mα,β(z;q)|=|z+n=1Γq(β)Γq(αn+β)zn+1|<1+n=1Γq(β)Γq(αn+β)<1+n=1(1[β]q)n=1+1[β]qn=1(1[β+1]q)n1<1+1[β]qn=1(1[β+1]q)n1=1+1[β]qn=0(1[β+1]q)n=1+(qβ+q3)qβ+1(1qβ)2q.

    Hence, the inequality (2.1) is proved. Similarly, we can prove the inequality (2.2).

    Let w(z) denote an analytic function in U. In the proof of our main results, the following well-known result will be used frequently:

    {1+w(z)1w(z)}>0

    if and only if

    |w(z)|<1   (zU).

    Theorem 2.2. Let q(0,1), α1 and β1+52. Then

    {Mα,β(z;q)(Mα,β)j(z;q)}qβ+1(qβq1)+2q1(1qβ)2q   (zU) (2.4)

    and

    {(Mα,β)j(z;q)Mα,β(z;q)}(1qβ)2q1+qβ+1(qβ+q3)   (zU). (2.5)

    Proof. From the inequality (2.1), we obtain

    1+n=1Kn1+(qβ+q3)qβ+1(1qβ)2q,  where Kn=Γq(β)Γq(αn+β)(nN),

    which is equivalent to

    (1qβ)2q1qqβ+1+qβ+2n=1Kn1.

    In order to prove the inequality (2.4), we set

    (1qβ)2q1qqβ+1+qβ+2[Mα,β(z;q)(Mα,β)j(z;q)qβ+1(qβq1)+2q1(1qβ)2q]=1+jn=1Knzn+(1qβ)2q1qqβ+1+qβ+2n=j+1Knzn1+jn=1Knzn=1+w(z)1w(z), (2.6)

    where

    w(z)=(1qβ)2q1qqβ+1+qβ+2n=j+1Knzn2+2jn=1Knzn+(1qβ)2q1qqβ+1+qβ+2n=j+1Knzn

    and

    |w(z)|<(1qβ)2q1qqβ+1+qβ+2n=j+1Kn22jn=1Kn(1qβ)2q1qqβ+1+qβ+2n=j+1Kn.

    The inequality |w(z)|<1 holds true if and only if

    (1qβ)2q1qqβ+1+qβ+2n=j+1Kn1jn=1Kn

    or, equivalently,

    jn=1Kn+(1qβ)2q1qqβ+1+qβ+2n=j+1Kn1. (2.7)

    To prove (2.7), it suffices to show that its left-hand side is bounded above by

    (1qβ)2q1qqβ+1+qβ+2n=1Kn,

    which is equivalent to

    qβ+1(qβq1)+2q11qqβ+1+qβ+2jn=1Kn0. (2.8)

    We see that the inequality (2.8) holds true for β1+52.

    We next use the same method to prove the inequality (2.5). Consider the function w(z) given by

    1+qβ+1(qβ+q3)1qqβ+1+qβ+2[(Mα,β)j(z;q)Mα,β(z;q)(1qβ)2q1+qβ+1(qβ+q3)]=1+jn=1Knzn(1qβ)2q1qqβ+1+qβ+2n=j+1Knzn1+n=1Knzn=1+w(z)1w(z), (2.9)

    where

    w(z)=1+qβ+1(qβ+q3)1qqβ+1+qβ+2n=j+1Knzn2+2jn=1Knznq2β+1qβ+2qβ+1+2q11qqβ+1+qβ+2n=j+1Knzn

    and

    |w(z)|<1+qβ+1(qβ+q3)1qqβ+1+qβ+2n=j+1Kn22jn=1Knq2β+1qβ+2qβ+1+2q11qqβ+1+qβ+2n=j+1Kn.

    Therefore, we get |w(z)|<1 if and only if

    (1qβ)2q1qqβ+1+qβ+2n=j+1Kn+jn=1Kn1.

    As the left-hand side of the last inequality is bounded above by

    (1qβ)2q1qqβ+1+qβ+2n=1Kn,

    we are led immediately to the assertion (2.5) of Theorem 2.2. Now we have completed the proof of Theorem 2.2.

    In its special case, if we let q1, Theorem 2.2 yields the following corollary.

    Corollary 2.3. (see [18]) Let α1 and β1+52. Then

    {Eα,β(z)(Eα,β)j(z)}β2β1β2    (zU)

    and

    {(Eα,β)j(z)Eα,β(z)}β2β2+β+1   (zU).

    We next turn to the ratios involving derivatives.

    Theorem 2.4. Let q(0,1), α1 and β3+172. Then

    {DqMα,β(z;q)Dq(Mα,β)j(z;q)}q2β3qβ+1+qβ2q2+7q4(1qβ)2   (zU) (2.10)

    and

    {Dq(Mα,β)j(z;q)DqMα,β(z;q)}(1qβ)2q6+q2β+3qβ+15qβ+2q27q   (zU). (2.11)

    Proof. From the inequality (2.2), we have

    1+n=1[n+1]qKn6+q2β+3qβ+15qβ+2q27q(1qβ)2, (2.12)

    where

    Kn=Γq(β)Γq(αn+β)(nN).

    Equivalently, we can rewrite the condition in (2.12) as follows:

    (1qβ)25+3qβ+13qβ+2q27qn=1[n+1]qKn1.

    In order to prove the inequality (2.10), we consider the function w(z) defined by

    (1qβ)25+3qβ+13qβ+2q27q[DqMα,β(z;q)Dq(Mα,β)j(z;q)q2β3qβ+1+qβ2q2+7q4(1qβ)2]=1+jn=1[n+1]qKnzn+(1qβ)25+3qβ+13qβ+2q27qn=j+1[n+1]qKnzn1+jn=1[n+1]qKnzn=1+w(z)1w(z). (2.13)

    From (2.13), we have

    w(z)=(1qβ)25+3qβ+13qβ+2q27qn=j+1[n+1]qKnzn2+2jn=1[n+1]qKnzn+(1qβ)25+3qβ+13qβ+2q27qn=j+1[n+1]qKnzn

    or, equivalently

    w(z)=(1qβ)25+3qβ+13qβ+2q27qn=j+1[n+1]qKn22jn=1[n+1]qKn(1qβ)25+3qβ+13qβ+2q27qn=j+1[n+1]qKn.

    The inequality |w(z)|<1 holds true if and only if

    jn=1[n+1]qKn+(1qβ)25+3qβ+13qβ+2q27qn=j+1[n+1]qKn1.

    The left-hand side of the above inequality is bounded above by

    (1qβ)25+3qβ+13qβ+2q27qn=1[n+1]qKn,

    which is equivalent to

    q2β3qβ+1+qβ2q2+7q45+3qβ+13qβ+2q27qjn=1[n+1]qKn0. (2.14)

    The inequality in (2.14) holds true for β3+172.

    We next use the same method to prove the inequality (2.5). Consider the function w(z) given by

    6+q2β+3qβ+15qβ+2q27q5+3qβ+13qβ+2q27q[Dq(Mα,β)j(z;q)DqMα,β(z;q)(1qβ)26+q2β+3qβ+15qβ+2q27q]=1+jn=1[n+1]qKnzn(1qβ)25+3qβ+13qβ+2q27qn=j+1[n+1]qKnzn1+n=1[n+1]qKnzn=1+w(z)1w(z). (2.15)

    By using Eq. (2.15), we obtain

    w(z)=6+q2β+3qβ+15qβ+2q27q5+3qβ+13qβ+2q27qn=j+1[n+1]qKnzn2+2jn=1[n+1]qKnznq2β3qβ+1+qβ2q2+7q45+3qβ3qβ+2q27qn=j+1[n+1]qKnzn,

    which is equivalent to

    |w(z)|<6+q2β+3qβ+15qβ+2q27q5+3qβ+13qβ+2q27qn=j+1[n+1]qKn22jn=1[n+1]qKnq2β3qβ+1+qβ2q2+7q45+3qβ+13qβ+2q27qn=j+1[n+1]qKn

    The inequality |w(z)|<1 holds true if and only if

    2(1qβ)25+3qβ+13qβ+2q27qn=j+1[n+1]qKn22jn=1[n+1]qKn

    or, equivalently,

    jn=1[n+1]qKn+(1qβ)25+3qβ+13qβ+2q27qn=j+1[n+1]qKn1. (2.16)

    It now suffices to show that the left-hand side of (2.16) is bounded above by

    (1qβ)25+3qβ+13qβ+2q27qn=j+1[n+1]qKn,

    which is equivalent to

    q2β3qβ+1+qβ2q2+7q45+3qβ+13qβ+2q27qn=j+1[n+1]qKn0.

    This last inequality holds true for β3+172. Hence we complete the proof of Theorem 2.4.

    Upon letting q1, Theorem 2.4 yields the following known result.

    Corollary 2.5. (see [18]) Let α1 and β1+52. Then

    {Eα,β(z)(Eα,β)j(z)}β23β2β2   (zU)

    and

    {(Eα,β)j(z)Eα,β(z)}β2β2+3β+2   (zU).

    The authors declare no conflicts of interest.



    [1] M. K. Aouf, T. M. Seoudy, Convolution properties of certain classes of analytic functions with complex order defined by q-derivative operator, RACSAM, 113 (2019), 1279-1288. doi: 10.1007/s13398-018-0545-5
    [2] O. Altintas, Ö. Özkan, H. M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett., 13 (2000), 63-67.
    [3] D. Bansal, J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic, 61 (2016), 338-350. doi: 10.1080/17476933.2015.1079628
    [4] M. Çaǧlar, E. Deniz, Partial sums of the normalized Lommel functions, Math. Inequal. Appl., 18 (2015), 1189-1199.
    [5] M. Din, M. Raza, N. Yaǧmur, Partial sums of normalized Wright functions, arXiv:1606.02750, 2016.
    [6] R. Gorenflo, F. Mainardi, S. V. Rogosin, On the generalized Mittag-Leffler type function, Integr. Transf. Spec. F., 7 (1998), 215-224. doi: 10.1080/10652469808819200
    [7] I. S. Gupta, L. Debnath, Some properties of the Mittag-Leffler functions, Integr. Transf. Spec. F., 18 (2007), 329-336. doi: 10.1080/10652460601090216
    [8] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Theor. Appl., 14 (1990), 77-84.
    [9] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
    [10] F. H. Jackson, q-Difference equations, Am. J. Math., 32 (1910), 305-314. doi: 10.2307/2370183
    [11] J. L. Liu, H. M. Srivastava, Subclasses of meromorphically multivalent functions associated with a certain linear operator, Math. Comput. Model., 39 (2004), 35-44. doi: 10.1016/S0895-7177(04)90504-3
    [12] S. Maharana, J. K. Prajapat, H. M. Srivastava, The radius of convexity of partial sums of convex functions in one direction, P. Natl. A. Sci. India Sect. A Phys. Sci., 87 (2017), 215-219. doi: 10.1007/s40010-017-0348-7
    [13] S. Mahmood, N. Raza, E. S. A. Abujarad, et al. Geometric properties of certain classes of analytic functions associated with a q-integral operator, Symmetry, 11 (2019), 719.
    [14] G. M. Mittag-Leffler, Sur la nouvelle fonction Eα(x), CR. Acad. Sci. Paris, 137 (1903), 554-558.
    [15] H. Orhan, N. Yaǧmur, Partial sums of generalized Bessel functions, J. Math. Inequal., 8 (2014), 863-877.
    [16] S. Owa, H. M. Srivastava, N. Saito, Partial sums of certain classes of analytic functions, Int. J. Comput. Math., 81 (2004), 1239-1256. doi: 10.1080/00207160412331284042
    [17] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1997), 7-15.
    [18] D. Rǎducanu, On partial sums of normalized Mittag-Leffler functions, An. U. Ovid. Co. Mat., 25 (2017), 123-133.
    [19] S. K. Sahoo, N. L. Sharma, On a generalization of close-to-convex functions, Ann. Polon. Math., 113 (2015), 93-108. doi: 10.4064/ap113-1-6
    [20] T. M. Seoudy, M. K. Aouf, Coefficient estimates of new class of q-starlike and q-convex functions of complex order, J. Math. Inequal., 10 (2016), 135-145.
    [21] S. K. Sharma, R. Jain, On some properties of generalized q-Mittag Leffler function, Math. Aeterna, 4 (2014), 613-619.
    [22] H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent Functions, Fractional Calculus and Their Applications, New York: Halsted Press, (1989), 329-354.
    [23] H. M. Srivastava, Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators, Appl. Anal. Discrete Math., 1 (2007), 56-71. doi: 10.2298/AADM0701056S
    [24] H. M. Srivastava, D. Bansal, Close-to-convexity of a certain family of q-Mittag-Leffer functions, J. Nonlinear Var. Anal., 1 (2017), 61-69.
    [25] H. M. Srivastava, J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Amsterdam: Elsevier Science Publishers, 2012.
    [26] H. M. Srivastava, S. Gaboury, F. Ghanim, Partial sums of certain classes of meromorphic functions related to the Hurwitz-Lerch zeta function, Moroccan J. Pure Appl. Anal., 1 (2015), 38-50.
    [27] H. M. Srivastava, A. O. Mostafa, M. K. Aouf, et al. Basic and fractional q-calculus and associated Fekete-Szego problem for p-valent q-starlike functions and p-valently q-convex functions of complex order, Miskolc Math. Notes, 20 (2019), 489-509. doi: 10.18514/MMN.2019.2405
    [28] A. Wiman, Über den Fundamentalsatz in der Theorie der Funcktionen Eα(x), Acta Math., 29 (1905), 191-201.
    [29] A. Wiman, Über die Nullstellen der Funktionen Eα(x), Acta Math., 29 (1905), 217-234.
    [30] N. Yaǧmur, H. Orhan, Partial sums of generalized Struve functions, Miskolc Math. Notes, 17 (2016), 657-670. doi: 10.18514/MMN.2016.1419
  • This article has been cited by:

    1. Bilal Khan, Hari M. Srivastava, Nazar Khan, Maslina Darus, Muhammad Tahir, Qazi Zahoor Ahmad, Coefficient Estimates for a Subclass of Analytic Functions Associated with a Certain Leaf-Like Domain, 2020, 8, 2227-7390, 1334, 10.3390/math8081334
    2. H. M. Srivastava, Operators of Basic (or q-) Calculus and Fractional q-Calculus and Their Applications in Geometric Function Theory of Complex Analysis, 2020, 44, 1028-6276, 327, 10.1007/s40995-019-00815-0
    3. Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, H. M. Srivastava, Nazar Khan, Maslina Darus, Muhammad Tahir, Coefficient inequalities for certain subclasses of multivalent functions associated with conic domain, 2020, 2020, 1029-242X, 10.1186/s13660-020-02446-1
    4. Huo Tang, Shahid Khan, Saqib Hussain, Nasir Khan, Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α, 2021, 6, 2473-6988, 5421, 10.3934/math.2021320
    5. Bilal Khan, Zhi-Guo Liu, Hari M. Srivastava, Nazar Khan, Maslina Darus, Muhammad Tahir, A Study of Some Families of Multivalent q-Starlike Functions Involving Higher-Order q-Derivatives, 2020, 8, 2227-7390, 1470, 10.3390/math8091470
    6. Shahid Khan, Saqib Hussain, Maslina Darus, Inclusion relations of q-Bessel functions associated with generalized conic domain, 2021, 6, 2473-6988, 3624, 10.3934/math.2021216
    7. Nazek Alessa, B. Venkateswarlu, K. Loganathan, T.S. Karthik, P. Thirupathi Reddy, G. Sujatha, Ming-Sheng Liu, Certain Class of Analytic Functions Connected with q -Analogue of the Bessel Function, 2021, 2021, 2314-4785, 1, 10.1155/2021/5587886
    8. Mohammad Faisal Khan, Anjali Goswami, Shahid Khan, Certain New Subclass of Multivalent Q-Starlike Functions Associated with Q-Symmetric Calculus, 2022, 6, 2504-3110, 367, 10.3390/fractalfract6070367
    9. Dong Liu, Muhey U Din, Mohsan Raza, Sarfraz Nawaz Malik, Huo Tang, Convexity, Starlikeness, and Prestarlikeness of Wright Functions, 2022, 10, 2227-7390, 3858, 10.3390/math10203858
    10. Bilal Khan, H. M. Srivastava, Sama Arjika, Shahid Khan, Nazar Khan, Qazi Zahoor Ahmad, A certain q-Ruscheweyh type derivative operator and its applications involving multivalent functions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03441-6
    11. Wali Khan Mashwan, Bakhtiar Ahmad, Muhammad Ghaffar Khan, Saima Mustafa, Sama Arjika, Bilal Khan, A. M. Bastos Pereira, Pascu-Type Analytic Functions by Using Mittag-Leffler Functions in Janowski Domain, 2021, 2021, 1563-5147, 1, 10.1155/2021/1209871
    12. Bilal Khan, Zhi-Guo Liu, H. M. Srivastava, Serkan Araci, Nazar Khan, Qazi Zahoor Ahmad, Higher-order q-derivatives and their applications to subclasses of multivalent Janowski type q-starlike functions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03611-6
    13. Hari M. Srivastava, Nazar Khan, Shahid Khan, Qazi Zahoor Ahmad, Bilal Khan, A Class of k-Symmetric Harmonic Functions Involving a Certain q-Derivative Operator, 2021, 9, 2227-7390, 1812, 10.3390/math9151812
    14. Bakhtiar Ahmad, Wali Khan Mashwani, Serkan Araci, Saima Mustafa, Muhammad Ghaffar Khan, Bilal Khan, A subclass of meromorphic Janowski-type multivalent q-starlike functions involving a q-differential operator, 2022, 2022, 2731-4235, 10.1186/s13662-022-03683-y
    15. Alina Alb Lupaş, Applications of the q-Sălăgean Differential Operator Involving Multivalent Functions, 2022, 11, 2075-1680, 512, 10.3390/axioms11100512
    16. Qiuxia Hu, Hari M. Srivastava, Bakhtiar Ahmad, Nazar Khan, Muhammad Ghaffar Khan, Wali Khan Mashwani, Bilal Khan, A Subclass of Multivalent Janowski Type q-Starlike Functions and Its Consequences, 2021, 13, 2073-8994, 1275, 10.3390/sym13071275
    17. Sercan Kazımoğlu, Erhan Deniz, Partial sums of the Rabotnov function, 2022, 14, 2066-7752, 250, 10.2478/ausm-2022-0017
    18. Bilal Khan, H. M. Srivastava, Muhammad Tahir, Maslina Darus, Qazi Zahoor Ahmad, Nazar Khan, Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions, 2021, 6, 2473-6988, 1024, 10.3934/math.2021061
    19. Timilehin Gideon Shaba, Serkan Araci, Babatunde Olufemi Adebesin, 2023, Investigating q-Exponential Functions in the Context of Bi-Univalent Functions: Insights into the Fekctc-Szcgö Problem and Second Hankel Determinant, 979-8-3503-5883-4, 1, 10.1109/ICMEAS58693.2023.10429891
    20. Sarem H. Hadi, Maslina Darus, 2024, 3023, 0094-243X, 070002, 10.1063/5.0172085
    21. Basem Aref Frasin, Sercan Kazımoğlu, Applications of the normalized Le Roy-type Mittag-Leffler function on partial sums of analytic functions, 2025, 36, 1012-9405, 10.1007/s13370-025-01272-2
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4831) PDF downloads(655) Cited by(21)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog