Citation: Nhung Thi-Tuyet Hoang, Anh Thi-Kim Tran, Nguyen Van Suc, The-Vinh Nguyen. Antibacterial activities of gel-derived Ag-TiO2-SiO2 nanomaterials under different light irradiation[J]. AIMS Materials Science, 2016, 3(2): 339-348. doi: 10.3934/matersci.2016.2.339
[1] | Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Mohammad Kafini . Asymptotic behavior of the wave equation solution with nonlinear boundary damping and source term of variable exponent-type. AIMS Mathematics, 2024, 9(11): 30638-30654. doi: 10.3934/math.20241479 |
[2] | Khaled zennir, Djamel Ouchenane, Abdelbaki Choucha, Mohamad Biomy . Well-posedness and stability for Bresse-Timoshenko type systems with thermodiffusion effects and nonlinear damping. AIMS Mathematics, 2021, 6(3): 2704-2721. doi: 10.3934/math.2021164 |
[3] | Aihui Sun, Hui Xu . Decay estimate and blow-up for fractional Kirchhoff wave equations involving a logarithmic source. AIMS Mathematics, 2025, 10(6): 14032-14054. doi: 10.3934/math.2025631 |
[4] | Mohammad Kafini, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi . Existence and stability results of nonlinear swelling equations with logarithmic source terms. AIMS Mathematics, 2024, 9(5): 12825-12851. doi: 10.3934/math.2024627 |
[5] | Mohamed Biomy . Decay rate for systems of $ m $-nonlinear wave equations with new viscoelastic structures. AIMS Mathematics, 2021, 6(6): 5502-5517. doi: 10.3934/math.2021326 |
[6] | Keltoum Bouhali, Sulima Ahmed Zubair, Wiem Abedelmonem Salah Ben Khalifa, Najla ELzein AbuKaswi Osman, Khaled Zennir . A new strict decay rate for systems of longitudinal $ m $-nonlinear viscoelastic wave equations. AIMS Mathematics, 2023, 8(1): 962-976. doi: 10.3934/math.2023046 |
[7] | Hicham Saber, Fares Yazid, Fatima Siham Djeradi, Mohamed Bouye, Khaled Zennir . Decay for thermoelastic laminated beam with nonlinear delay and nonlinear structural damping. AIMS Mathematics, 2024, 9(3): 6916-6932. doi: 10.3934/math.2024337 |
[8] | Abdelbaki Choucha, Salah Boulaaras, Asma Alharbi . Global existence and asymptotic behavior for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, distributed delay and Balakrishnan-Taylor damping terms. AIMS Mathematics, 2022, 7(3): 4517-4539. doi: 10.3934/math.2022252 |
[9] | Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Maher Nour, Mostafa Zahri . Stabilization of a viscoelastic wave equation with boundary damping and variable exponents: Theoretical and numerical study. AIMS Mathematics, 2022, 7(8): 15370-15401. doi: 10.3934/math.2022842 |
[10] | Qian Li . General and optimal decay rates for a viscoelastic wave equation with strong damping. AIMS Mathematics, 2022, 7(10): 18282-18296. doi: 10.3934/math.20221006 |
We consider, for $ x \in {\mathbb R}^{n}, \ t > 0 $, the following system
$ {utt−θΔ(u+∫t0ϖ1(t−s)u(s)ds)+αut=h1(u,v,w)vtt−θΔ(v+∫t0ϖ2(t−s)v(s)ds)+αvt=h2(u,v,w)wtt−θΔ(w+∫t0ϖ3(t−s)w(s)ds)+αwt=h3(u,v,w)u(x,0)=u0(x),v(x,0)=v0(x),w(x,0)=w0(x)ut(x,0)=u1(x),vt(x,0)=v1(x),wt(x,0)=w1(x), $
|
(1.1) |
where $ n \geq 3, \alpha > 0 $, the functions $ h_i(., ., .)\in (\mathbb{R}^3, \mathbb{R}), i = 1, 2, 3 $ are given by
$ h_1(\xi_1, \xi_2, \xi_3) = (q+1)\Big[d|\xi_1+\xi_2+\xi_3|^{(q-1)}(\xi_1+\xi_2+\xi_3)+e|\xi_1|^{(q-3)/2}\xi_1|\xi_2|^{(q+1)/2}\Big]; $ |
$ h_2(\xi_1, \xi_2, \xi_3) = (q+1)\Big[d|\xi_1+\xi_2+\xi_3|^{(q-1)}(\xi_1+\xi_2+\xi_3)+e|\xi_2|^{(q-3)/2}\xi_2|\xi_3|^{(q+1)/2}\Big]; $ |
$ h_3(\xi_1, \xi_2, \xi_3) = (q+1)\Big[d|\xi_1+\xi_2+\xi_3|^{(q-1)}(\xi_1+\xi_2+\xi_3)+e|\xi_3|^{(q-3)/2}\xi_3|\xi_1|^{(q+1)/2}\Big], $ |
with $ d, e > 0, q > 3 $. The function $ \frac{1}{\theta (x)}\sim \vartheta(x) > 0 $ for all $ x \in {\mathbb R}^{n} $ is a density such that
$ ϑ∈Lτ(Rn)withτ=2n2n−rn+2rfor2≤r≤2nn−2. $
|
(1.2) |
As in [15], it is not hard to see that there exists a function $ \mathcal{G}\in C^1(\mathbb{R}^3, \mathbb{R}) $ such that
$ uh1(u,v,w)+vh2(u,v,w)+wh3(u,v,w)=(q+1)G(u,v,w), ∀(u,v,w)∈R3. $
|
(1.3) |
satisfies
$ (q+1)G(u,v,w)=|u+v+w|q+1+2|uv|(q+1)/2+2|vw|(q+1)/2+2|wu|(q+1)/2. $
|
(1.4) |
We define the function spaces $ {\mathcal H} $ as the closure of $ C_{0}^{\infty}({\mathbb R}^{n}) $, as in [18], we have
$ H={v∈L2nn−2(Rn)∣∇v∈(L2(Rn))n}, $
|
with respect to the norm $ \left\Vert v \right\Vert_{{\mathcal H}} = \left(v, v \right)_{{\mathcal H}}^{1/2} $ for the inner product
$ (v,w)H=∫Rn∇v⋅∇wdx, $
|
and $ L_{\vartheta}^{2}({\mathbb R}^{n}) $ as that to the norm $ \left\Vert v \right\Vert_{L_{\vartheta}^{2}} = \left(v, v \right)_{L_{\vartheta}^{2}}^{1/2} $ for
$ (v,w)L2ϑ=∫Rnϑvwdx. $
|
For general $ r \in [1, +\infty) $
$ ‖v‖Lrϑ=(∫Rnϑ|v|rdx)1r. $
|
is the norm of the weighted space $ L_{\vartheta}^{r}({\mathbb R}^{n}) $.
The main aim of this work is to consider an important problem from the point of view of application in sciences and engineering (materials which is something between that of elastic solids and Newtonian fluids), namely, a system of three wave equations having a damping effects in an unbounded domain with strong external forces including damping terms of memory type with past history. Using the Faedo-Galerkin [16] method and some energy estimates, we proved the existence of global solution in $ \mathbb{R}^n $ owing to the weighted function. By imposing a new appropriate condition, with the help of some special estimates and generalized Poincaré's inequality, we obtained an unusual decay rate for the energy function. For more detail regarding the single equation, we review the following references [7,8]. The paper [7] is one of the pioneer in literature for the single equation, which is the source of inspiration of several researches, while the work [8] is a recent generalization of [7] by introducing less dissipative effects.
To enrich our topic, it is necessary to review previous works regarding the nonlinear coupled system of wave equations, from a qualitative and quantitative study. Let us begin with the single wave equation treated in [13], where the aim goal was mainely on the system
$ {utt+μut−Δu−ωΔut=uln|u|, (x,t)∈Ω×(0,∞)u(x,t)=0,x∈∂Ω,t≥0u(x,0)=u0(x),ut(x,0)=u1(x),x∈Ω, $
|
(1.5) |
where $ \Omega $ is a bounded domain of $ \mathbb{R}^n, \ n\geq 1 $ with a smooth boundary $ \partial\Omega $. The author firstly constructed a local existence of weak solution by using contraction mapping principle and of course showed the global existence, decay rate and infinite time blow up of the solution with condition on initial energy.
Next, a nonexistence of global solutions for system of three semi-linear hyperbolic equations was introduced in [3]. A coupled system for semi-linear hyperbolic equations was investigated by many authors and a different results were obtained with the nonlinearities in the form $ f_1 = |u|^{q-1}|v|^{q+1}u, f_2 = |v|^{q-1}|u|^{q+1}v $. (Please, see [2,5,9,14,24,29]).
In the case of non-bounded domain $ \mathbb{R}^n $, we mention the paper recently published by T. Miyasita and Kh. Zennir in [16], where the considered equation as follows
$ utt+aut−ϕ(x)Δ(u+ωut−∫t0g(t−s)u(s)ds)=u|u|q−1, $
|
(1.6) |
with initial data
$ {u(x,0)=u0(x),ut(x,0)=u1(x). $
|
(1.7) |
The authors showed the existence of unique local solution and they continued to extend it to be global in time. The rate of the decay for solution was the main result by considering the relaxation function is strictly convex, for more results related to decay rate of solution of this type of problems, please see [6,17,25,26,30,31].
Regarding the study of the coupled system of two nonlinear wave equations, it is worth recalling some of the work recently published. Baowei Feng et al. considered in [10], a coupled system for viscoelastic wave equations with nonlinear sources in bounded domain ($ (x, t)\in \Omega \times (0, \infty) $) with smooth boundary as follows
$ {utt−Δu+∫t0g(t−s)Δu(s)ds+ut=f1(u,v)vtt−Δv+∫t0h(t−s)Δv(s)ds+vt=f2(u,v). $
|
(1.8) |
Here, the authors concerned with a system in $ \mathbb{R}^n (n = 1, 2, 3) $. Under appropriate hypotheses, they established a general decay result by multiplication techniques to extends some existing results for a single equation to the case of a coupled system.
It is worth noting here that there are several studies in this field and we particularly refer to the generalization that Shun et al. made in studying a complicate non-linear case with degenerate damping term in [22]. The IBVP for a system of nonlinear viscoelastic wave equations in a bounded domain was considered in the problem
$ {utt−Δu+∫t0g(t−s)Δu(s)ds+(|u|k+|v|q)|ut|m−1ut=f1(u,v) vtt−Δv+∫t0h(t−s)Δv(s)ds+(|v|κ+|u|ρ)|vt|r−1vt=f2(u,v)u(x,t)=v(x,t)=0,x∈∂Ω,t>0u(x,0)=u0(x),v(x,0)=v0(x)ut(x,0)=u1(x),vt(x,0)=v1(x), $
|
(1.9) |
where $ \Omega $ is a bounded domain with a smooth boundary. Given certain conditions on the kernel functions, degenerate damping and nonlinear source terms, they got a decay rate of the energy function for some initial data.
The lack of existence (Blow up) is considered one of the most important qualitative studies that must be spoken of, given its importance in terms of application in various applied sciences. Concerning the nonexistence of solution for a more degenerate case for coupled system of wave equations with different damping, we mention the papers [19,20,21,23,27].
In $ m $-equations, paper in [1] considered a system
$ uitt+γuit−Δui+ui=m∑i,j=1,i≠j|uj|pj|ui|piui, i=1,2,…,m, $
|
(1.10) |
where the absence of global solutions with positive initial energy was investigated.
We introduce a very useful Sobolev embedding and generalized Poincaré inequalities.
Lemma 1.1. [16] Let $ \vartheta $ satisfy (1.2). For positive constants $ C_{\tau} > 0 $ and $ C_{P} > 0 $ depending only on $ \vartheta $ and $ n $, we have
$ ‖v‖2nn−2≤Cτ‖v‖H, $
|
and
$ ‖v‖L2ϑ≤CP‖v‖H, $
|
for $ v \in {\mathcal H} $.
Lemma 1.2. [12] Let $ \vartheta $ satisfy (1.2), then the estimates
$ \left\Vert v \right\Vert_{L_{\vartheta}^{r}} \leq C_{r} \left\Vert v \right\Vert_{{\mathcal H}}, $ |
and
$ C_{r} = C_{\tau} \left\Vert \vartheta \right\Vert_{\tau}^{\frac{1}{r}}, $ |
hold for $ v \in {\mathcal H} $. Here $ \tau = 2n/(2n-rn+2r) $ for $ 1 \leq r \leq 2n / (n-2) $.
We assume that the kernel functions $ \varpi_1, \varpi_2, \varpi_3 \in C^1(\mathbb{R}^{+}, \mathbb{R}^{+}) $ satisfy
$ {1−¯ϖ1=l>0for¯ϖ1=∫+∞0ϖ1(s)ds, ϖ′1(t)≤0,1−¯ϖ2=m>0for¯ϖ2=∫+∞0ϖ2(s)ds, ϖ′2(t)≤0,1−¯ϖ3=ν>0for¯ϖ3=∫+∞0ϖ3(s)ds, ϖ′3(t)≤0, $
|
(1.11) |
we mean by $ \mathbb{R}^{+} $ the set $ \{ \tau \mid \tau \geq 0 \} $. Noting by
$ ϖ(t)=maxt≥0{ϖ1(t),ϖ2(t),ϖ3(t)}, $
|
(1.12) |
and
$ ϖ0(t)=mint≥0{∫t0ϖ1(s)ds,∫t0ϖ2(s)ds,∫t0ϖ3(s)ds}. $
|
(1.13) |
We assume that there is a function $ \chi \in C^1(\mathbb{R}^{+}, \mathbb{R}^{+}) $ such that
$ ϖ′i(t)+χ(ϖi(t))≤0,χ(0)=0,χ′(0)>0, i=1,2,3, $
|
(1.14) |
for any $ \xi \geq 0 $.
Hölder and Young's inequalities give
$ ‖uv‖(q+1)/2L(q+1)/2ϑ≤(‖u‖2L(q+1)ϑ+‖v‖2L(q+1)ϑ)(q+1)/2≤(l‖u‖2H+m‖v‖2H)(q+1)/2, $
|
(1.15) |
and
$ ‖vw‖(q+1)/2L(q+1)/2ϑ≤(m‖v‖2H+ν‖w‖2H)(q+1)/2, $
|
(1.16) |
and
$ ‖wu‖(q+1)/2L(q+1)/2ϑ≤(ν‖w‖2H+l‖u‖2H)(q+1)/2. $
|
(1.17) |
Thanks to Minkowski's inequality to give
$ ‖u+v+w‖(q+1)L(q+1)ϑ≤c(‖u‖2L(q+1)ϑ+‖v‖2L(q+1)ϑ+‖w‖2L(q+1)ϑ)(q+1)/2≤c(‖u‖2H+‖v‖2H+‖w‖2H)(q+1)/2. $
|
Then there exist $ \eta > 0 $ such that
$ ‖u+v+w‖(q+1)L(q+1)ϑ+2‖uv‖(q+1)/2L(q+1)/2ϑ+2‖vw‖(q+1)/2L(q+1)/2ϑ+2‖wu‖(q+1)/2L(q+1)/2ϑ≤η(l‖u‖2H+m‖v‖2H+ν‖w‖2H)(q+1)/2. $
|
(1.18) |
We need to define positive constants $ \lambda_{0} $ and $ \mathcal{E}_{0} $ by
$ λ0≡η−1/(q−1)andE0=(12−1q+1)η−2/(q−1). $
|
(1.19) |
The mainely aim of the present paper is to obtain a novel decay rate of solution from the convexity property of the function $ \chi $ given in Theorem 3.1.
We denote as in [18,28] an eigenpair $ \left\{ (\lambda_{i}, e_{i}) \right\}_{i \in {\mathbb N}} \subset {\mathbb R} \times {\mathcal H} $ of
$ −θ(x)Δei=λieix∈Rn, $
|
for any $ i \in {\mathbb N} $, $ (\theta(x))^{-1}\equiv \vartheta(x) $. Then
$ 0<λ1≤λ2≤⋯≤λi≤⋯↑+∞, $
|
holds and $ \left\{ e_{i} \right\} $ is a complete orthonormal system in $ {\mathcal H} $.
Definition 1.3. The triplet functions $ (u, v, w) $ is said a weak solution to (1.1) on $ [0, T] $ if satisfies for $ x \in {\mathbb R}^{n} $,
$ {∫Rnϑ(x)(utt+αut)φdx+∫Rn∇u∇φdx−∫t0ϖ1(t−s)∇u(s)ds∇φdx=∫Rnϑ(x)h1(u,v,w)φdx,∫Rnϑ(x)(vtt+αvt)ψdx+∫Rn∇v∇ψdx−∫t0ϖ2(t−s)∇v(s)ds∇ψdx=∫Rnϑ(x)h2(u,v,w)ψdx,∫Rnϑ(x)(wtt+αwt)Ψdx+∫Rn∇v∇Ψdx−∫t0ϖ3(t−s)∇w(s)ds∇Ψdx=∫Rnϑ(x)h3(u,v,w)Ψdx, $
|
(1.20) |
for all test functions $ \varphi, \psi, \Psi \in {\mathcal H} $ for almost all $ t \in [0, T] $.
The next Theorem is concerned on the local solution (in time $ [0, T] $).
Theorem 2.1. (Local existence) Assume that
$ 1<q≤n+2n−2andthatn≥3. $
|
(2.1) |
Let $ (u_{0}, v_0, w_0) \in {\mathcal H}^3 $ and $ (u_{1}, v_1, w_3) \in L_{\vartheta}^{2}({\mathbb R}^{n})\times L_{\vartheta}^{2}({\mathbb R}^{n})\times L_{\vartheta}^{2}({\mathbb R}^{n}) $. Under the assumptions (1.2)–(1.17) and (1.11)–(1.14). Then (1.1) admits a unique local solution $ (u, v, w) $ such that
$ (u,v,w)∈X3T, XT≡C([0,T];H)∩C1([0,T];L2ϑ(Rn)), $
|
for sufficiently small $ T > 0 $.
We prove the existence of global solution in time. Let us introduce the potential energy $ J:\mathcal H^3 \to \mathbb{R} $ defined by
$ J(u,v,w)=(1−∫t0ϖ1(s)ds)‖u‖2H+(ϖ1∘u)+(1−∫t0ϖ2(s)ds)‖v‖2H+(ϖ2∘v)+(1−∫t0ϖ3(s)ds)‖w‖2H+(ϖ3∘w), $
|
(2.2) |
where
$ (ϖj∘w)(t)=∫t0ϖj(t−s)‖w(t)−w(s)‖2Hds, $
|
for any $ w \in L^2({\mathbb R}^{n}), j = 1, 2, 3 $. The modified energy is defined by
$ E(t)=12(‖ut‖2L2ϑ+‖vt‖2L2ϑ+‖wt‖2L2ϑ)+12J(u,v,w)−∫Rnϑ(x)G(u,v,w)dx, $
|
(2.3) |
Theorem 2.2. (Global existence) Let (1.2)–(1.17) and (1.11)–(1.14) hold. Under (2.1) and for sufficiently small $ (u_{0}, u_{1}), (v_{0}, v_{1}), (w_{0}, w_{1}) \in {\mathcal H} \times L_{\vartheta}^{2}({\mathbb R}^{n}) $, problem (1.1) admits a unique global solution $ (u, v, w) $ such that
$ (u,v,w)∈X3, X≡C([0,+∞);H)∩C1([0,+∞);L2ϑ(Rn)). $
|
(2.4) |
The next, Lemma will play an important role in the sequel.
Lemma 2.3. For $ (u, v, w)\in {\mathcal X}^3_{T} $, the functional $ \mathcal{E}(t) $ associated with problem (1.1) is a decreasing energy.
Proof. For $ 0 \leq t_{1} < t_{2} \leq T $, we have
$ E(t2)−E(t1)=∫t2t1ddtE(t)dt=−12∫t2t1(ϖ1(t)‖u‖2H−(ϖ′1∘u))dt−12∫t2t1(ϖ2(t)‖v‖2H−(ϖ′2∘v))dt−12∫t2t1(ϖ3(t)‖w‖2H−(ϖ′3∘w))dt−α(‖ut‖2L2ϑ+‖vt‖2L2ϑ+‖wt‖2L2ϑ)≤0, $
|
owing to (1.11)–(1.14).
We sketch here the outline of the proof for local solution by a standard procedure(See [4,11,31]).
Proof. (Of Theorem 2.1.) Let $ (u_{0}, u_{1}), (v_{0}, v_{1}), (w_{0}, w_{1}) \in {\mathcal H} \times L_{\vartheta}^{2}({\mathbb R}^{n}) $. For any $ (u, v, w) \in {\mathcal X}^3_{T} $, we can obtain weak solution of the related system
$ {ϑ(x)(ztt+αzt)−Δz=−∫t0ϖ1(t−s)Δu(s)ds+ϑ(x)h1(u,v,w)ϑ(x)(ytt+αyt)−Δy=−∫t0ϖ2(t−s)Δv(s)ds+ϑ(x)h2(u,v,w)ϑ(x)(ζtt+αζt)−Δζ=−∫t0ϖ3(t−s)Δw(s)ds+ϑ(x)h3(u,v,w)z(x,0)=u0(x),y(x,0)=v0(x),ζ(x,0)=w0(x)zt(x,0)=u1(x),yt(x,0)=v1(x),ζt(x,0)=w1(x). $
|
(2.5) |
We reduces problem (2.5) to Cauchy problem for system of ODE by using the Faedo-Galerkin approximation. We then find a solution map $ \top : (u, v, w) \mapsto (z, y, \zeta) $ from $ {\mathcal X}^3_{T} $ to $ {\mathcal X}^3_{T} $. We are now ready show that $ \top $ is a contraction mapping in an appropriate subset of $ {\mathcal X}^3_{T} $ for a small $ T > 0 $. Hence $ \top $ has a fixed point $ \top (u, v, w) = (u, v, w) $, which gives a unique solution in $ {\mathcal X}^3_{T} $.
We will show the global solution. By using conditions on functions $ \varpi_1, \varpi_2, \varpi_3 $, we have
$ E(t)≥12J(u,v,w)−∫Rnϑ(x)G(u,v,w)dx≥12J(u,v,w)−1q+1‖u+v+w‖(q+1)L(q+1)ϑ−2q+1(‖uv‖(q+1)/2L(q+1)/2ϑ+‖vw‖(q+1)/2L(q+1)/2ϑ+‖wu‖(q+1)/2L(q+1)/2ϑ)≥12J(u,v,w)−ηq+1[l‖u‖2H+m‖v‖2H+ν‖w‖2H](q+1)/2≥12J(u,v,w)−ηq+1(J(u,v,w))(q+1)/2=G(ς), $
|
(2.6) |
here $ \varsigma^2 = J(u, v, w) $, for $ t \in [0, T) $, where
$ G(ξ)=12ξ2−ηq+1ξ(q+1). $
|
Noting that $ \mathcal{E}_0 = G(\lambda_{0}) $, given in (1.19). Then
$ {G(ξ)≥0in ξ∈[0,λ0]G(ξ)<0in ξ>λ0. $
|
(2.7) |
Moreover, $ \lim\limits_{\xi \to +\infty}G(\xi) \to -\infty $. Then, we have the following lemma
Lemma 2.4. Let $ 0 \leq \mathcal{E}(0) < \mathcal{E}_{0} $.
$ (i) $ If $ \left\Vert u_{0} \right\Vert^2_{\mathcal H}+\left\Vert v_{0} \right\Vert^2_{\mathcal H} +\left\Vert w_{0} \right\Vert^2_{\mathcal H} < \lambda^2_{0} $, then local solution of (1.1) satisfies
$ J(u,v, w) < \lambda^2_{0}, \ \forall t \in [0,T). $ |
$ (ii) $ If $ \left\Vert u_{0} \right\Vert^2_{\mathcal H}+\left\Vert v_{0} \right\Vert^2_{\mathcal H}+\left\Vert w_{0} \right\Vert^2_{\mathcal H} > \lambda^2_{0} $, then local solution of (1.1) satisfies
$ \left\Vert u \right\Vert^2_{\mathcal H}+\left\Vert v \right\Vert^2_{\mathcal H}+\left\Vert w \right\Vert^2_{\mathcal H} > \lambda^2_{1}, \ \forall t \in [0,T), \lambda_{1} > \lambda_{0}. $ |
Proof. Since $ 0 \leq \mathcal{E}(0) < \mathcal{E}_{0} = G(\lambda_{0}) $, there exist $ \xi_{1} $ and $ \xi_{2} $ such that $ G(\xi_{1}) = G(\xi_{2}) = \mathcal{E}(0) $ with $ 0 < \xi_{1} < \lambda_{0} < \xi_{2} $.
The case $ (i) $. By (2.6), we have
$ G(J(u0,v0,w0))≤E(0)=G(ξ1), $
|
which implies that $ J(u_0, v_0, w_0) \leq \xi^2_{1}. $ Then we claim that $ J(u, v, w) \leq \xi^2_{1}, \ \forall t \in [0, T) $. Moreover, there exists $ t_{0} \in (0, T) $ such that
$ \xi^2_{1} < J(u(t_0), v(t_0), w(t_0)) < \xi^2_{2}. $ |
Then
$ G(J(u(t0),v(t0),w(t0)))>E(0)≥E(t0), $
|
by Lemma 2.3, which contradicts (2.6). Hence we have
$ J(u, v, w) \leq \xi^2_{1} < \lambda^2_{0}, \ \forall t \in [0,T). $ |
The case $ (ii) $. We can now show that
$ \left\Vert u_{0} \right\Vert^2_{\mathcal H}+\left\Vert v_{0} \right\Vert^2_{\mathcal H}+\left\Vert w_{0} \right\Vert^2_{\mathcal H} \geq \xi^2_{2}, $ |
and
$ \left\Vert u \right\Vert^2_{\mathcal H} +\left\Vert v \right\Vert^2_{\mathcal H}+\left\Vert w \right\Vert^2_{\mathcal H} \geq \xi^2_{2} > \lambda^2_{0}, $ |
in the same way as $ (i) $.
Proof. (Of Theorem 2.2.) Let $ (u_{0}, u_{1}), (v_{0}, v_{1}), (w_{0}, w_{1}) \in {\mathcal H} \times L_{\vartheta}^{2}({\mathbb R}^{n}) $ satisfy both $ 0 \leq \mathcal{E}(0) < \mathcal{E}_{0} $ and
$ \left\Vert u_{0} \right\Vert^2_{\mathcal H} + \left\Vert v_{0} \right\Vert^2_{\mathcal H}+ \left\Vert w_{0} \right\Vert^2_{\mathcal H} < \lambda^2_{0}. $ |
By Lemma 2.3 and Lemma 2.4, we have
$ 12(‖ut‖2L2ϑ+‖vt‖2L2ϑ+‖wt‖2L2ϑ)+l‖u‖2H+m‖v‖2H+ν‖w‖2H≤12(‖ut‖2L2ϑ+‖vt‖2L2ϑ+‖wt‖2L2ϑ)+(1−∫t0ϖ1(s)ds)‖u‖2H+(ϖ1∘u)+(1−∫t0ϖ2(s)ds)‖u‖2H+(ϖ2∘v)+(1−∫t0ϖ3(s)ds)‖w‖2H+(ϖ3∘w)≤2E(t)+2ηq+1[l‖u‖2H+m‖u‖2H+ν‖w‖2H](q+1)/2≤2E(0)+2ηq+1(J(u,v,w))(q+1)/2≤2E0+2ηq+1λq+10=η−2/(q−1). $
|
(2.8) |
This completes the proof.
Let
$ Λ(u,v,w)=12(1−∫t0ϖ1(s)ds)‖u‖2H+12(ϖ1∘u)+12(1−∫t0ϖ2(s)ds)‖v‖2H+12(ϖ2∘v)+12(1−∫t0ϖ3(s)ds)‖w‖2H+12(ϖ3∘w)−∫Rnϑ(x)G(u,v,w)dx, $
|
(2.9) |
$ Π(u,v,w)=(1−∫t0ϖ1(s)ds)‖u‖2H+(ϖ1∘u)+(1−∫t0ϖ2(s)ds)‖v‖2H+(ϖ2∘v)+(1−∫t0ϖ3(s)ds)‖w‖2H+(ϖ3∘w)−(q+1)∫Rnϑ(x)G(u,v,w)dx. $
|
(2.10) |
Lemma 2.5. Let $ (u, v, w) $ be the solution of problem (1.1). If
$ ‖u0‖2H+‖v0‖2H+‖w0‖2H−(q+1)∫Rnϑ(x)G(u0,v0,w0)dx>0. $
|
(2.11) |
Then under condition (3.1), the functional $ \Pi(u, v, w) > 0, \ \forall t > 0. $
Proof. By (2.11) and continuity, there exists a time $ t_1 > 0 $ such that
$ \Pi(u,v,w)\geq 0, \forall t < t_1. $ |
Let
$ Y={(u,v,w)∣Π(u(t0),v(t0),w(t0))=0, Π(u,v,w)>0,∀t∈[0,t0)}. $
|
(2.12) |
Then, by (2.9), (2.10), we have for all $ (u, v, w)\in Y $,
$ Λ(u,v,w)=q−12(q+1)[(1−∫t0ϖ1(s)ds)‖u‖2H+(1−∫t0ϖ2(s)ds)‖v‖2H+(1−∫t0ϖ3(s)ds)‖w‖2H]+q−12(q+1)[(ϖ1∘u)+(ϖ2∘v)+(ϖ3∘w)]+1q+1Π(u,v,w)≥q−12(q+1)[l‖u‖2H+m‖v‖2H+ν‖w‖2H+(ϖ1∘u)+(ϖ2∘v)+(ϖ3∘w)]. $
|
Owing to (2.3), it follows for $ (u, v, w)\in Y $
$ l‖u‖2H+m‖v‖2H+ν‖w‖2H≤2(q+1)q−1Λ(u,v,w)≤2(q+1)q−1E(t)≤2(q+1)q−1E(0). $
|
(2.13) |
By (1.18), (3.1) we have
$ (q+1)∫RnG(u(t0),v(t0),w(t0))≤η(l‖u(t0)‖2H+m‖v(t0)‖2H+ν‖w(t0)‖2H)(q+1)/2≤η(2(q+1)q−1E(0))(q−1)/2(l‖u(t0)‖2H+m‖v(t0)‖2H+ν‖w(t0)‖2H)≤γ(l‖u(t0)‖2H+m‖v(t0)‖2H+ν‖w(t0)‖2H)<(1−∫t00ϖ1(s)ds)‖u(t0)‖2H+(1−∫t00ϖ2(s)ds)‖v(t0)‖2H+(1−∫t00ϖ3(s)ds)‖w(t0)‖2H<(1−∫t00ϖ1(s)ds)‖u(t0)‖2H+(1−∫t00ϖ2(s)ds)‖v(t0)‖2H+(1−∫t00ϖ3(s)ds)‖w(t0)‖2H+(ϖ1∘u)+(ϖ2∘v)+(ϖ3∘w), $
|
(2.14) |
hence $ \Pi(u(t_0), v(t_0), w(t_0)) > 0 $ on $ Y $, which contradicts the definition of $ Y $ since $ \Pi(u(t_0), v(t_0), w(t_0)) = 0 $. Thus $ \Pi(u, v, w) > 0, \ \forall t > 0. $
The decay rate for solution is given in the next Theorem
Theorem 3.1. (Decay of solution) Let (1.2)–(1.17) and (1.11)–(1.14) hold. Under condition (2.1) and
$ γ=η(2(q+1)q−1E(0))(q−1)/2<1, $
|
(3.1) |
there exists $ t_{0} > 0 $ depending only on $ \varpi_1, \varpi_2, \varpi_3 $, $ \lambda_{1} $ and $ \chi'(0) $ such that
$ 0≤E(t)<E(t0)exp(−∫tt0ϖ(s)1−ϖ0(t)), $
|
(3.2) |
holds for all $ t \geq t_{0} $.
Proof. (Of Theorem 3.1.) By (1.18) and (2.13), we have for $ t \geq 0 $
$ 0<l‖u‖2H+m‖v‖2H+ν‖w‖2H≤2(q+1)q−1E(t). $
|
(3.3) |
Let
$ I(t)=ϖ(t)1−ϖ0(t), $
|
where $ \varpi $ and $ \varpi_0 $ defined in (1.12) and (1.13).
Noting that $ \lim \limits_{t \to +\infty}\varpi(t) = 0 $ by (1.11)–(1.13), we have
$ \lim\limits_{t \to +\infty}I(t) = 0, \ \ I(t) > 0, \ \forall t \geq 0. $ |
Then we take $ t_{0} > 0 $ such that
$ 0<12I(t)<χ′(0), $
|
with (1.14) for all $ t > t_{0} $. Due to (2.3), we have
$ E(t)≤12(‖ut‖2L2ϑ+‖vt‖2L2ϑ+‖wt‖2L2ϑ)+12[(ϖ1∘u)+(ϖ2∘v)+(ϖ3∘w)]+12(1−∫t0ϖ1(s)ds)‖u‖2H+12(1−∫t0ϖ2(s)ds)‖v‖2H+12(1−∫t0ϖ3(s)ds)‖w‖2H≤12(‖ut‖2L2ϑ+‖vt‖2L2ϑ+‖wt‖2L2ϑ)+12[(ϖ1∘u)+(ϖ2∘v)+(ϖ3∘w)]+12(1−ϖ0(t))[‖u‖2H+‖v‖2H+‖w‖2H]. $
|
Then, by definition of $ I(t) $, we have
$ I(t)E(t)≤12I(t)(‖ut‖2L2ϑ+‖vt‖2L2ϑ+‖wt‖2L2ϑ)+12ϖ(t)[‖u‖2H+‖v‖2H+‖w‖2H]+12I(t)[(ϖ1∘u)+(ϖ2∘v)+(ϖ3∘w)], $
|
(3.4) |
and Lemma 2.3, we have for all $ t_1, t_2\geq 0 $
$ E(t2)−E(t1)≤−12∫t2t1(ϖ(t)[‖u‖2H+‖v‖2H+‖w‖2H])dt+12∫t2t1((ϖ′1∘u)+(ϖ′2∘v)+(ϖ′3∘w))dt−α∫t2t1(‖ut‖2L2ϑ+‖vt‖2L2ϑ+‖wt‖2L2ϑ)dt, $
|
then,
$ E′(t)≤−12ϖ(t)[‖u‖2H+‖v‖2H+‖w‖2H]+12[(ϖ′1∘u)+(ϖ′2∘v)+(ϖ′3∘w)]−α(‖ut‖2L2ϑ+‖vt‖2L2ϑ+‖wt‖2L2ϑ), $
|
(3.5) |
Finally, $ \forall t \geq t_0 $, we have
$ E′(t)+I(t)E(t)≤(12I(t)−α)(‖ut‖2L2ϑ+‖vt‖2L2ϑ+‖wt‖2L2ϑ)+12[(ϖ′1∘u)+(ϖ′2∘v)+(ϖ′3∘w)]+12I(t)((ϖ1∘u)+(ϖ2∘v)+(ϖ3∘w)), $
|
and we can choose $ t_0 > 0 $ large enough such that
$ \frac{1}{2}I(t) < \alpha, $ |
then
$ E′(t)+I(t)E(t)≤12∫t0{ϖ′1(t−τ)+I(t)ϖ2(t−τ)}‖u(t)−u(τ)‖2Hdτ+12∫t0{ϖ′2(t−τ)+I(t)ϖ2(t−τ)}‖v(t)−v(τ)‖2Hdτ+12∫t0{ϖ′3(t−τ)+I(t)ϖ3(t−τ)}‖w(t)−w(τ)‖2Hdτ≤12∫t0{ϖ′1(τ)+I(t)ϖ1(τ)}‖u(t)−u(t−τ)‖2Hdτ+12∫t0{ϖ′2(τ)+I(t)ϖ2(τ)}‖v(t)−v(t−τ)‖2Hdτ+12∫t0{ϖ′3(τ)+I(t)ϖ3(τ)}‖w(t)−w(t−τ)‖2Hdτ≤12∫t0{−χ(ϖ1(τ))+χ′(0)ϖ1(τ)}‖u(t)−u(t−τ)‖2Hdτ+12∫t0{−χ(ϖ2(τ))+χ′(0)ϖ2(τ)}‖v(t)−v(t−τ)‖2Hdτ+12∫t0{−χ(ϖ3(τ))+χ′(0)ϖ3(τ)}‖w(t)−w(t−τ)‖2Hdτ≤0, $
|
by the convexity of $ \chi $ and (1.14), we have
$ χ(ξ)≥χ(0)+χ′(0)ξ=χ′(0)ξ. $
|
Then
$ E(t)≤E(t0)exp(−∫tt0I(s)ds), $
|
which completes the proof.
The author would like to thank the anonymous referees and the handling editor for their careful reading and for relevant remarks/suggestions to improve the paper.
The author agrees with the contents of the manuscript, and there is no conflict of interest among the author.
[1] |
Hoffman MR, Martin ST, Choi W, et al. (1995) Environmental application of semiconductor photocatalysis. Chem Rev 95: 69–96. doi: 10.1021/cr00033a004
![]() |
[2] | Robertson P (1996) Semiconductor photocatalysis: An environmentally acceptable alternative production technique and efluent treament process. J Cleaner Prod 4: 203–212. |
[3] |
Matsunga T, Tamada R, Wake H (1985) Photoelectrochemical sterilization of microbial-cells by semiconductor powders. FEMS Microbiol Lett 29: 211–214. doi: 10.1111/j.1574-6968.1985.tb00864.x
![]() |
[4] |
Rengaraj S, Li XZ (2006) Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in Aqueous Suspension. J Mol Cataltsis A 243: 60–67. doi: 10.1016/j.molcata.2005.08.010
![]() |
[5] |
Katsumata H, Sada M, Nakaoka Y, et al. (2009) Photocatalytic degradation of diuron in aqueous solutions of platinized TiO2. J Hazard Mater 171: 1081–1087. doi: 10.1016/j.jhazmat.2009.06.110
![]() |
[6] |
Kalathil S, Khan MM, Banerjee AN, et al. (2012) A simple biogenic route to rapid synthesis of Au@TiO2 nanocomposites by electrochemically active biofilms. J Nanoparticle Res 14: 1051–1059. doi: 10.1007/s11051-012-1051-x
![]() |
[7] | Fang J, Cao S-W, Wang Z, et al. (2012) Mesoporous plasmonic Au–TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction. Int J Hydrogen Energy 37: 17853–17861. |
[8] |
Yu C, Cai D, Yang K, et al. (2010) Sol- gel derived S, I-codoped mesoporous TiO2 photocatalyst with high visible-light photocatalytic activity. J Phys Chem Solids 71: 1337–1343. doi: 10.1016/j.jpcs.2010.06.001
![]() |
[9] | Yuranova T, Rincon AG, Bozzi A, et al. (2003) Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver. J Photochem Photobiol 161: 27–34. |
[10] | Grieken RV, Marugán J, Sordo C, et al. (2009) Photocatalytic inactivation of bacteria in water using suspended and immobilized silver-TiO2. Environmental 93: 112–118. |
[11] |
Sangchaya W, Sikonga L, Kooptarnond K (2012) Comparison of photocatalytic reaction of commercial P25 and synthetic TiO2-AgCl nanoparticles. Procedia Eng 32: 590–596. doi: 10.1016/j.proeng.2012.01.1313
![]() |
[12] | Ubonchonlakate K, Sikong L, Tontai T, et al. (2011) P. aeruginosa Inactivation with silver and nickel doped TiO2 films coated on glass fibre roving. Adv Mater Res 150–151: 1726–1731. |
[13] |
Cho KH, Park JE, Osaka T, et al. (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51: 956–960. doi: 10.1016/j.electacta.2005.04.071
![]() |
[14] | Akhavan O, Ghaderi E (2009) Enhancement of antibacterial properties of Ag nanorods by electric field. Sci Technol Adv Mater 10: 015003. |
[15] |
Li M, Noriega-Trevino ME, Nino-Martinez N, et al. (2011) Synergistic Bactericidal Activity of Ag-TiO2 nanoparticles in Both Light and Dark Conditions. Environ Sci Technol 45: 8989–8995. doi: 10.1021/es201675m
![]() |
[16] |
Thiel J, Pakstis L, Buzby S, et al. (2007) Antibacterial properties of silver-doped. Small 3: 799–803. doi: 10.1002/smll.200600481
![]() |
[17] |
Scafani A, Palmisano L, Schiavello M (1990) Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion. J Phys Chem 94: 829–832. doi: 10.1021/j100365a058
![]() |
[18] | Viet-Cuong N, The-Vinh N (2009) Photocatalytic decomposition of phenol over N-TiO2-SiO2 catalyst under natural sunlight. J ExpNanosci 4: 233–242. |
[19] |
Hoang T-TN, Suc NV, Nguyen T-V (2015) Bactericidal activities and synergistic effects of Ag–TiO2 and Ag–TiO2–SiO2 nanomaterials under UV-C and dark conditions. Int J Nanotechnol 12: 367–379. doi: 10.1504/IJNT.2015.067894
![]() |
[20] |
Sun B, Sun S-Q, Li T, et al. (2007) Preparation and antibacterial activities of Ag-doped SiO2–TiO2 composite films by liquid phase deposition (LPD) method. J Mater Sci 42: 10085–10089. doi: 10.1007/s10853-007-2109-5
![]() |
[21] |
Chao HE, Yuan YU, Xingfanga HU (2003) Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder. J Eur Ceramic Soci 23: 1457–1464. doi: 10.1016/S0955-2219(02)00356-4
![]() |
[22] |
Oliveri G, Ramis G, Busca G, et al. (1993) Thermal stability of vanadia-titania cataysts. J Mater Chem 3: 1239–1249. doi: 10.1039/JM9930301239
![]() |
[23] | Shahverdi AR, Fakhimi A, Shahverdi HR, et al. (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3: 168–171. |
[24] |
Smetana AB, Klabunde KJ, Marchin GR, et al. (2008) Biocidal activity of nanocrystalline silver powders and particles. Langmuir 24: 7457–7464. doi: 10.1021/la800091y
![]() |
[25] |
Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71: 7589–7593. doi: 10.1128/AEM.71.11.7589-7593.2005
![]() |
[26] | Benabbou AK, Derriche Z, Felix C, et al. (2007) Photocatalytic inactivation of Escherischia coli. Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Appl Catal B Environ 76: 257–263. |
[27] | Hassan Y, Ishtiaq AQ, Imran H, et al. (2013) Visible light photocatalytic water disinfection and its kinetics using Ag-doped titania nanoparticles. Environ Sci Pollut Res 21: 740–752. |
[28] |
Anpo M, Kishiguchi S, Ichihashi Y, et al. (2001) The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method. Res Chem Intermediat 27: 459–467. doi: 10.1163/156856701104202101
![]() |
[29] | Chen X, Lou Y, Samia ACS, et al. (2003) Coherency Strain Effects on the Optical Response of Core/Shell Heteronanostructures. Nano Lett 3: 799–803. |
[30] |
Park CH, Zhang SB, Wei SH (2002) Origin ofp-type doping difficulty in ZnO: The impurity perspective. Phys Rev 66: 073202. doi: 10.1103/PhysRevB.66.073202
![]() |
[31] | Choi W, Termin A, Hoffmann M (1994) The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J Phys Chem 98: 13669–13679. |
[32] |
Mu W, Herrmann JM, Pichat P (1989) Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2. Catal Lett 3: 73–84. doi: 10.1007/BF00765057
![]() |
[33] |
Duonghong D, Borgarello E, Gratzel M (1981) Dynamics of light-induced water cleavage in colloidal systems. J Am Chem Soc 103: 4685–4690. doi: 10.1021/ja00406a004
![]() |
1. | Zhehao Huang, Tianpei Jiang, Zhenzhen Wang, On a multiple credit rating migration model with stochastic interest rate, 2020, 43, 0170-4214, 7106, 10.1002/mma.6435 | |
2. | Zhehao Huang, Zhenghui Li, Zhenzhen Wang, Utility Indifference Valuation for Defaultable Corporate Bond with Credit Rating Migration, 2020, 8, 2227-7390, 2033, 10.3390/math8112033 | |
3. | Jie Xiong, Geng Deng, Xindong Wang, Extension of SABR Libor Market Model to handle negative interest rates, 2020, 4, 2573-0134, 148, 10.3934/QFE.2020007 | |
4. | Hiroyuki Kawakatsu, Recovering Yield Curves from Dynamic Term Structure Models with Time-Varying Factors, 2020, 3, 2571-905X, 284, 10.3390/stats3030020 | |
5. | João F. Caldeira, Werley C. Cordeiro, Esther Ruiz, André A.P. Santos, Forecasting the yield curve: the role of additional and time‐varying decay parameters, conditional heteroscedasticity, and macro‐economic factors, 2024, 0143-9782, 10.1111/jtsa.12769 |