Citation: Anthony E. Hughes, Y. Sam Yang, Simon G. Hardin, Andrew Tulloh, Yudan Wang, You He. Diversity of internal structures in inhibited epoxy primers[J]. AIMS Materials Science, 2015, 2(4): 379-391. doi: 10.3934/matersci.2015.4.379
[1] | Reinhard Racke . Blow-up for hyperbolized compressible Navier-Stokes equations. Communications in Analysis and Mechanics, 2025, 17(2): 550-581. doi: 10.3934/cam.2025022 |
[2] | Huiyang Xu . Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials. Communications in Analysis and Mechanics, 2023, 15(2): 132-161. doi: 10.3934/cam.2023008 |
[3] | Yue Pang, Xiaotong Qiu, Runzhang Xu, Yanbing Yang . The Cauchy problem for general nonlinear wave equations with doubly dispersive. Communications in Analysis and Mechanics, 2024, 16(2): 416-430. doi: 10.3934/cam.2024019 |
[4] | Xiulan Wu, Yaxin Zhao, Xiaoxin Yang . On a singular parabolic $ p $-Laplacian equation with logarithmic nonlinearity. Communications in Analysis and Mechanics, 2024, 16(3): 528-553. doi: 10.3934/cam.2024025 |
[5] | Yuxuan Chen . Global dynamical behavior of solutions for finite degenerate fourth-order parabolic equations with mean curvature nonlinearity. Communications in Analysis and Mechanics, 2023, 15(4): 658-694. doi: 10.3934/cam.2023033 |
[6] | Tingfu Feng, Yan Dong, Kelei Zhang, Yan Zhu . Global existence and blow-up to coupled fourth-order parabolic systems arising from modeling epitaxial thin film growth. Communications in Analysis and Mechanics, 2025, 17(1): 263-289. doi: 10.3934/cam.2025011 |
[7] | Isaac Neal, Steve Shkoller, Vlad Vicol . A characteristics approach to shock formation in 2D Euler with azimuthal symmetry and entropy. Communications in Analysis and Mechanics, 2025, 17(1): 188-236. doi: 10.3934/cam.2025009 |
[8] | Mahmoud El Ahmadi, Mohammed Barghouthe, Anass Lamaizi, Mohammed Berrajaa . Existence and multiplicity results for a kind of double phase problems with mixed boundary value conditions. Communications in Analysis and Mechanics, 2024, 16(3): 509-527. doi: 10.3934/cam.2024024 |
[9] | Ming Liu, Binhua Feng . Grand weighted variable Herz-Morrey spaces estimate for some operators. Communications in Analysis and Mechanics, 2025, 17(1): 290-316. doi: 10.3934/cam.2025012 |
[10] | Yang Liu, Xiao Long, Li Zhang . Long-time dynamics for a coupled system modeling the oscillations of suspension bridges. Communications in Analysis and Mechanics, 2025, 17(1): 15-40. doi: 10.3934/cam.2025002 |
In this paper, we study the initial boundary value problem of the nonlinear viscoelastic hyperbolic problem with variable exponents:
$ {utt+△2u+△2utt−∫t0g(t−τ)△2u(τ)dτ+|ut|m(x)−2ut=|u|p(x)−2u,(x,t)∈Ω×(0,T),u(x,t)=∂u∂ν(x,t)=0,(x,t)∈∂Ω×(0,T),u(x,0)=u0(x), ut(x,0)=u1(x),x∈Ω, $
|
(1.1) |
where $ \Omega\subset R^{n}(n\geq1) $ is a bounded domain in $ R^n $ with a smooth boundary $ \partial \Omega $, $ \nu $ is the unit outer normal to $ \partial\Omega $, the exponents $ m(x) $ and $ p(x) $ are continuous functions on $ \overline{\Omega} $ with the logarithmic module of continuity:
$ ∀x,y∈Ω,|x−y|<1,|m(x)−m(y)|+|p(x)−p(y)|≤ω(|x−y|), $
|
(1.2) |
where
$ limτ→0+supω(τ)ln1τ=C<∞. $
|
(1.3) |
In addition to this condition, the exponents satisfy the following:
$ 2≤m−:=essinfx∈Ωm(x)≤m(x)≤m+:=esssupx∈Ωm(x)<2(n−2)n−4, $
|
(1.4) |
$ 2≤p−:=essinfx∈Ωp(x)≤p(x)≤p+:=esssupx∈Ωp(x)<2(n−2)n−4, $
|
(1.5) |
$ g: R^{+} \, \rightarrow R^{+} $ is a $ C^{1} $ function satisfying
$ g(0)>0, g′(τ)≤0,1−∫∞0g(τ)dτ=l>0. $
|
(1.6) |
The equation of Problem $ (1.1) $ arises from the modeling of various physical phenomena such as the viscoelasticity and the system governing the longitudinal motion of a viscoelastic configuration obeying a nonlinear Boltzmann's model, or electro-rheological fluids, viscoelastic fluids, processes of filtration through a porous medium, and fluids with temperature-dependent viscosity and image processing which give rise to equations with nonstandard growth conditions, that is, equations with variable exponents of nonlinearities. More details on these problems can be found in previous studies [1,2,3,4,5,6].
When $ m(x) $ and $ p(x) $ are constants, Messaoudi [7] discussed the nonlinear viscoelastic wave equation
$ utt−△u+∫t0g(t−τ)△u(τ)dτ+|ut|m−2ut=|u|p−2u, $
|
he proved that any weak solution with negative initial energy blows up in finite time if $ p > m $, and a global existence result for $ p\leq m $. The results were improved later by Messaoudi [8], where the blow-up result in finite time with positive initial energy was obtained. Moreover, Song [9] showed the finite-time blow-up of some solutions whose initial data had arbitrarily high initial energy. In the same year, Song [10] studied the initial-boundary value problem
$ |ut|ρutt−△u+∫t0g(t−τ)△u(τ)dτ+|ut|m−2ut=|u|p−2u, $
|
and proved the nonexistence of global solutions with positive initial energy. Cavalcanti, Domingos, and Ferreira [11] were concerned with the non-linear viscoelastic equation
$ |ut|ρutt−△u−△utt+∫t0g(t−τ)△u(τ)dτ−γ△ut=0, $
|
and proved the global existence of weak solutions. Moreover, they obtained the uniform decay rates of the energy by assuming a strong damping $ \triangle u_{t} $ acting in the domain and providing the relaxation function which decays exponentially.
In 2017, Messaoudi [12] considered the following nonlinear wave equation with variable exponents:
$ utt−△u+a|ut|m(x)−2ut=b|u|p(x)−2u, $
|
where $ a, b $ are positive constants. By using the Faedo$ - $Galerkin method, the existence of a unique weak solution is established under suitable assumptions on the variable exponents $ m(x) $ and $ p(x) $. Then this paper also proved the finite-time blow-up of solutions and gave a two-dimensional numerical example to illustrate the blow up result. Park [13] showed the blow up of solutions for a viscoelastic wave equation with variable exponents
$ utt−△u+∫t0g(t−s)△u(s)ds+a|ut|m(x)−2ut=b|u|p(x)−2u, $
|
where the exponents of nonlinearity $ p(x) $ and $ m(x) $ are given functions and $ a, b > 0 $ are constants. For nonincreasing positive function $ g $, they prove the blow-up result for the solutions with positive initial energy as well as nonpositive initial energy. Alahyane [14] discussed the nonlinear viscoelastic wave equation with variable exponents
$ utt−△u+∫t0g(t−τ)△u(τ)dτ+μut=|u|p(x)−2u, $
|
where $ \mu $ is a nonnegative constant and the exponent of nonlinearity $ p(x) $ and $ g $ are given functions. Under arbitrary positive initial energy and specific conditions on the relaxation function $ g $, they prove a finite-time blow-up result and give some numerical applications to illustrate their theoretical results. Ouaoua and Boughamsa [15] considered the following boundary value problem:
$ utt+△2u−△u+|ut|m(x)−2ut=|u|p(x)−2u, $
|
the authors established the local existence by using the Faedo$ - $Galerkin method with positive initial energy and suitable conditions on the variable exponents $ m(x) $ and $ r(x) $. In addition, they also proved that the local solution is global and obtained the stability estimate of the solution. Ding and Zhou [16] considered a Timoshenko-type equation
$ utt+△2u−M(||∇u||22)△u+|ut|p(x)−2ut=|u|q(x)−2u, $
|
they prove that the solutions blow up in finite time with positive initial energy. Therefore, the existence of finite-time blow-up solutions with arbitrarily high initial energy is established, and the upper and lower bounds of the blow-up time are derived. More related references can be found in [17,18,19,20,21,22].
Motivated by [7,13,14], we considered the existence of the solutions and their blow-up for the nonlinear damping and viscoelastic hyperbolic problem with variable exponents. Our aim in this work is to prove the existence of the weak solutions and to find sufficient conditions on $ m(x) $ and $ p(x) $ for which the blow-up takes place.
This article consists of three sections in addition to the introduction. In Section 2, we recall the definitions and properties of $ L^{p(x)}(\Omega) $ and the Sobolev spaces $ W^{1, p(x)}(\Omega) $. In Section 3, we prove the existence of weak solutions for Problem (1.1). In Section 4, we state and prove the blow-up result for solutions with positive initial energy as well as nonpositive initial energy.
In this section, we review some results regarding Lebesgue and Sobolev spaces with variable exponents first. All of these results and a comprehensive study of these spaces can be found in [23]. Here $ (\cdot, \cdot) $ and $ \langle \cdot, \cdot \rangle $ denote the inner product in space $ L^{2}(\Omega) $ and the duality pairing between $ H^{-2}(\Omega) $ and $ H_{0}^{2}(\Omega) $.
The variable exponent Lebesgue space $ L^{p(x)}(\Omega) $ is defined by
$ L^{p(x)}(\Omega) = \left\{u(x): u\, \, {\rm is\, \, \rm measurable\, \, \rm in}\, \, \Omega, \ \rho_{p(x)}(u) = \int_{\Omega}|u|^{p(x)}dx < \infty\right\}, $ |
this space is endowed with the norm
$ \|u\|_{p(x)} = \mbox{inf}\ \left\{\lambda > 0:\int_{\Omega}\Big|\frac{u(x)}{\lambda}\Big|^{p(x)}\mathrm{d}x\leq1\right\}. $ |
The variable exponent Sobolev space $ W^{1, p(x)}(\Omega) $ is defined by
$ W^{1, p(x)}(\Omega) = \left\{u\in L^{p(x)}(\Omega)\ \, {\rm such \, \, \rm that}\, \, \nabla u \, \, {\rm exists\, \, \rm and}\, \, |\nabla u|\in L^{p(x)}(\Omega)\right\}, $ |
the corresponding norm for this space is
$ \|u\|_{1, p(x)} = \|u\|_{{p(x)}}+\|\nabla u\|_{{p(x)}}, $ |
define$ \ W_0^{1, p(x)}(\Omega) $ as the closure of $ \ C_0^\infty(\Omega) $ with respect to the$ \ W^{1, p(x)}(\Omega) $ norm. The spaces $ \ L^{p(x)}(\Omega), W^{1, p(x)}(\Omega) $ and $ W_0^{1, p(x)}(\Omega) $ are separable and reflexive Banach spaces when $ 1 < p^-\leq p^+ < \infty $, where $ p^-: = ess\inf\limits_{\Omega} p(x) $ and $ p^+: = ess\sup\limits_{\Omega} p(x). $ As usual, we denote the conjugate exponent of $ p(x) $ by $ p'(x) = p(x)/(p(x)-1) $ and the Sobolev exponent by
$ p^*(x) = \left\{np(x)n−kp(x),if p(x)<n,∞,if p(x)≥n. \right. $
|
Lemma 2.1. If $ p_{1}(x), \ p_{2}(x)\in C_{+}(\overline{\Omega}) = \{h\in C(\overline{\Omega}):\min\limits_{x\in \overline{\Omega}} h(x) > 1\} $, $ p_{1}(x)\leq p_{2}(x) $ for any $ x\in\Omega $, then there exists the continuous embedding $ L^{p_{2}(x)}(\Omega)\hookrightarrow L^{p_{1}(x)}(\Omega) $, whose norm does not exceed $ |\Omega|+1 $.
Lemma 2.2. Let $ p(x), \ q(x)\in C_{+}(\overline{\Omega}). $ Assuming that $ q(x) < p^{\ast}(x) $, there is a compact and continuous embedding $ W^{k, p(x)}(\Omega)\hookrightarrow L^{q(x)}(\Omega). $
Lemma 2.3. (Hölder's inequality) [24] For any $ u\in L^{p(x)}(\Omega) $ and $ v\in L^{q(x)}(\Omega) $, then the following inequality holds:
$ \left|\int_{\Omega}uvdx\right|\leq(\frac{1}{p^{-}}+\frac{1}{q^{-}})||u||_{p(x)}||v||_{q(x)}\leq2||u||_{p(x)}||v||_{q(x)}. $ |
Lemma 2.4. For $ u\in L^{p(x)}(\Omega) $, the following relations hold:
$ u\neq0 \Rightarrow \Big(\|u\|_{p(x)} = \lambda\Leftrightarrow\rho_{p(x)}(\frac{u}{\lambda}) = 1\Big ), $ |
$ \|u\|_{p(x)} < 1( = 1; > 1)\Leftrightarrow\rho_{p(x)}(u) < 1( = 1; > 1), $ |
$ \|u\|_{p(x)} > 1\Rightarrow \|u\|_{p(x)}^{p^{-}}\leq\rho_{p(x)}(u)\leq\|u\|_{p(x)}^{p^+}, $ |
$ \|u\|_{p(x)} < 1\Rightarrow \|u\|_{p(x)}^{p^+}\leq\rho_{p(x)}(u)\leq\|u\|_{p(x)}^{p^-}. $ |
Next, we give the definition of the weak solution to Problem $ (1.1) $.
Definition 2.1. A function u(x, t) is called a weak solution for Problem $ (1.1) $, if $ u\in C(0, T;H_{0}^{2}(\Omega)) $ $ \cap C^{1}(0, T;H_{0}^{2}(\Omega))\cap C^{2}(0, T;H^{-2}(\Omega)) $ with $ u_{tt}\in L^{2}(0, T;H_{0}^{2}(\Omega)) $ and u satisfies the following conditions:
(1) For every $ \omega \in H_{0}^{2}(\Omega) $ and for $ a.e. \, t\in (0, T) $
$ \langle u_{tt}, \omega\rangle+(\triangle u, \triangle \omega)+(\triangle u_{tt}, \triangle \omega)-\int_{0}^{t}g(t-\tau)(\triangle u(\tau), \triangle \omega)d\tau\\+(|u_{t}|^{m(x)-2}u_{t}, \omega) = (|u|^{p(x)-2}u, \omega), $ |
(2) $ u(x, 0) = u_{0}(x)\in H_{0}^{2}(\Omega), \, u_{t}(x, 0) = u_{1}(x)\in H_{0}^{2}(\Omega). $
In this section, we prove the existence of a weak solution for Problem $ (1.1) $ by making use of the Faedo–Galerkin method and the contraction mapping principle. For a fixed $ T > 0 $, we consider the space $ \mathscr H = C(0, T;H_{0}^{2}(\Omega))\cap C^{1}(0, T;H_{0}^{2}(\Omega)) $ with the norm $ ||v||_{\mathscr H}^{2} = \max\limits_{0\leq t\leq T} (||\triangle v_{t}||_{2}^{2}+l||\triangle v||_{2}^{2}) $.
Lemma 3.1. Assume that $ (1.4) $, $ (1.5) $, and $ (1.6) $ hold, let $ (u_{0}, u_{1})\in H_{0}^{2}(\Omega)\times H_{0}^{2}(\Omega) $, for any $ T > 0 $, $ v\in \mathscr H $, then there exists $ u\in C(0, T;H_{0}^{2}(\Omega))\cap C^{1}(0, T;H_{0}^{2}(\Omega))\cap C^{2}(0, T;H^{-2}(\Omega)) $ with $ \ u_{tt}\in L^{2}(0, T;H_{0}^{2}(\Omega)) $ satisfying
$ {utt+△2u+△2utt−∫t0g(t−τ)△2u(τ)dτ+|ut|m(x)−2ut=|v|p(x)−2v,(x,t)∈Ω×(0,T),u(x,t)=∂u∂ν(x,t)=0,(x,t)∈∂Ω×(0,T),u(x,0)=u0(x), ut(x,0)=u1(x),x∈Ω. $
|
(3.1) |
Proof. Let $ \{\omega_{j}\}_{j = 1}^{\infty} $ be the orthogonal basis of $ H\mathcal{}_{0}^{2}(\Omega) $, which is the standard orthogonal basis in $ L^{2}(\Omega) $ such that
$ -\triangle\omega_{j} = \lambda_{j}\omega_{j} \ \ \rm in\ \ \Omega, \, \, \omega_{j} = 0 \ \ \rm on\ \ \partial \Omega, $ |
we denote by $ V_{k} = {\rm span}\{\omega_{1}, \omega_{2}, \cdot\cdot\cdot, \omega_{k}\} $ the subspace generated by the first $ k $ vectors of the basis $ \{\omega_{j}\}_{j = 1}^{\infty} $. By normalization, we have $ ||\omega_{j}||_{2} = 1 $. For all $ k\geq1 $, we seek $ k $ functions $ c_{1}^{k}(t), c_{2}^{k}(t), \ldots, c_{k}^{k}(t)\in C^{2}[0, T] $ such that
$ u^{k}(x, t) = \sum\limits_{j = 1}^{k}c_{j}^{k}(t)\omega_{j}(x), $ |
satisfying the following approximate problem
$ {(uktt,ωi)+(△uk,△ωi)+(△uktt,△ωi)−∫t0g(t−τ)(△uk,△ωi)dτ+(|ukt|m(x)−2ukt,ωi)=∫Ω|v|p(x)−2vωidx,uk(0)=uk0, ukt(0)=uk1, i=1,2,…k, $
|
(3.2) |
where
$ u_{0}^{k} = \sum\limits_{i = 1}^{k}(u_{0}, \omega_{i})\omega_{i}\rightarrow u_{0}\ \ \ \rm in\ \ H_{0}^{2}(\Omega), $ |
$ u_{1}^{k} = \sum\limits_{i = 1}^{k}(u_{1}, \omega_{i})\omega_{i}\rightarrow u_{1}\ \ \ \rm in\ \ H_{0}^{2}(\Omega), $ |
thus, $ (3.2) $ generates the initial value problem for the system of second-order differential equations with respect to $ c_{i}^{k}(t) $:
$ {(1+λ2i)ckitt(t)+λ2icki(t)=Gi(ck1t(t),…,ckkt(t))+gi(cki(t)), i=1,2,…,k,cki(0)=∫Ωu0ωidx, ckit(0)=∫Ωu1ωidx, i=1,2,…,k. $
|
(3.3) |
where
$ Gi(ck1t(t),…,ckkt(t))=−∫Ω|k∑j=1ckjt(t)ωj(x)|m(x)−2k∑j=1ckjt(t)ωj(x)ωi(x)dx, $
|
and
$ gi(cki(t))=λ2i∫t0g(t−τ)cki(τ)dτ+∫Ω|v|p(x)−2vωidx, $
|
by Peano's Theorem, we infer that the Problem $ (3.3) $ admits a local solution $ c_{i}^{k}(t)\in C^{2}[0, T] $.
$ \textbf{The} $ $ \textbf{first} $ $ \textbf{estimate}. $ Multiplying $ (3.2) $ by $ c_{it}^{k}(t) $ and summing with respect to $ i $, we arrive at the relation
$ ddt(12||ukt||22+12||△uk||22+12||△ukt||22)+∫Ω|ukt|m(x)dx−∫t0g(t−τ)∫Ω△uk(τ)△uktdxdτ=∫Ω|v|p(x)−2vuktdx. $
|
(3.4) |
By simple calculation, we have
$ −∫t0g(t−τ)∫ΩΔuk(τ)Δuktdxdτ=12ddt(g⋄△uk)−12(g′⋄△uk)−12ddt∫t0g(τ)dτ||Δuk||22+12g(t)||△uk||22, $
|
(3.5) |
where
$ (\varphi\diamond\bigtriangleup\psi) = \int_{0}^{t}\varphi(t-\tau)||\triangle\psi(t)-\triangle\psi(\tau)||_{2}^{2}d\tau, $ |
inserting $ (3.5) $ into $ (3.4) $, using Hölder's inequality and Young's inequality, we obtain
$ ddt[12||ukt||22+12||△ukt||22+12(g⋄△uk)+12(1−∫t0g(τ)dτ)||Δuk||22]=12(g′⋄△uk)−12g(t)||△uk||22+∫Ω|v|p(x)−2vuktdx−∫Ω|ukt|m(x)dx≤∫Ω|v|p(x)−2vuktdx≤‖|v|p(x)−2v‖2||ukt||2≤η2∫Ω|v|2(p(x)−1)dx+12η||ukt||22, $
|
(3.6) |
using the embedding $ H_{0}^{2}(\Omega)\hookrightarrow L^{2(p(x)-1)}(\Omega) $ and Lemma $ 2.4 $, we easily obtain
$ ∫Ω|v|2(p(x)−1)dx≤max{||v||2(p−−1)2(p(x)−1),||v||2(p+−1)2(p(x)−1)}≤Cmax{||△v||2(p−−1)2,||△v||2(p+−1)2}≤C, $
|
(3.7) |
where $ C $ is a positive constant. We denote by $ C $ various positive constants that may be different at different occurrences.
Combining $ (3.6) $ and $ (3.7) $, we obtain
$
ddt[12||ukt||22+12||△ukt||22+12(g⋄△uk)+12(1−∫t0g(τ)dτ)||Δuk||22]≤η2C+12η||ukt||22,
$
|
by Gronwall's inequality, there exists a positive constant $ C_{T} $ such that
$ ||ukt||22+||△ukt||22+(g⋄△uk)+l||Δuk||22≤CT, $
|
(3.8) |
therefore, there exists a subsequence of $ \{u^{k}\}_{k = 1}^{\infty} $, which we still denote by $ \{u^{k}\}_{k = 1}^{\infty} $, such that
$ uk∗⇀u weakly star in L∞(0,T;H20(Ω)),ukt∗⇀ut weakly star in L∞(0,T;H20(Ω)),uk⇀u weakly in L2(0,T;H20(Ω)),ukt⇀ut weakly in L2(0,T;H20(Ω)). $
|
(3.9) |
$ \textbf{The} $ $ \textbf{second} $ $ \textbf{estimate}. $ Multiplying $ (3.2) $ by $ c_{itt}^{k}(t) $ and summing with respect to $ i $, we obtain
$ ||uktt||22+||Δuktt||22+ddt(∫Ω1m(x)|ukt|m(x)dx)=−∫Ω△uk△ukttdx+∫t0g(t−τ)∫ΩΔuk(τ)Δukttdxdτ+∫Ω|v|p(x)−2vukttdx. $
|
(3.10) |
Note that we have the estimates for $ \varepsilon > 0 $
$ |∫Ω△uk△ukttdx|≤ε||△uktt||22+14ε||△uk||22, $
|
(3.11) |
$ ∫Ω|v|p(x)−2vukttdx≤‖|v|p(x)−2v‖2‖uktt‖2≤ε||uktt||22+14ε∫Ω|v|2(p(x)−1)dx, $
|
(3.12) |
and
$ |∫t0g(t−τ)∫Ω△uk(τ)△ukttdxdτ|≤14ε∫Ω(∫t0g(t−τ)△uk(τ)dτ)2dx+ε||△uktt||22≤ε||△uktt||22+14ε∫t0g(s)ds∫t0g(t−τ)∫Ω|△uk(τ)|2dxdτ≤ε||△uktt||22+(1−l)g(0)4ε∫t0||△uk(τ)||22dτ, $
|
(3.13) |
similar to $ (3.6) $ and $ (3.7) $, from $ H_{0}^{2}(\Omega)\hookrightarrow L^{2}(\Omega) $, we have
$ ∫Ω|v|p(x)−2vukttdx≤εC||△uktt||22+C4ε. $
|
(3.14) |
Taking into account $ (3.10)-(3.14) $, we obtain
$ ||uktt||22+(1−2ε−Cε)||△uktt||22+ddt(∫Ω1m(x)|ukt|m(x)dx)≤14ε||△uk||22+(1−l)g(0)4ε∫t0||△uk(τ)||22dτ+C4ε, $
|
(3.15) |
integrating $ (3.15) $ over $ (0, t) $, we obtain
$ ∫t0||uktt||22dτ+(1−2ε−Cε)∫t0||△uktt||22dτ+∫Ω1m(x)|ukt|m(x)dx≤C4ε∫t0(||△uk||22+∫τ0||△uk(s)||22ds)dτ+CT, $
|
(3.16) |
taking $ \varepsilon $ small enough in (3.16), for some positive constant $ C_{T} $, we obtain
$ ∫t0||uktt||22dτ+∫t0||△uktt||22dτ≤CT, $
|
(3.17) |
we observe that estimate $ (3.17) $ implies that there exists a subsequence of $ \{u^{k}\}_{k = 1}^{\infty} $, which we still denote by $ \{u^{k}\}_{k = 1}^{\infty} $, such that
$ uktt⇀utt weakly in L2(0,T;H20(Ω)). $
|
(3.18) |
In addition, from $ (3.9) $, we have
$ (uktt,ωi)=ddt(ukt,ωi)∗⇀ddt(ut,ωi)=(utt,ωi) weakly star in L∞(0,T;H−2(Ω)). $
|
(3.19) |
Next, we will deal with the nonlinear term. Combining $ (3.9) $, $ (3.18) $, and Aubin–Lions theorem [25], we deduce that there exists a subsequence of $ \{u^{k}\}_{k = 1}^{\infty} $ such that
$ ukt→ut strongly in C(0,T;L2(Ω)), $
|
(3.20) |
then
$ |ukt|m(x)−2ukt→|ut|m(x)−2ut a.e. (x,t)∈Ω×(0,T), $
|
(3.21) |
using the embedding $ H_{0}^{2}(\Omega)\hookrightarrow L^{2(m(x)-1)}(\Omega) $ and Lemma $ 2.4 $, we have
$ ‖|ukt|m(x)−2ukt‖22=∫Ω|ukt|2(m(x)−1)dx≤max{||△ukt||2(m−−1)2,||△ukt||2(m+−1)2}≤C, $
|
(3.22) |
hence, using $ (3.21) $ and $ (3.22) $, we obtain
$ |ukt|m(x)−2ukt∗⇀|ut|m(x)−2ut weakly star in L∞(0,T;L2(Ω)). $
|
(3.23) |
Setting up $ k\rightarrow \infty $ in $ (3.2) $, combining with $ (3.9) $, $ (3.18) $, $ (3.19) $, and $ (3.23) $, we obtain
$ \langle u_{tt}, \omega \rangle+(\triangle u, \triangle \omega)+(\triangle u_{tt}, \triangle \omega)-\int_{0}^{t}g(t-\tau)(\triangle u(\tau), \triangle \omega)d\tau+(|u_{t}|^{m(x)-2}u_{t}, \omega) = (|v|^{p(x)-2}v, \omega). $ |
To handle the initial conditions. From $ (3.9) $ and Aubin–Lions theorem, we can easily get $ u^{k}\rightarrow u $ in $ C(0, T;L^{2}(\Omega)) $, thus $ u^{k}(0)\rightarrow u(0) $ in $ L^{2}(\Omega) $, and we also have that $ u^{k}(0) = u_{0}^{k}\rightarrow u_{0} $ in $ H_{0}^{2}(\Omega) $, hence $ u(0) = u_{0} $ in $ H_{0}^{2}(\Omega) $. Similarly, we get that $ u_{t}(0) = u_{1} $.
Uniqueness. Suppose that $ (3.1) $ has solutions $ u $ and $ z $, then $ \omega = u-z $ satisfies
$ {ωtt+△2ω+△2ωtt−∫t0g(t−τ)△2ω(τ)dτ+|ut|m(x)−2ut−|zt|m(x)−2zt=0,(x,t)∈Ω×(0,T),ω(x,t)=∂ω∂ν(x,t)=0,(x,t)∈∂Ω×(0,T),ω(x,0)=0, ωt(x,0)=0,x∈Ω. $
|
Multiplying the first equation of Problem $ (3.1) $ by $ \omega_{t} $ and integrating over $ \Omega $, we have
$ 12ddt[||ωt||22+(1−∫t0g(τ)dτ)||△ω||22+||△ωt||22+(g⋄△ω)]+12g(t)||△ω||22=−∫Ω(|ut|m(x)−2ut−|zt|m(x)−2zt)(ut−zt)dx+12(g′⋄△ω), $
|
from the inequality
$ (|a|m(x)−2a−|b|m(x)−2b)(a−b)≥0, $
|
(3.24) |
for all $ a, b\in R^{n} $ and a.e. $ x\in\Omega $, we obtain
$ ||\omega_{t}||_{2}^{2}+l||\triangle \omega||_{2}^{2}+||\triangle \omega_{t}||_{2}^{2} = 0, $ |
which implies that $ \omega = 0 $. This completes the proof.
Theorem 3.1. Assume that $ (1.4) $ and $ (1.6) $ hold, let the initial date $ (u_{0}, u_{1})\in H_{0}^{2}(\Omega)\times H_{0}^{2}(\Omega) $, and
$ 2\leq p^{-}\leq p(x)\leq p^{+}\leq\frac{2(n-3)}{n-4}, $ |
then there exists a unique local solution of Problem $ (1.1) $.
Proof. For any $ T > 0 $, consider $ M_{T} = \{u\in\mathscr H:u(0) = u_{0}, u_{t}(0) = u_{1}, ||u||_{\mathscr H}\leq M\} $. Lemma $ 3.1 $ implies that for $ \forall v\in M_{T} $, there exists $ u = S(v) $ such that $ u $ is the unique solution to Problem $ 3.1 $. Next, we prove that for a suitable $ T > 0 $, $ S $ is a contractive map satisfying $ S(M_{T})\subset M_{T} $.
Multiplying the first equation of the Problem $ (3.1) $ by $ u_{t} $ and integrating it over $ (0, t) $, we obtain
$ ||ut||22+||△ut||22+(g⋄△u)+l||Δu||22≤||u1||22+||△u1||22+||Δu0||22+2∫t0∫Ω|v|p(x)−2vutdxdτ, $
|
(3.25) |
using Hölder's inequality and Young's inequality, we have
$ |∫Ω|v|p(x)−2vutdx|≤γ||ut||22+14γ∫Ω|v|2p(x)−2dx≤γ||ut||22+14γ[∫Ω|v|2p−−2dx+∫Ω|v|2p+−2dx]≤γ||ut||22+C4γ[||△v||2p−−22+||△v||2p+−22], $
|
thus, $ (3.25) $ becomes
$ ||ut||22+||△ut||22+l||Δu||22≤λ0+2∫t0∫Ω|v|p(x)−2vutdxdτ≤λ0+2γTsup(0,T)||ut||22+TC2γsup(0,T)[||△v||2p−−22+||△v||2p+−22], $
|
hence, we have
$ sup(0,T)||ut||22+sup(0,T)||△ut||22+lsup(0,T)||Δu||22≤λ0+2γTsup(0,T)||ut||22+TC2γsup(0,T)[||v||2p−−2H+||v||2p+−2H], $
|
where $ \lambda_{0} = ||u_{1}||_{2}^{2}+||\triangle u_{1}||_{2}^{2}+||\Delta u_{0}||_{2}^{2} $, choosing $ \gamma = \frac{1}{2T} $ such that
$ ||u||2H≤λ0+T2Csup(0,T)[||v||2p−−2H+||v||2p+−2H]. $
|
For any $ v\in M_{T} $, by choosing $ M $ large enough so that
$ ||u||2H≤λ0+2T2CM2(p+−1)≤M2, $
|
and $ T > 0 $, sufficiently small so that
$ T\leq\sqrt{\frac{M^{2}-\lambda_{0}}{2CM^{2(p^{+}-1)}}}, $ |
we obtain $ ||u||_{\mathscr H}\leq M $, which shows that $ S(M_{T})\subset M_{T} $.
Let $ v_{1}, v_{2}\in M_{T}, u_{1} = S(v_{1}), u_{2} = S(v_{2}), u = u_{1}-u_{2} $, then $ u $ satisfies
$ {utt+△2u+△2utt−∫t0g(t−τ)△2u(τ)dτ+|u1t|m(x)−2u1t−|u2t|m(x)−2u2t=|v1|p(x)−2v1−|v2|p(x)−2v2,(x,t)∈Ω×(0,T),u(x,t)=∂u∂ν(x,t)=0,(x,t)∈∂Ω×(0,T),u(x,0)=0, ut(x,0)=0,x∈Ω. $
|
Multiplying by $ u_{t} $ and integrating over $ \Omega\times(0, t) $, we obtain
$ 12||ut||22+12(1−∫t0g(τ)dτ)||△u||22+12||△ut||22+12(g⋄△u)+∫t0∫Ω[|u1t|m(x)−2u1t−|u2t|m(x)−2u2t](u1t−u2t)dxdτ≤∫t0∫Ω(f(v1)−f(v2))utdxdτ, $
|
(3.26) |
where $ f(v) = |v|^{p(x)-2}v $. From $ (1.6) $ and $ (3.24) $, we obtain
$ 12||ut||22+l2||△u||22+12||△ut||22+12(g⋄△u)≤∫t0∫Ω(f(v1)−f(v2))utdxdτ. $
|
(3.27) |
Now, we evaluate
$ I = \int_{\Omega}|(f(v_{1})-f(v_{2}))||u_{t}|dx = \int_{\Omega}|f'(\xi)||v||u_{t}|dx, $ |
where $ v = v_{1}-v_{2} $ and $ \xi = \alpha v_{1}+(1-\alpha)v_{2} $, $ 0\leq\alpha\leq1 $. Thanks to Young's inequality and Hölder's inequality, we have
$ I≤δ2||ut||22+12δ∫Ω|f′(ξ)|2|v|2dx≤δ2||ut||22+(p+−1)22δ∫Ω|ξ|2(p(x)−2)|v|2dx≤δ2||ut||22+(p+−1)22δ(∫Ω|v|2nn−2dx)n−2n[∫Ω|ξ|n(p(x)−2)dx]2n≤δ2||ut||22+(p+−1)22δ(∫Ω|v|2nn−2dx)n−2n[(∫Ω|ξ|n(p+−2)dx)2n+(∫Ω|ξ|n(p−−2)dx)2n]≤δ2||ut||22+(p+−1)2C2δ||Δv||22[||△ξ||2(p+−2)2+||△ξ||2(p−−2)2]≤δ2||ut||22+(p+−1)2C2δ||Δv||22(M2(p+−2)+M2(p−−2)). $
|
(3.28) |
Inserting $ (3.28) $ into $ (3.27) $, choosing $ \delta $ small enough, we obtain
$ ||u||_{\mathscr H}^{2}\leq\frac{(p^{+}-1)^{2}CT}{\delta}(M^{2(p^{-}-2)}+M^{2(p^{+}-2)})||v||_{\mathscr H}^{2}, $ |
taking $ T $ small enough so that $ \frac{(p^{+}-1)^{2}CT}{\delta}(M^{2(p^{-}-2)}+M^{2(p^{+}-2)}) < 1 $, we conclude
$ ||u||_{\mathscr H}^{2} = ||S(v_{1})-S(v_{2})||_{\mathscr H}^{2}\leq||v_{1}-v_{2}||_{\mathscr H}^{2}, $ |
thus, the contraction mapping principle ensures the existence of a weak solution to Problem $ (1.1) $. This completes the proof.
In this section, we show that the solution to Problem $ (1.1) $ blows up in finite time when the initial energy lies in positive as well as nonpositive. For this task, we define
$ E(t)=12||ut||22+12(1−∫t0g(τ)dτ)||△u||22+12||△ut||22+12(g⋄△u)−∫Ω1p(x)|u|p(x)dx, $
|
(4.1) |
by the definition of $ E(t) $, we also have
$ E′(t)=−∫Ω|ut|m(x)dx+12(g′⋄△u)−12g(t)||△u||22≤0. $
|
(4.2) |
Now, we set
$ B_{1} = \max\left\{1, \frac{B}{l^{\frac{1}{2}}}\right\}, \ \ \lambda_{1} = \left(B_{1}^{2}\right)^{\frac{-2}{p^{-}-2}}, \ \ E_{1} = (\frac{1}{2}-\frac{1}{p^{-}})(B_{1}^{2})^{\frac{-p^{-}}{p^{-}-2}}, $ |
and
$ H(t)=E2−E(t), $
|
(4.3) |
where the constant $ E_{2}\in(E(0), E_{1}) $ will be discussed later, and $ B $ is the best constant of the Sobolev embedding $ H_{0}^{2}(\Omega)\hookrightarrow L^{p(x)}(\Omega) $. It follows from $ (4.2) $ that
$ H′(t)=−E′(t)≥0, $
|
(4.4) |
and $ H(t) $ is a non$ - $decreasing function.
To prove Theorem $ 4.1 $, we need the following two lemmas:
Lemma 4.1. Suppose that $ (1.6) $ holds and the exponents $ m(x) $ and $ p(x) $ satisfy condition $ (1.4) $ and $ (1.5) $. Assume further that
$ E(0) < E_{1} \ \ and\ \ \lambda_{1} < \lambda(0) = B_{1}^{2}l||\triangle u_{0}||_{2}^{2}, $ |
then there exists a constant $ \lambda_{2} > \lambda_{1} $ such that
$ B21l||△u||22≥λ2, t≥0. $
|
(4.5) |
Proof. Using $ (1.6) $, $ (4.1) $, Lemma $ 2.4 $, and the embedding $ H_{0}^{2}(\Omega)\hookrightarrow L^{p(x)}(\Omega) $, we find that
$ E(t)≥12(1−∫t0g(τ)dτ)||△u||22−∫Ω1p(x)|u|p(x)dx≥l2||△u||22−1p−∫Ω|u|p(x)dx≥l2||△u||22−1p−max{||u||p−p(x),||u||p+p(x)}≥l2||△u||22−1p−max{Bp−||△u||p−2,Bp+||△u||p+2}≥l2||△u||22−1p−max{Bp−1lp−2||△u||p−2,Bp+1lp+2||△u||p+2}≥12B21λ−1p−max{λp−2,λp+2}:=G(λ), $
|
(4.6) |
where $ \lambda: = \lambda(t) = B_{1}^{2}l||\triangle u||_{2}^{2}. $ Analyzing directly the properties of $ G(\lambda) $, we deduce that $ G(\lambda) $ satisfies the following properties:
$ G'(\lambda) = {12B21−p+2p−λp+−22<0, λ>1,12B21−12λp−−22, 0<λ<1, $
|
$ G'_{+}(1) = \frac{1}{2B_{1}^{2}}-\frac{p^{+}}{2p^{-}} < 0, \ \ G'_{-}(1) = \frac{1}{2B_{1}^{2}}-\frac{1}{2} < 0, $ |
$ G'(\lambda_{1}) = 0, \ \ \ \ 0 < \lambda_{1} < 1. $ |
It is easily verified that $ G(\lambda) $ is strictly increasing for $ 0 < \lambda < \lambda_{1} $, strictly decreasing for $ \lambda_{1} < \lambda $, $ G(\lambda)\rightarrow -\infty $ as $ \lambda\rightarrow +\infty $, and $ G(\lambda_{1}) = E_{1} $. Since $ E(0) < E_{1} $, there exists a $ \lambda_{2} > \lambda_{1} $ such that $ G(\lambda_{2}) = E(0) $. By $ (4.6) $, we see that $ G(\lambda(0))\leq E(0) = G(\lambda_{2}) $, which implies $ \lambda(0)\geq\lambda_{2} $ since the condition $ \lambda(0) > \lambda_{1}. $ To prove $ (4.5) $, we suppose by contradiction that for some $ t_{0} > 0 $, $ \lambda_{t_{0}} = B_{1}^{2}l||\triangle u(t_{0})||_{2}^{2} < \lambda_{2} $. The continuity of $ B_{1}^{2}l||\triangle u||_{2}^{2} $ illustrates that we could choose $ t_{0} $ such that $ \lambda_{1} < \lambda_{t_{0}} < \lambda_{2} $, then we have $ E(0) = G(\lambda_{2}) < G(\lambda_{t_{0}})\leq E(t_{0}) $. This is a contradiction. The proof is completed.
Lemma 4.2. Let the assumption in Lemma $ 4.1 $ be satisfied. For $ t\in[0, T) $, we have
$ 0<H(0)≤H(t)≤1p−ρp(x)(u). $
|
Proof. $ (4.4) $ indicates that $ H(t) $ is nondecreasing with respect to $ t $, thus
$ H(t)\geq H(0) = E_{2}-E(0) > 0, \ \ \forall t\in[0, T). $ |
It follows from $ (1.6) $, $ (4.1) $, and Lemma $ 4.1 $ that
$ H(t)=E2−E(t)=E2−12||ut||22−12(1−∫t0g(τ)dτ)||△u||22−12(g⋄△u)−12||△ut||22+∫Ω1p(x)|u|p(x)dx≤E1−l2||△u||22+∫Ω1p(x)|u|p(x)dx≤E1−12B21λ2+∫Ω1p(x)|u|p(x)dx≤E1−12B21λ1+∫Ω1p(x)|u|p(x)dx≤∫Ω1p(x)|u|p(x)dx≤1p−ρp(x)(u). $
|
The proof is completed.
Our blow-up result reads as follows:
Theorem 4.3. Suppose that
$ 2\leq m^{-}\leq m(x)\leq m^{+} < p^{-}\leq p(x)\leq p^{+}\leq\frac{2(n-3)}{n-4}, $ |
and
$ 1−l=∫∞0g(τ)dτ<p−2−1p−2−1+12p−, $
|
(4.7) |
hold, if the following conditions
$ E(0) < \frac{1}{2}(\frac{1}{2}-\frac{1}{p^{-}})\left(1-\frac{1}{p^{-}(p^{-}-2)}\frac{1-l}{l}\right)(B_{1}^{2})^{\frac{-p^{-}}{p^{-}-2}} \ \ and\ \ \lambda_{1} < \lambda(0) = B_{1}^{2}l||\triangle u_{0}||_{2}^{2}, $ |
are satisfied, then there exists $ T^{\ast} < +\infty $ such that
$ limt→T∗−(||ut||22+||△ut||22+||△u||22+||u||p+p+)=+∞. $
|
(4.8) |
Proof. Assume by contradiction that $ (4.8) $ does not hold true, then for $ \forall T^{\ast} < +\infty $ and all $ t\in[0, T^{\ast}] $, we get
$ ||ut||22+||△ut||22+||△u||22+||u||p+p+≤C∗, $
|
(4.9) |
where $ C_{\ast} $ is a positive constant.
Now, we define $ L(t) $ as follows:
$ L(t)=H1−α(t)+ϵ∫Ωutudx+ϵ∫Ω△ut△udx, $
|
(4.10) |
where $ \varepsilon > 0 $, small enough to be chosen later, and
$ 0≤α≤min{p−−m+p−(m+−1),p−−22p−}. $
|
The remaining proof will be divided into two steps.
$ \textbf{Step} $ $ \textbf{1:} $ $ \textbf{Estimate} $ $ \textbf{for} $ $ \textbf{L'(t)}. $ By taking the derivative of $ (4.10) $ and using $ (1.1) $, we obtain
$ L′(t)=(1−α)H−α(t)[∫Ω|ut|m(x)dx−12(g′⋄△u)+12g(t)||△u||22]+ϵ||ut||22+ϵ∫Ω△utt△udx+ϵ||△ut||22−ϵ||△u||22+ϵ∫Ω∫t0g(t−τ)△u(τ)dτ△udx−ϵ∫Ω|ut|m(x)−2utudx+ϵ∫Ω|u|p(x)dx−ϵ∫Ω△utt△udx≥(1−α)H−α(t)∫Ω|ut|m(x)dx+ϵ||ut||22−ϵ||△u||22+ϵ∫Ω∫t0g(t−τ)△u(τ)dτ△udx−ϵ∫Ω|ut|m(x)−2utudx+ϵ∫Ω|u|p(x)dx+ϵ||Δut||22, $
|
applying Hölder's inequality and Young's inequality, we have
$ ϵ∫Ω∫t0g(t−τ)Δu(τ)Δu(t)dτdx=ϵ∫Ω∫t0g(t−τ)Δu(t)(Δu(τ)−Δu(t))dτdx+ϵ∫t0g(t−τ)dτ||Δu||22≥−ϵ∫t0g(t−τ)||Δu(τ)−Δu(t)||2||Δu(t)||2dτ+ϵ∫t0g(t−τ)dτ||Δu||22≥−ϵp−(1−ε1)2(g⋄△u)+ϵ(1−12p−(1−ε1))∫t0g(τ)dτ||Δu||22, $
|
where $ 0 < \varepsilon_{1} < \frac{p^{-}-2}{p^{-}} $, then
$ L′(t)≥(1−α)H−α(t)∫Ω|ut|m(x)dx+ϵ||ut||22−ϵ||Δu||22+ϵ||Δut||22−ϵ∫Ω|ut|m(x)−2utudx+ϵ∫Ω|u|p(x)dx−ϵp−(1−ε1)2(g⋄△u)+ϵ(1−12p−(1−ε1))∫t0g(τ)dτ||Δu||22, $
|
rewriting $ (4.7) $ to $ (\frac{p^{-}}{2}-1)l-\frac{1}{2p^{-}}(1-l) > 0 $, using $ (4.1) $ and $ (4.3) $ to substitute for $ (g\diamond \bigtriangleup u) $, choosing $ \varepsilon_{1} > 0 $ sufficiently small, we obtain
$ L′(t)≥(1−α)H−α(t)∫Ω|ut|m(x)dx+ϵp−(1−ε1)H(t)+(ϵ+ϵp−(1−ε1)2)(||ut||22+||△ut||22)+ϵ{(p−(1−ε1)2−1)(1−∫t0g(τ)dτ)−12p−(1−ε1)∫t0g(τ)dτ}||△u||22−ϵp−(1−ε1)E2−ϵ∫Ω|ut|m(x)−2utudx+ϵε1∫Ω|u|p(x)dx≥(1−α)H−α(t)∫Ω|ut|m(x)dx+ϵp−(1−ε1)H(t)+(ϵ+ϵp−(1−ε1)2)(||ut||22+||△ut||22)+ϵ{(p−(1−ε1)2−1)l2−12p−(1−ε1)1−l2}lλ2B21−ϵp−(1−ε1)E2−ϵ∫Ω|ut|m(x)−2utudx+ϵ{(p−(1−ε1)2−1)l2−12p−(1−ε1)1−l2}||△u||22+ϵε1∫Ω|u|p(x)dx.≥(1−α)H−α(t)∫Ω|ut|m(x)dx+ϵp−(1−ε1)H(t)+(ϵ+ϵp−(1−ε1)2)(||ut||22+||△ut||22)+ϵ{(p−(1−ε1)2−1)l2−12p−(1−ε1)1−l2}l(B21)−p−p−−2−ϵp−(1−ε1)E2−ϵ∫Ω|ut|m(x)−2utudx+ϵ{(p−(1−ε1)2−1)l2−12p−(1−ε1)1−l2}||△u||22+ϵε1∫Ω|u|p(x)dx. $
|
(4.11) |
$ \textbf{Step} $ $ \textbf{1.1:} $ $ \textbf{Estimate} $ $ \textbf{for} $ $ \epsilon\frac{\left\{\left(\frac{p^{-}(1-\varepsilon_{1})}{2}-1\right)\frac{l}{2}-\frac{1}{2p^{-}(1-\varepsilon_{1})}\frac{1-l}{2}\right\}}{l}(B_{1}^{2})^{\frac{-p^{-}}{p^{-}-2}}-\epsilon p^{-}(1-\varepsilon_{1})E_{2}. $ It follows from the condition in Theorem $ 3.1 $ that
$ E(0) < \frac{1}{2}(\frac{1}{2}-\frac{1}{p^{-}})\left(1-\frac{1-l}{p^{-}(p^{-}-2)l}\right)(B_{1}^{2})^{\frac{-p^{-}}{p^{-}-2}} = \frac{(\frac{p^{-}}{2}-1)\frac{l}{2}-\frac{1}{2p^{-}}\frac{(1-l)}{2}}{lp^{-}}(B_{1}^{2})^{\frac{-p^{-}}{p^{-}-2}} < E_{1}, $ |
here, we can take $ \varepsilon_{1} > 0 $ sufficiently small and choose $ E_{2}\in(E(0), E_{1}) $ sufficiently close to $ E(0) $ such that
$ ϵ(p−(1−ε1)2−1)l2−12p−(1−ε1)(1−l)2l(B21)−p−p−−2−ϵ(1−ε1)p−E2≥ϵ(p−(1−ε1)2−1)l2−12p−(1−ε1)(1−l)2l(B21)−p−p−−2−ϵ(1−ε1)p−(p−2−1)l2−12p−(1−l)2lp−(B21)−p−p−−2≥0. $
|
(4.12) |
Therefore, we obtain by combining $ (4.11) $ and $ (4.12) $,
$ L′(t)≥(1−α)H−α(t)∫Ω|ut|m(x)dx+ϵp−(1−ε1)H(t)+(ϵ+ϵp−(1−ε1)2)(||ut||22+||△ut||22)+ϵε1∫Ω|u|p(x)dx+ϵ{(p−(1−ε1)2−1)l2−12p−(1−ε1)1−l2}||△u||22−ϵ∫Ω|ut|m(x)−2utudx. $
|
(4.13) |
$ \textbf{Step} $ $ \textbf{1.2:} $ $ \textbf{Estimate} $ $ \textbf{for} $ $ -\epsilon \int_{\Omega}|u_{t}|^{m(x)-2}u_{t}udx. $ Applying Young's inequality with $ \varepsilon_{2} > 1 $, the embedding $ L^{p(x)}(\Omega)\hookrightarrow L^{m(x)}(\Omega) $, Lemma $ 2.4 $ and Lemma $ 4.2 $, we easily have
$ |∫Ω|ut|m(x)−2utudx|≤∫Ω|ut|m(x)−1H−αm(x)−1m(x)(t)Hαm(x)−1m(x)(t)|u|dx≤ε2H−α(t)∫Ω|ut|m(x)dx+1εm−−12∫Ω|u|m(x)Hα(m(x)−1)(t)dx≤ε2H−α(t)∫Ω|ut|m(x)dx+2Cα(m−−m+)1εm−−12Hα(m+−1)(t)∫Ω|u|m(x)dx≤ε2H−α(t)∫Ω|ut|m(x)dx+C2εm−−12Hα(m+−1)(t)max{||u||m+p(x),||u||m−p(x)}, $
|
(4.14) |
where $ C_{1} = \min\left\{H(0), 1\right\} $, $ C_{2} = 2(1+|\Omega|)^{m^{+}}C_{1}^{\alpha(m^{-}-m^{+})} $. Next, we have
$ ||u||m+p(x)≤max{(∫Ω|u|p(x)dx)m+p+,(∫Ω|u|p(x)dx)m+p−}≤max{[p−H(t)]m+p+−m+p−,1}(∫Ω|u|p(x)dx)m+p−, $
|
and
$ ||u||m−p(x)≤max{[p−H(t)]m−p+−m+p−,[p−H(t)]m−−m+p−}(∫Ω|u|p(x)dx)m+p−, $
|
which illustrate
$ max{||u||m+p(x),||u||m−p(x)}≤C3(∫Ω|u|p(x)dx)m+p−, $
|
where $ C_{3} = 2\min\left\{p^{-}H(0), 1\right\}^{\frac{m^{-}}{p^{+}}-\frac{m^{+}}{p^{-}}} $. Recalling $ 0 < \alpha\leq\frac{p^{-}-m^{+}}{p^{-}(m^{+}-1)} $ and Lemma $ 4.2 $, apparently,
$ Hα(m+−1)(t)max{||u||m+p(x),||u||m−p(x)}≤C3Hα(m+−1)(t)(∫Ω|u|p(x)dx)m+p−≤C3Hα(m+−1)+m+p−−1(t)Hα(m+−1)+m+p−−1(0)H1−m+p−(t)Hα(m+−1)+m+p−−1(0)(∫Ω|u|p(x)dx)m+p−≤C3(1p−)1−m+p−(∫Ω|u|p(x)dx)1−m+p−Hα(m+−1)+m+p−−1(0)(∫Ω|u|p(x)dx)m+p−≤C3(1p−)1−m+p−Cα(m+−1)+m+p−−11∫Ω|u|p(x)dx, $
|
(4.15) |
it follows from $ (4.13) $, $ (4.14) $, and $ (4.15) $ that
$ L′(t)≥(1−α−ϵε2)H−α(t)∫Ω|ut|m(x)dx+(ϵ+ϵp−(1−ε1)2)(||ut||22+||△ut||22)+ϵ(1−ε1)p−H(t)+ϵ(ε1−Cα(m+−1)+m+p−−11C2C3(1p−)1−m+p−εm−−12)∫Ω|u|p(x)dx+ϵ{(p−(1−ε1)2−1)l2−12p−(1−ε1)1−l2}||△u||22, $
|
let us fix the constant $ \varepsilon_{2} $ so that
$ \varepsilon_{1} > \frac{C_{1}^{\alpha(m^{+}-1)+\frac{m^{+}}{p^{-}}-1}C_{2}C_{3}(\frac{1}{p^{-}})^{1-\frac{m^{+}}{p^{-}}}}{\varepsilon_{2}^{m^{-}-1}}, $ |
and then choose $ \epsilon $ so small that $ 1-\alpha > \epsilon\varepsilon_{1} $. Therefore, we obtain
$ L′(t)≥M1(H(t)+||△u||22+||ut||22+||△ut||22+∫Ω|u|p(x)dx), $
|
(4.16) |
where
$ M1=ϵmin{(1+p−(1−ε1)2),(1−ε1)p−,ε1−Cα(m+−1)+m+p−−11C2C3(1p−)1−m+p−εm−−12,,(p−(1−ε1)2−1)l2−12p−(1−ε1)1−l2}. $
|
Inequalities $ (4.16) $ and Lemma $ 4.2 $ imply $ L(t)\geq L(0). $ Therefore, for a sufficiently small $ \epsilon $, we have
$ L(0) = H^{1-\alpha}(0)+\epsilon\int_{\Omega}u_{1}u_{0}dx+\epsilon\int_{\Omega}\triangle u_{1}\triangle u_{0}dx > 0. $ |
$ \textbf{Step} $ $ \textbf{2:} $ $ \textbf{A} $ $ \textbf{differential} $ $ \textbf{inequality} $ $ \textbf{for} $ $ \textbf{L(t)}. $ Applying Hölder's inequality, Young's inequality and the embedding $ L^{p(x)}(\Omega)\hookrightarrow L^{2}(\Omega) $, we easily obtain
$ |∫Ωutudx|11−α≤(‖ut‖2‖u‖2)11−α≤(1+|Ω|)11−α||ut||11−α2||u||11−αp(x)≤(1+|Ω|)11−αμ||ut||11−αμ2+(1+|Ω|)11−αν||u||11−ανp(x), $
|
(4.17) |
where $ \frac{1}{\mu}+\frac{1}{\nu} = 1.\ $Choosing $ \mu = 2(1-\alpha) > 1 $, then $ \nu = \frac{2(1-\alpha)}{2(1-\alpha)-1}, \ $further, $ (4.17) $ can be rewritten as
$ |∫Ωutudx|11−α≤(1+|Ω|)11−αμ||ut||22+(1+|Ω|)11−αν||u||22(1−α)−1p(x), $
|
(4.18) |
recalling $ 0 < \alpha < \frac{p^{-}-2}{2p^{-}} $, we obtain
$ ||u||22(1−α)−1p(x)≤max{(∫Ω|u|p(x)dx)2p−[2(1−α)−1],(∫Ω|u|p(x)dx)2p+[2(1−α)−1]}≤{[p−H(t)]2−p−[2(1−α)−1]p−[2(1−α)−1],[p−H(t)]2−p+[2(1−α)−1]p+[2(1−α)−1]}∫Ω|u|p(x)dx≤C4∫Ω|u|p(x)dx, $
|
(4.19) |
with $ C_{4} = \min\{p^{-}H(0), 1\}^{\frac{2-p^{+}[2(1-\alpha)-1]}{p^{+}[2(1-\alpha)-1]}} $. Inserting $ (4.19) $ into $ (4.18) $, we obtain
$ |∫Ωutudx|11−α≤(1+|Ω|)11−αμ||ut||22+(1+|Ω|)11−ανC4∫Ω|u|p(x)dx. $
|
(4.20) |
We now estimate
$ |∫Ω△ut△udx|11−α≤||△ut||11−α2||Δu||11−α2≤C11−α∗≤C11−α∗H(0)H(t), $
|
(4.21) |
therefore, combining $ (4.20) $ and $ (4.21) $, we obtain
$ L11−α(t)=(H1−α(t)+ϵ∫Ωutudx+ϵ∫Ω△ut△udx)11−α≤M2(H(t)+||ut||22+||△ut||22+||△u||22+∫Ω|u|p(x)dx), $
|
(4.22) |
where
$ M2=max{211−α(211−α+ϵ11−αC11−α∗H(0)), 221−αϵ11−α(1+|Ω|)11−αμ, 221−αϵ11−α(1+|Ω|)11−ανC4}. $
|
Combining $ (4.16) $ and $ (4.22) $, we arrive at
$ L′(t)≥M1M2L11−α(t),∀t≥0. $
|
(4.23) |
A simple integration of $ (4.23) $ over $ (0, t) $ yields
$ Lα1−α(t)≥1Lαα−1(0)−M1M2α1−αt, $
|
this shows that $ L(t) $ blows up in finite time
$ T∗≤M2M11−ααLαα−1(0), $
|
furthermore, one gets from $ (4.22) $ that
$ \lim\limits_{t\rightarrow T^{\ast-}}\left(H(t)+||u_{t}||_{2}^{2}+||\triangle u_{t}||_{2}^{2}+||\triangle u||_{2}^{2}+\int_{\Omega}|u|^{p(x)}dx\right) = +\infty, $ |
it easily follows that
$ \int_{\Omega}|u|^{p(x)}dx\leq \int_{\{|u|\geq1\}}|u|^{p^{+}}dx+\int_{\{|u| < 1\}}|u|^{p^{-}}dx\leq||u||_{p^{+}}^{p^{+}}+|\Omega|, $ |
and using Lemma $ 4.2 $, we obtain
$ \lim\limits_{t\rightarrow T^{\ast-}}\left(||u_{t}||_{2}^{2}+||\triangle u_{t}||_{2}^{2}+||\triangle u||_{2}^{2}+||u||_{p^{+}}^{p^{+}}\right) = +\infty, $ |
this leads to a contradiction with $ (4.9) $. Thus, the solution to Problem $ (1.1) $ blows up in finite time.
Ying Chu: Methodology, Wring-original draft, Writing-review editing; Bo Wen and Libo Cheng: Methodology, Writing-original draft.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors express their heartfelt thanks to the editors and referees who have provided some important suggestions. This work was supported by Science and Technology Development Plan Project of Jilin Province, China (20240101307JC).
The authors declare there is no conflict of interest.
[1] |
Hughes A, Trinchi A, Chen F, et al. (2014) Revelation of Intertwining Organic and Inorganic Fractal Structures in Polymer Coatings. Adv Mater 26: 4504-4508. doi: 10.1002/adma.201400561
![]() |
[2] |
Hughes A, Trinchi A, Chen F, et al. (2014) The application of multiscale quasi 4D CT to the study of SrCrO4 distributions and the development of porous networks in epoxy-based primer coatings. Prog Org Coat 77: 1946-1956. doi: 10.1016/j.porgcoat.2014.07.001
![]() |
[3] |
Trueman A, Knight S, Colwell J, et al. (2013) 3-D tomography by automated in situ block face ultramicrotome imaging using an FEG-SEM to study complex corrosion protective paint coatings. Corros Sci 75: 376-385. doi: 10.1016/j.corsci.2013.06.021
![]() |
[4] |
Mookhoek S, Mayo S, Hughes A, et al. (2010) Applying SEM-Based X-ray microtomography to observe self-healing in solvent encapsulated thermoplastic materials. Adv Eng Mater 12: 228-234. doi: 10.1002/adem.200900289
![]() |
[5] |
Müller B, Lange A, Harwardt M, et al. (2009) Synchrotron-based micro-ct and refraction-enhanced micro-ct for non- destructive materials characterisation. Adv Eng Mater 11: 435-440. doi: 10.1002/adem.200800346
![]() |
[6] | Desrues J, Viggari G, Besuelle P (2006) Advances in X-ray Tomography for Geomaterials ,ISTE, London. |
[7] |
Yang S, Gureyev T, Tulloh M, et al. (2010) Feasibility of a data constrained prediction of hydrocarbon reservoir sandstone microstructures. Meas Sci Technol 21: 047001. doi: 10.1088/0957-0233/21/4/047001
![]() |
[8] | Yang S, Gao D, Muster T, et al. (2010) Microstructure of a paint primer—a data-constrained modeling analysis. Pricm 7, Pts 1-3, edited by J. F. Nie and A. Morton (2010) 654-656: 1686-1689. |
[9] | Mayo S, Tulloh A,Trinchi A, et al. (2012) Data-constrained microstructure characterization with multispectrum x-ray micro-ct. Microsc Microanal 18: 524-530 . |
[10] | Wang H, Yang Y, Yang J, et al. (2015) Evaluation of Multiple-Scale 3D Characterization for Coal Physical Structure with DCM Method and Synchrotron X-Ray CT. Scientific World J 2015: 414262. |
[11] | Yang Y, Tulloh A, Muster T, et al. (2010) Data constrained microstructure modelling with multi-spectrum X-ray CT. P SPIE OpticsPhotonic 7804: 7804N. |
[12] | Yang Y, Chu C. DCM - A software platform for 3D material microstructure characterisation, properties modelling & visualisation. Available from: http://research.csiro.au/dcm. |
[13] | Gureyev T, Nesterets Y, Ternovski D, et al. (2011) in Toolbox for advanced x-ray image processing. 81410B. |
[14] |
Paganin D, Mayo S, Gureyev T, et al. (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Micros Oxford 206: 33-40. doi: 10.1046/j.1365-2818.2002.01010.x
![]() |
[15] |
Yang Y, Liu K, Mayo S, et al. (2013) A data-constrained modelling approach to sandstone microstructure characterization. J Pet Sci Eng 105: 76-83. doi: 10.1016/j.petrol.2013.03.016
![]() |
[16] |
Yang Y, Tulloh A, Chen F, et al. (2013) Data-constrained characterization of sandstone microstructures with multi-energy X-ray CT. J Phy Conf Ser 463: 012048. doi: 10.1088/1742-6596/463/1/012048
![]() |
[17] | Wang H, Yang Y, Wang Y, et al. (2013) Data-constrained modelling of an anthracite coal physical structure with multi-spectrum synchrotron X-ray CT. Fuel 106: 219-225. |
[18] | Yang Y, Tulloh A, Chu C, et al. DCM - A Software Platform for Advanced 3D Materials Modelling, Characterisation and Visualization. CSIRO Data-Access-Portal. Available from: https://data.csiro.au/dap/landingpage?pid=csiro:9448. |
[19] | Yang Y (2012) A data-constrained non-linear optimisation approach to a data-constrained model for compositional microstructure prediction. Lect Notes Inform Technol 15: 198-205. |
[20] |
Sellaiyan S, Hughes A, Smith S, et al. (2014) Leaching properties of chromate-containing epoxy films using radiotracers, PALS and SEM. Prog Org Coat 77: 257-267. doi: 10.1016/j.porgcoat.2013.09.014
![]() |
1. | Tahir Boudjeriou, Ngo Tran Vu, Nguyen Van Thin, High Energy Blowup for a Class of Wave Equations With Critical Exponential Nonlinearity, 2025, 0170-4214, 10.1002/mma.10873 |