Citation: Z. Aboub, B. Daoudi, A. Boukraa. Theoretical study of Ni doping SrTiO3 using a density functional theory[J]. AIMS Materials Science, 2020, 7(6): 902-910. doi: 10.3934/matersci.2020.6.902
[1] | Tong H, Ouyang S, Bi Y, et al. (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24: 229-251. |
[2] | Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20: 35-54. |
[3] | Chen X, Shen S, Guo L, et al. (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110: 6503-6570. |
[4] | Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38: 253-278. |
[5] | Hara S, Yoshimizu M, Tanigawa S, et al. (2012) Hydrogen and oxygen evolution photocatalysts synthesized from strontium titanate by controlled doping and their performance in two-step overall water splitting under visible light. J Phys Chem C 116: 17458-17463. |
[6] | Reunchan P, Ouyang S, Umezawa N, et al. (2013) Theoretical design of highly active SrTiO3-based photocatalysts by a codoping scheme towards solar energy utilization for hydrogen production. J Mater Chem A 1: 4221-4227. |
[7] | Van Benthem K, Elsässer C, French R (2001) Bulk electronic structure of SrTiO3: Experiment and theory. J Appl Phys 90: 6156-6164. |
[8] | Niishiro R, Tanaka S, Kudo A (2014) Hydrothermal-synthesized SrTiO3 photocatalyst codoped with rhodium and antimony with visible-light response for sacrificial H2 and O2 evolution and application to overall water splitting. Appl Catal B-Environ 150: 187-196. |
[9] | Chang CH, Shen YH (2006) Synthesis and characterization of chromium doped SrTiO3 photocatalyst. Mater Lett 60: 129-132. |
[10] | Zheng Z, Huang B, Qin X, et al. (2011) Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity. J Colloid Interf Sci 358: 68-72. |
[11] | Wang Z, Cao M, Yao Z, et al. (2014) Effects of Sr/Ti ratio on the microstructure and energy storage properties of nonstoichiometric SrTiO3 ceramics. Ceram Int 40: 929-933. |
[12] | Shen ZY, Li YM, Luo WQ, et al. (2013) Structure and dielectric properties of NdxSr1-xTiO3 ceramics for energy storage application. J Mater Sci-Mater El 24: 704710. |
[13] | Kajale DD, Patil GE, Gaikwad V, et al. (2012) Synthesis of SrTiO3 nanopowder by sol-gel-hydrothemal method for gas sensing application. S2IS 5: 382-400. |
[14] | Kumar AS, Suresh P, Kumar MM, et al. (2010) Magnetic and ferroelectric properties of Fe doped SrTiO3-δ films. J Phys Conf Ser 200: 092010. |
[15] | Johnson DC, Prieto AL (2011) Use of strontium titanate (SrTiO3) as an anode material for lithium-ion batteries. J Power Sources 196: 7736-7741. |
[16] | Burnside S, Moser JE, Brooks K, et al. (1999) Nanocrystalline mesoporous strontium titanate as photoelectrode material for photosensitized solar devices: increasing photovoltage through flatband potential engineering. J Phys Chem B 103: 9328-9332. |
[17] | Waser R, Aono M (2007) Nanoionics-based resistive switching memories. Nat Mater 6: 833-840. |
[18] | Zhang Y, Hu J, Cao E, et al. (2012) Vacancy induced magnetism in SrTiO3. J Magn Magn Mater 324: 1770-1775. |
[19] | Tsumura T, Matsuoka K, Toyoda M (2010) Formation and annealing of BaTiO3 and SrTiO3 nanoparticles in KOH solution. J Mater Sci Technol 26: 33-38. |
[20] | Rangel-Hernandez Y, Rendón-Angeles J, Matamoros-Veloza Z, et al. (2009) One-step synthesis of fine SrTiO3 particles using SrSO4 ore under alkaline hydrothermal conditions. Chem Eng J 155: 483-492. |
[21] | Kim HS, Bi L, Dionne G, et al. (2008) Magnetic and magneto-optical properties of Fe-doped SrTiO3 films. Appl Phys Lett 93: 092506. |
[22] | Egilmez M, Leung G, Hakimi A, et al. (2010) Origin of magnetism in La and Fe doped SrTiO3-δ films. J Appl Phys 108: 123912. |
[23] | Zhang W, Li HP, Pan W (2012) Ferromagnetism in electrospun Co-doped SrTiO3 nanofibers. J Mater Sci 47: 8216-8222. |
[24] | Dong XL, Zhang KH, Xu MX (2018) First-principles study of electronic structure and magnetic properties of SrTi1-xMxO3 (M = Cr, Mn, Fe, Co, or Ni). Frontiers Phys 13: 137106. |
[25] | Gillani S, Ahmad R, Rizwan M, et al. (2020) First-principles investigation of structural, electronic, optical and thermal properties of Zinc doped SrTiO3. Optik 201: 163481. |
[26] | Zhou X, Shi J, Li C (2011) Effect of metal doping on electronic structure and visible light absorption of SrTiO3 and NaTaO3 (Metal = Mn, Fe, and Co). J Phys Chem C 115: 8305-8311. |
[27] | Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77: 3865-3868. |
[28] | Schwarz K, Blaha P (2003) Solid state calculations using WIEN2k. Comp Mater Sci 28: 259-273. |
[29] | Blaha P, Schwarz K, Madsen GK (2002) Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput Phys Commun 147: 71-76. |
[30] | Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140: 1133. |
[31] | Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102: 226401. |
[32] | Blaha P, Schwarz K, Madsen G, et al. (2001) WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Austria: Vienna University of Technology. |
[33] | Benrekia A, Benkhettou N, Nassour A, et al. (2012) Structural, electronic and optical properties of cubic SrTiO3 and KTaO3: Ab initio and GW calculations. Physica B 407: 2632-2636. |
[34] | Johnston K, Castell MR, Paxton AT, et al. (2004) SrTiO3 (001) (2×1) reconstructions: First-principles calculations of surface energy and atomic structure compared with scanning tunneling microscopy images. Phys Rev B 70: 085415. |
[35] | Yang YT, Wu J, Cai YR, et al. (2008) First principles investigation on conductivity mechanism of p-type K: ZnO. Acta Phys Sin 51: 7151-7156. |
[36] | Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev Mod Phys 61: 689-746. |
[37] | Burstein E (1954) Anomalous optical absorption limit in InSb. Phys Rev 93: 632. |
[38] | Wei W, Dai Y, Jin H, et al. (2009) Density functional characterization of the electronic structure and optical properties of Cr-doped SrTiO3. J Phys D Appl Phys 42: 055401. |
[39] | Asahi R, Morikawa T, Ohwaki T, et al. (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293: 269-271. |
[40] | Mi L, Zhang Y, Wang PN (2008) First-principles study of the hydrogen doping influence on the geometric and electronic structures of N-doped TiO2. Chem Phys Lett 458: 341-345. |