Citation: Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, Hari M. Srivastava, Bilal Khan, Nazar Khan. Partial sums of generalized q-Mittag-Leffler functions[J]. AIMS Mathematics, 2020, 5(1): 408-420. doi: 10.3934/math.2020028
[1] | Chunhong Li, Dandan Yang, Chuanzhi Bai . Some Opial type inequalities in (p, q)-calculus. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377 |
[2] | İbrahim Aktaş . On some geometric properties and Hardy class of q-Bessel functions. AIMS Mathematics, 2020, 5(4): 3156-3168. doi: 10.3934/math.2020203 |
[3] | Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067 |
[4] | Xiaoli Zhang, Shahid Khan, Saqib Hussain, Huo Tang, Zahid Shareef . New subclass of q-starlike functions associated with generalized conic domain. AIMS Mathematics, 2020, 5(5): 4830-4848. doi: 10.3934/math.2020308 |
[5] | Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073 |
[6] | Khadeejah Rasheed Alhindi, Khalid M. K. Alshammari, Huda Ali Aldweby . Classes of analytic functions involving the q-Ruschweyh operator and q-Bernardi operator. AIMS Mathematics, 2024, 9(11): 33301-33313. doi: 10.3934/math.20241589 |
[7] | Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, H. M. Srivastava, Nazar Khan, Maslina Darus, Bilal Khan . Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Mathematics, 2021, 6(2): 1110-1125. doi: 10.3934/math.2021067 |
[8] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[9] | Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469 |
[10] | Waseem Ahmad Khan, Kottakkaran Sooppy Nisar, Dumitru Baleanu . A note on (p, q)-analogue type of Fubini numbers and polynomials. AIMS Mathematics, 2020, 5(3): 2743-2757. doi: 10.3934/math.2020177 |
Let A denote the class of all functions f which are analytic in the open unit disk
U={z:z∈C and |z|<1} |
and normalized by the following condition:
f(0)=0=f′(0)−1, |
that is, a function f∈A has the following Taylor-Maclaurin series representation:
f(z)=z+∞∑n=2anzn (z∈U). | (1.1) |
Let S be the subclass of A consisting of all univalent functions in U.
We denote the class of starlike functions by S∗, which is the usual subclass of the normalized univalent function class S. That is, S∗ consists of functions f∈A that satisfy the following inequality:
ℜ(zf′(z)f(z))>0 (z∈U). |
We now recall some basic definitions and concept details of the q-calculus, which are used in this paper. We suppose throughout the paper that 0<q<1 and that
N={1,2,3,...}=N0∖{0} (N0={0,1,2,...}). |
Definition 1.1. Let q∈(0,1) and define the q-number [λ]q by
[λ]q={1−qλ1−q(λ∈C)n−1∑k=0qk=1+q+q2+...+qn−1(λ=n∈N). |
Definition 1.2. Let q∈(0,1) and define the q-factorial [n]q! by
[n]q!={1 n=0n∏k=1[k]qn∈N. |
Definition 1.3. Let q∈(0,1) and define q-generalized Pochhammer symbol by
([t]q)n={1 (n=0)n∏k=0[t+k]q(n∈N). |
We note that
([t]q)n=[t]q([t+1]q)n−1 (n∈N) | (1.2) |
and
([t]q)n≧([t]q)n (n∈N). | (1.3) |
Definition 1.4. For t>0, let the q-gamma function be defined by
Γq(t+1)=[t]qΓq(t) and Γq(1)=1. |
Definition 1.5. (see [9] and [10]; see also [1,20] and [27]) The q-derivative (or the q-difference) operator Dq for a function f∈A in given subset of C is defined by
Dqf(z)={f(z)−f(qz)(1−q)z (z≠0)f′(0)(z=0), | (1.4) |
provided that f′(0) exists.
We deduce from Definition 1.5 that
limq→1−(Dqf)(z)=limq→1−(f(z)−f(qz)(1−q)z)=f′(z) |
for a differentiable function f in a given subset of C. It can be easily seen from (1.1) and (1.4) that
(Dqf)(z)=1+∞∑n=2[n]qanzn−1. | (1.5) |
In geometric function theory, the operator Dq (see Definition 1.5) provides an important tool that has been used in order to investigate various subclasses of the class S of normalized univalent functions. Historically speaking, Ismail et al. (see [8]) were the first who introduced a q-analogue of the class S∗ of normalized starlike functions in U (see Definition 1.6 below). However, an important usage of the q-calculus in the context of geometric function theory was actually provided and the basic (or q-) hypergeometric functions were first used in geometric function theory in a book chapter by Srivastava (see, for details, [22,pp. 347 et seq.] (see also some more recent works [13,24].
Definition 1.6. (see [8] and [27]) A function f∈A is said to belong to the class S∗q if
f(0)=0=f′(0)−1 | (1.6) |
and
|zf(z)(Dqf)(z)−11−q|≦11−q (z∈U). | (1.7) |
It is readily observed that, as q→1−, the closed disk
|w−11−q|≦11−q |
becomes the right-half complex plane and the class S∗q reduces to the above-mentioned well-known class S∗ of normalized starlike functions in U.
We note that the notation S∗q was first used by Sahoo and Sharma (see [19]).
We now recall the familiar Mittag-Leffler function Eα(z) (see [14]) and its two-parameter extension Eα,β(z) having similar properties to those of the Mittag-Leffler function Eα(z) (see [28] and [29]), which are defined (as usual) by means of the following series:
Eα(z)=∞∑n=0znΓ(αn+1) (z∈C;α>0) | (1.8) |
and
Eα,β(z)=∞∑n=0znΓ(αn+β) (z∈C;α>0;β>0), | (1.9) |
respectively. For a detailed account of the properties, generalizations and applications of the functions in (1.8) and (1.9), one may refer to [6,7,17,25].
The above-defined Mittag-Leffler functions Eα(z) and Eα,β(z) can be normalized as follows:
Eα,β(z)=zΓ(β)Eα,β(z)=∞∑n=0Γ(β)Γ(αn+β)zn+1(z∈U;α>0;β>0). |
We note that
{(Eα,β)0(z)=z(Eα,β)j(z)=z+j∑n=1ωnzn+1 (j∈N), | (1.10) |
where
ωn=Γ(β)Γ(αn+β) (α>0;β>0n∈N). |
Geometric properties including starlikeness, convexity and close-to-convexity for the Mittag-Leffler function Eα,β(z) were investigated by Bansal and Prajapat in [3] and, more recently, by Srivastava and Bansal (see [24]). In fact, the generalized Mittag-Leffler function Eα,β(z) and its extensions and generalizations continue to be used in many different contexts in geometric function theory (see, for details, [23]).
The q-Mittag-Leffler function Mα,β(z;q) is normalized as follows (see, for example, [21]) :
Mα,β(z;q)=zΓq(β)Eα,β(z)=∞∑n=0Γq(β)Γq(αn+β)zn+1,(z∈C;α>0;β∈C∖{0,−1,−2,...}). | (1.11) |
Some special cases of the normalized q-Mittag-Leffler function Mα,β(z;q) are listed below:
{M0,β(z;q)=z1−zM1,1(z;q)=zezq M1,2(z;q)=ezq−1M1,3(z;q)=(ezq−z−1)(1+q)zM1,4(z;q)=(1+q)(1+q+q2)z2(ezq−z−1−z21+q), | (1.12) |
where ezq is one of the q-analogues of the exponential function ez, which is given by (see [25, p. 488, Eq. 6.3 (7)])
ezq=∞∑n=0znΓq(n+1). | (1.13) |
Recently, several results were given such as those related to partial sums of special functions, such as the Struve function [30], meromorphic functions (see [11] and [2]), the Bessel function [15], the Lommel function [4] and the Wright functions [5]. Several other works dealing with partial sums of various subclasses of the analytic function class A, the interested reader may refer (for example) to [12,16] and [26].
Motivated by the above-mentioned results, in this paper we investigate the ratio of the normalized q-Mittag-Leffler function Mα,β(z;q) defined by (1.11) to its sequence of partial sums:
{(Mα,β)0(z;q)=z(Mα,β)j(z;q)=z+j∑n=1Knzn+1 (j∈N), | (1.14) |
where
Kn=Γq(β)Γq(αn+β) (α>0, β>0 n∈N). |
We obtain the lower bounds on such ratios as those given below:
ℜ{Mα,β(z;q)(Mα,β)j(z;q)}, ℜ{(Mα,β)j(z;q)Mα,β(z;q)}ℜ{DqMα,β(z;q)Dq(Mα,β)j(z;q)}, ℜ{Dq(Mα,β)j(z;q)DqMα,β(z;q)}. |
The following lemma will be required in order to derive our main results.
Lemma 2.1. Let q∈(0,1), α≧1 and β≧1. Then the function Mα,β(z;q) satisfies the following inequalities:
|Mα,β(z;q)|≦1+(qβ+q−3)qβ+1(1−qβ)2q | (2.1) |
and
|DqMα,β(z;q)|≦6+q2β+3qβ+1−5qβ+2q2−7q(1−qβ)2. | (2.2) |
Proof. It is well-known that
Γq(α+β)≦Γq(αn+β). |
Therefore, we have
Γq(β)Γq(αn+β)≦Γq(β)Γq(α+β)=(1[β]q)n. | (2.3) |
By making use of (1.3), (2.3) and well-known triangle inequality for (z∈U), we find that
|Mα,β(z;q)|=|z+∞∑n=1Γq(β)Γq(αn+β)zn+1|<1+∞∑n=1Γq(β)Γq(αn+β)<1+∞∑n=1(1[β]q)n=1+1[β]q∞∑n=1(1[β+1]q)n−1<1+1[β]q∞∑n=1(1[β+1]q)n−1=1+1[β]q∞∑n=0(1[β+1]q)n=1+(qβ+q−3)qβ+1(1−qβ)2q. |
Hence, the inequality (2.1) is proved. Similarly, we can prove the inequality (2.2).
Let w(z) denote an analytic function in U. In the proof of our main results, the following well-known result will be used frequently:
ℜ{1+w(z)1−w(z)}>0 |
if and only if
|w(z)|<1 (z∈U). |
Theorem 2.2. Let q∈(0,1), α≧1 and β≧1+√52. Then
ℜ{Mα,β(z;q)(Mα,β)j(z;q)}≧qβ+1(qβ−q−1)+2q−1(1−qβ)2q (z∈U) | (2.4) |
and
ℜ{(Mα,β)j(z;q)Mα,β(z;q)}≧(1−qβ)2q1+qβ+1(qβ+q−3) (z∈U). | (2.5) |
Proof. From the inequality (2.1), we obtain
1+∞∑n=1Kn≦1+(qβ+q−3)qβ+1(1−qβ)2q, where Kn=Γq(β)Γq(αn+β)(n∈N), |
which is equivalent to
(1−qβ)2q1−q−qβ+1+qβ+2∞∑n=1Kn≦1. |
In order to prove the inequality (2.4), we set
(1−qβ)2q1−q−qβ+1+qβ+2[Mα,β(z;q)(Mα,β)j(z;q)−qβ+1(qβ−q−1)+2q−1(1−qβ)2q]=1+j∑n=1Knzn+(1−qβ)2q1−q−qβ+1+qβ+2∞∑n=j+1Knzn1+j∑n=1Knzn=1+w(z)1−w(z), | (2.6) |
where
w(z)=(1−qβ)2q1−q−qβ+1+qβ+2∞∑n=j+1Knzn2+2j∑n=1Knzn+(1−qβ)2q1−q−qβ+1+qβ+2∞∑n=j+1Knzn |
and
|w(z)|<(1−qβ)2q1−q−qβ+1+qβ+2∞∑n=j+1Kn2−2j∑n=1Kn−(1−qβ)2q1−q−qβ+1+qβ+2∞∑n=j+1Kn. |
The inequality |w(z)|<1 holds true if and only if
(1−qβ)2q1−q−qβ+1+qβ+2∞∑n=j+1Kn≦1−j∑n=1Kn |
or, equivalently,
j∑n=1Kn+(1−qβ)2q1−q−qβ+1+qβ+2∞∑n=j+1Kn≦1. | (2.7) |
To prove (2.7), it suffices to show that its left-hand side is bounded above by
(1−qβ)2q1−q−qβ+1+qβ+2∞∑n=1Kn, |
which is equivalent to
qβ+1(qβ−q−1)+2q−11−q−qβ+1+qβ+2j∑n=1Kn≧0. | (2.8) |
We see that the inequality (2.8) holds true for β≧1+√52.
We next use the same method to prove the inequality (2.5). Consider the function w(z) given by
1+qβ+1(qβ+q−3)1−q−qβ+1+qβ+2[(Mα,β)j(z;q)Mα,β(z;q)−(1−qβ)2q1+qβ+1(qβ+q−3)]=1+j∑n=1Knzn−(1−qβ)2q1−q−qβ+1+qβ+2∞∑n=j+1Knzn1+∞∑n=1Knzn=1+w(z)1−w(z), | (2.9) |
where
w(z)=−1+qβ+1(qβ+q−3)1−q−qβ+1+qβ+2∞∑n=j+1Knzn2+2j∑n=1Knzn−q2β+1−qβ+2−qβ+1+2q−11−q−qβ+1+qβ+2∞∑n=j+1Knzn |
and
|w(z)|<1+qβ+1(qβ+q−3)1−q−qβ+1+qβ+2∞∑n=j+1Kn2−2j∑n=1Kn−q2β+1−qβ+2−qβ+1+2q−11−q−qβ+1+qβ+2∞∑n=j+1Kn. |
Therefore, we get |w(z)|<1 if and only if
(1−qβ)2q1−q−qβ+1+qβ+2∞∑n=j+1Kn+j∑n=1Kn≦1. |
As the left-hand side of the last inequality is bounded above by
(1−qβ)2q1−q−qβ+1+qβ+2∞∑n=1Kn, |
we are led immediately to the assertion (2.5) of Theorem 2.2. Now we have completed the proof of Theorem 2.2.
In its special case, if we let q→1−, Theorem 2.2 yields the following corollary.
Corollary 2.3. (see [18]) Let α≧1 and β≧1+√52. Then
ℜ{Eα,β(z)(Eα,β)j(z)}≧β2−β−1β2 (z∈U) |
and
ℜ{(Eα,β)j(z)Eα,β(z)}≧β2β2+β+1 (z∈U). |
We next turn to the ratios involving derivatives.
Theorem 2.4. Let q∈(0,1), α≧1 and β≧3+√172. Then
ℜ{DqMα,β(z;q)Dq(Mα,β)j(z;q)}≧q2β−3qβ+1+qβ−2q2+7q−4(1−qβ)2 (z∈U) | (2.10) |
and
ℜ{Dq(Mα,β)j(z;q)DqMα,β(z;q)}≧(1−qβ)2q6+q2β+3qβ+1−5qβ+2q2−7q (z∈U). | (2.11) |
Proof. From the inequality (2.2), we have
1+∞∑n=1[n+1]qKn≦6+q2β+3qβ+1−5qβ+2q2−7q(1−qβ)2, | (2.12) |
where
Kn=Γq(β)Γq(αn+β)(n∈N). |
Equivalently, we can rewrite the condition in (2.12) as follows:
(1−qβ)25+3qβ+1−3qβ+2q2−7q∞∑n=1[n+1]qKn≦1. |
In order to prove the inequality (2.10), we consider the function w(z) defined by
(1−qβ)25+3qβ+1−3qβ+2q2−7q[DqMα,β(z;q)Dq(Mα,β)j(z;q)−q2β−3qβ+1+qβ−2q2+7q−4(1−qβ)2]=1+j∑n=1[n+1]qKnzn+(1−qβ)25+3qβ+1−3qβ+2q2−7q∞∑n=j+1[n+1]qKnzn1+j∑n=1[n+1]qKnzn=1+w(z)1−w(z). | (2.13) |
From (2.13), we have
w(z)=(1−qβ)25+3qβ+1−3qβ+2q2−7q∞∑n=j+1[n+1]qKnzn2+2j∑n=1[n+1]qKnzn+(1−qβ)25+3qβ+1−3qβ+2q2−7q∞∑n=j+1[n+1]qKnzn |
or, equivalently
w(z)=(1−qβ)25+3qβ+1−3qβ+2q2−7q∞∑n=j+1[n+1]qKn2−2j∑n=1[n+1]qKn−(1−qβ)25+3qβ+1−3qβ+2q2−7q∞∑n=j+1[n+1]qKn. |
The inequality |w(z)|<1 holds true if and only if
j∑n=1[n+1]qKn+(1−qβ)25+3qβ+1−3qβ+2q2−7q∞∑n=j+1[n+1]qKn≦1. |
The left-hand side of the above inequality is bounded above by
(1−qβ)25+3qβ+1−3qβ+2q2−7q∞∑n=1[n+1]qKn, |
which is equivalent to
q2β−3qβ+1+qβ−2q2+7q−45+3qβ+1−3qβ+2q2−7qj∑n=1[n+1]qKn≧0. | (2.14) |
The inequality in (2.14) holds true for β≧3+√172.
We next use the same method to prove the inequality (2.5). Consider the function w(z) given by
6+q2β+3qβ+1−5qβ+2q2−7q5+3qβ+1−3qβ+2q2−7q[Dq(Mα,β)j(z;q)DqMα,β(z;q)−(1−qβ)26+q2β+3qβ+1−5qβ+2q2−7q]=1+j∑n=1[n+1]qKnzn−(1−qβ)25+3qβ+1−3qβ+2q2−7q∞∑n=j+1[n+1]qKnzn1+∞∑n=1[n+1]qKnzn=1+w(z)1−w(z). | (2.15) |
By using Eq. (2.15), we obtain
w(z)=−6+q2β+3qβ+1−5qβ+2q2−7q5+3qβ+1−3qβ+2q2−7q∞∑n=j+1[n+1]qKnzn2+2j∑n=1[n+1]qKnzn−q2β−3qβ+1+qβ−2q2+7q−45+3qβ−3qβ+2q2−7q∞∑n=j+1[n+1]qKnzn, |
which is equivalent to
|w(z)|<6+q2β+3qβ+1−5qβ+2q2−7q5+3qβ+1−3qβ+2q2−7q∞∑n=j+1[n+1]qKn2−2j∑n=1[n+1]qKn−q2β−3qβ+1+qβ−2q2+7q−45+3qβ+1−3qβ+2q2−7q∞∑n=j+1[n+1]qKn |
The inequality |w(z)|<1 holds true if and only if
2(1−qβ)25+3qβ+1−3qβ+2q2−7q∞∑n=j+1[n+1]qKn≦2−2j∑n=1[n+1]qKn |
or, equivalently,
j∑n=1[n+1]qKn+(1−qβ)25+3qβ+1−3qβ+2q2−7q∞∑n=j+1[n+1]qKn≦1. | (2.16) |
It now suffices to show that the left-hand side of (2.16) is bounded above by
(1−qβ)25+3qβ+1−3qβ+2q2−7q∞∑n=j+1[n+1]qKn, |
which is equivalent to
q2β−3qβ+1+qβ−2q2+7q−45+3qβ+1−3qβ+2q2−7q∞∑n=j+1[n+1]qKn≧0. |
This last inequality holds true for β≧3+√172. Hence we complete the proof of Theorem 2.4.
Upon letting q→1−, Theorem 2.4 yields the following known result.
Corollary 2.5. (see [18]) Let α≧1 and β≧1+√52. Then
ℜ{E′α,β(z)(Eα,β)′j(z)}≧β2−3β−2β2 (z∈U) |
and
ℜ{(Eα,β)′j(z)E′α,β(z)}≧β2β2+3β+2 (z∈U). |
The authors declare no conflicts of interest.
[1] |
M. K. Aouf, T. M. Seoudy, Convolution properties of certain classes of analytic functions with complex order defined by q-derivative operator, RACSAM, 113 (2019), 1279-1288. doi: 10.1007/s13398-018-0545-5
![]() |
[2] | O. Altintas, Ö. Özkan, H. M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett., 13 (2000), 63-67. |
[3] |
D. Bansal, J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic, 61 (2016), 338-350. doi: 10.1080/17476933.2015.1079628
![]() |
[4] | M. Çaǧlar, E. Deniz, Partial sums of the normalized Lommel functions, Math. Inequal. Appl., 18 (2015), 1189-1199. |
[5] | M. Din, M. Raza, N. Yaǧmur, Partial sums of normalized Wright functions, arXiv:1606.02750, 2016. |
[6] |
R. Gorenflo, F. Mainardi, S. V. Rogosin, On the generalized Mittag-Leffler type function, Integr. Transf. Spec. F., 7 (1998), 215-224. doi: 10.1080/10652469808819200
![]() |
[7] |
I. S. Gupta, L. Debnath, Some properties of the Mittag-Leffler functions, Integr. Transf. Spec. F., 18 (2007), 329-336. doi: 10.1080/10652460601090216
![]() |
[8] | M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Theor. Appl., 14 (1990), 77-84. |
[9] | F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203. |
[10] |
F. H. Jackson, q-Difference equations, Am. J. Math., 32 (1910), 305-314. doi: 10.2307/2370183
![]() |
[11] |
J. L. Liu, H. M. Srivastava, Subclasses of meromorphically multivalent functions associated with a certain linear operator, Math. Comput. Model., 39 (2004), 35-44. doi: 10.1016/S0895-7177(04)90504-3
![]() |
[12] |
S. Maharana, J. K. Prajapat, H. M. Srivastava, The radius of convexity of partial sums of convex functions in one direction, P. Natl. A. Sci. India Sect. A Phys. Sci., 87 (2017), 215-219. doi: 10.1007/s40010-017-0348-7
![]() |
[13] | S. Mahmood, N. Raza, E. S. A. Abujarad, et al. Geometric properties of certain classes of analytic functions associated with a q-integral operator, Symmetry, 11 (2019), 719. |
[14] | G. M. Mittag-Leffler, Sur la nouvelle fonction Eα(x), CR. Acad. Sci. Paris, 137 (1903), 554-558. |
[15] | H. Orhan, N. Yaǧmur, Partial sums of generalized Bessel functions, J. Math. Inequal., 8 (2014), 863-877. |
[16] |
S. Owa, H. M. Srivastava, N. Saito, Partial sums of certain classes of analytic functions, Int. J. Comput. Math., 81 (2004), 1239-1256. doi: 10.1080/00207160412331284042
![]() |
[17] | T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1997), 7-15. |
[18] | D. Rǎducanu, On partial sums of normalized Mittag-Leffler functions, An. U. Ovid. Co. Mat., 25 (2017), 123-133. |
[19] |
S. K. Sahoo, N. L. Sharma, On a generalization of close-to-convex functions, Ann. Polon. Math., 113 (2015), 93-108. doi: 10.4064/ap113-1-6
![]() |
[20] | T. M. Seoudy, M. K. Aouf, Coefficient estimates of new class of q-starlike and q-convex functions of complex order, J. Math. Inequal., 10 (2016), 135-145. |
[21] | S. K. Sharma, R. Jain, On some properties of generalized q-Mittag Leffler function, Math. Aeterna, 4 (2014), 613-619. |
[22] | H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent Functions, Fractional Calculus and Their Applications, New York: Halsted Press, (1989), 329-354. |
[23] |
H. M. Srivastava, Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators, Appl. Anal. Discrete Math., 1 (2007), 56-71. doi: 10.2298/AADM0701056S
![]() |
[24] | H. M. Srivastava, D. Bansal, Close-to-convexity of a certain family of q-Mittag-Leffer functions, J. Nonlinear Var. Anal., 1 (2017), 61-69. |
[25] | H. M. Srivastava, J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Amsterdam: Elsevier Science Publishers, 2012. |
[26] | H. M. Srivastava, S. Gaboury, F. Ghanim, Partial sums of certain classes of meromorphic functions related to the Hurwitz-Lerch zeta function, Moroccan J. Pure Appl. Anal., 1 (2015), 38-50. |
[27] |
H. M. Srivastava, A. O. Mostafa, M. K. Aouf, et al. Basic and fractional q-calculus and associated Fekete-Szego problem for p-valent q-starlike functions and p-valently q-convex functions of complex order, Miskolc Math. Notes, 20 (2019), 489-509. doi: 10.18514/MMN.2019.2405
![]() |
[28] | A. Wiman, Über den Fundamentalsatz in der Theorie der Funcktionen Eα(x), Acta Math., 29 (1905), 191-201. |
[29] | A. Wiman, Über die Nullstellen der Funktionen Eα(x), Acta Math., 29 (1905), 217-234. |
[30] |
N. Yaǧmur, H. Orhan, Partial sums of generalized Struve functions, Miskolc Math. Notes, 17 (2016), 657-670. doi: 10.18514/MMN.2016.1419
![]() |
1. | Bilal Khan, Hari M. Srivastava, Nazar Khan, Maslina Darus, Muhammad Tahir, Qazi Zahoor Ahmad, Coefficient Estimates for a Subclass of Analytic Functions Associated with a Certain Leaf-Like Domain, 2020, 8, 2227-7390, 1334, 10.3390/math8081334 | |
2. | H. M. Srivastava, Operators of Basic (or q-) Calculus and Fractional q-Calculus and Their Applications in Geometric Function Theory of Complex Analysis, 2020, 44, 1028-6276, 327, 10.1007/s40995-019-00815-0 | |
3. | Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, H. M. Srivastava, Nazar Khan, Maslina Darus, Muhammad Tahir, Coefficient inequalities for certain subclasses of multivalent functions associated with conic domain, 2020, 2020, 1029-242X, 10.1186/s13660-020-02446-1 | |
4. | Huo Tang, Shahid Khan, Saqib Hussain, Nasir Khan, Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α, 2021, 6, 2473-6988, 5421, 10.3934/math.2021320 | |
5. | Bilal Khan, Zhi-Guo Liu, Hari M. Srivastava, Nazar Khan, Maslina Darus, Muhammad Tahir, A Study of Some Families of Multivalent q-Starlike Functions Involving Higher-Order q-Derivatives, 2020, 8, 2227-7390, 1470, 10.3390/math8091470 | |
6. | Shahid Khan, Saqib Hussain, Maslina Darus, Inclusion relations of q-Bessel functions associated with generalized conic domain, 2021, 6, 2473-6988, 3624, 10.3934/math.2021216 | |
7. | Nazek Alessa, B. Venkateswarlu, K. Loganathan, T.S. Karthik, P. Thirupathi Reddy, G. Sujatha, Ming-Sheng Liu, Certain Class of Analytic Functions Connected with q -Analogue of the Bessel Function, 2021, 2021, 2314-4785, 1, 10.1155/2021/5587886 | |
8. | Mohammad Faisal Khan, Anjali Goswami, Shahid Khan, Certain New Subclass of Multivalent Q-Starlike Functions Associated with Q-Symmetric Calculus, 2022, 6, 2504-3110, 367, 10.3390/fractalfract6070367 | |
9. | Dong Liu, Muhey U Din, Mohsan Raza, Sarfraz Nawaz Malik, Huo Tang, Convexity, Starlikeness, and Prestarlikeness of Wright Functions, 2022, 10, 2227-7390, 3858, 10.3390/math10203858 | |
10. | Bilal Khan, H. M. Srivastava, Sama Arjika, Shahid Khan, Nazar Khan, Qazi Zahoor Ahmad, A certain q-Ruscheweyh type derivative operator and its applications involving multivalent functions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03441-6 | |
11. | Wali Khan Mashwan, Bakhtiar Ahmad, Muhammad Ghaffar Khan, Saima Mustafa, Sama Arjika, Bilal Khan, A. M. Bastos Pereira, Pascu-Type Analytic Functions by Using Mittag-Leffler Functions in Janowski Domain, 2021, 2021, 1563-5147, 1, 10.1155/2021/1209871 | |
12. | Bilal Khan, Zhi-Guo Liu, H. M. Srivastava, Serkan Araci, Nazar Khan, Qazi Zahoor Ahmad, Higher-order q-derivatives and their applications to subclasses of multivalent Janowski type q-starlike functions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03611-6 | |
13. | Hari M. Srivastava, Nazar Khan, Shahid Khan, Qazi Zahoor Ahmad, Bilal Khan, A Class of k-Symmetric Harmonic Functions Involving a Certain q-Derivative Operator, 2021, 9, 2227-7390, 1812, 10.3390/math9151812 | |
14. | Bakhtiar Ahmad, Wali Khan Mashwani, Serkan Araci, Saima Mustafa, Muhammad Ghaffar Khan, Bilal Khan, A subclass of meromorphic Janowski-type multivalent q-starlike functions involving a q-differential operator, 2022, 2022, 2731-4235, 10.1186/s13662-022-03683-y | |
15. | Alina Alb Lupaş, Applications of the q-Sălăgean Differential Operator Involving Multivalent Functions, 2022, 11, 2075-1680, 512, 10.3390/axioms11100512 | |
16. | Qiuxia Hu, Hari M. Srivastava, Bakhtiar Ahmad, Nazar Khan, Muhammad Ghaffar Khan, Wali Khan Mashwani, Bilal Khan, A Subclass of Multivalent Janowski Type q-Starlike Functions and Its Consequences, 2021, 13, 2073-8994, 1275, 10.3390/sym13071275 | |
17. | Sercan Kazımoğlu, Erhan Deniz, Partial sums of the Rabotnov function, 2022, 14, 2066-7752, 250, 10.2478/ausm-2022-0017 | |
18. | Bilal Khan, H. M. Srivastava, Muhammad Tahir, Maslina Darus, Qazi Zahoor Ahmad, Nazar Khan, Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions, 2021, 6, 2473-6988, 1024, 10.3934/math.2021061 | |
19. | Timilehin Gideon Shaba, Serkan Araci, Babatunde Olufemi Adebesin, 2023, Investigating q-Exponential Functions in the Context of Bi-Univalent Functions: Insights into the Fekctc-Szcgö Problem and Second Hankel Determinant, 979-8-3503-5883-4, 1, 10.1109/ICMEAS58693.2023.10429891 | |
20. | Sarem H. Hadi, Maslina Darus, 2024, 3023, 0094-243X, 070002, 10.1063/5.0172085 | |
21. | Basem Aref Frasin, Sercan Kazımoğlu, Applications of the normalized Le Roy-type Mittag-Leffler function on partial sums of analytic functions, 2025, 36, 1012-9405, 10.1007/s13370-025-01272-2 |