This work reports on initial value problems to hyperbolized compressible Navier-Stokes equations. Local existence and global existence for small data are addressed as well as singular limits for vanishing relaxation parameters. Then blow-up results for one- and multi-dimensional models are presented using ideas from T.C. Sideris from the 1980s.
Citation: Reinhard Racke. Blow-up for hyperbolized compressible Navier-Stokes equations[J]. Communications in Analysis and Mechanics, 2025, 17(2): 550-581. doi: 10.3934/cam.2025022
This work reports on initial value problems to hyperbolized compressible Navier-Stokes equations. Local existence and global existence for small data are addressed as well as singular limits for vanishing relaxation parameters. Then blow-up results for one- and multi-dimensional models are presented using ideas from T.C. Sideris from the 1980s.
| [1] |
J. C. Maxwell, On the dynamical theory of gases, Phil. Trans. Roy. Soc. London, 157 (1867), 49–88. https://doi.org/10.1098/rstl.1867.0004 doi: 10.1098/rstl.1867.0004
|
| [2] | C. Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena, 3 (1948), 83–101. |
| [3] | Y. Hu, R. Racke, Compressible Navier-Stokes equations with hyperbolic heat conduction. J. Hyperbolic Differential Equations, 13 (2016), 233–247. https://doi.org/10.1142/S0219891616500077 |
| [4] |
Y. Cho, B. J. Jin, Blow-up of viscous heat-conducting compressible flows, J. Math. Anal. Appl., 320 (2006), 819–826. https://doi.org/10.1016/j.jmaa.2005.08.005 doi: 10.1016/j.jmaa.2005.08.005
|
| [5] |
H. J. Choe, H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Differ. Eqs., 190 (2003), 504–523. https://doi.org/10.1016/S0022-0396(03)00015-9 doi: 10.1016/S0022-0396(03)00015-9
|
| [6] |
D. Hoff, Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data, Trans. Amer. Math. Soc., 303 (1987), 169–181. https://doi.org/10.1090/S0002-9947-1987-0896014-6 doi: 10.1090/S0002-9947-1987-0896014-6
|
| [7] |
D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differ. Eqs., 120 (1995), 215–254. https://doi.org/10.1006/jdeq.1995.1111 doi: 10.1006/jdeq.1995.1111
|
| [8] |
E. Feireisl, A. Novotny, H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358–392. https://doi.org/10.1007/PL00000976 doi: 10.1007/PL00000976
|
| [9] |
X. D. Huang, J. Li, Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure. Appl. Math., 65 (2012), 549–585. https://doi.org/10.1002/cpa.21382 doi: 10.1002/cpa.21382
|
| [10] |
S. Jiang, P. Zhang, Global spherically symmetry solutions of the compressible isentropic Navier-Stokes equations, Comm. Math. Phys., 215 (2001), 559–581. https://doi.org/10.1007/PL00005543 doi: 10.1007/PL00005543
|
| [11] |
S. Jiang, P. Zhang, Axisymmetric solutions of the 3-D Navier-Stokes equations for compressible isentropic fluids, J. Math. Pures. Appl., 82 (2003), 949–973. https://doi.org/10.1016/S0021-7824(03)00015-1 doi: 10.1016/S0021-7824(03)00015-1
|
| [12] | P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. I, Incompressible Models, Clarendon Press, Oxford, 1996. |
| [13] | P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. II, Compressible Models, Clarendon Press, Oxford, 1998. |
| [14] |
A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67–104. https://doi.org/10.1215/kjm/1250522322 doi: 10.1215/kjm/1250522322
|
| [15] |
A. Matsumura, T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys., 89 (1983), 445–464. https://doi.org/10.1007/BF01214738 doi: 10.1007/BF01214738
|
| [16] |
J. Nash, Le problème de Cauchy pour les équations différentielles dún fluide général, Bull. Soc. Math. France, 90 (1962), 487–497. https://doi.org/10.24033/bsmf.1586 doi: 10.24033/bsmf.1586
|
| [17] |
J. Serrin, On the uniqueness of compressible fluid motion, Arch. Rational Mech. Anal., 3 (1959), 271–288. https://doi.org/10.1007/BF00284180 doi: 10.1007/BF00284180
|
| [18] |
Z. P. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure. Appl. Math., 51 (1998), 229–240. https://doi.org/10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C
|
| [19] |
Y. Hu, R. Racke, Formation of singularities in one-dimensional thermoelasticity with second sound, Quart. Appl. Math., 72 (2014), 311–321. https://doi.org/10.1090/S0033-569X-2014-01336-2 doi: 10.1090/S0033-569X-2014-01336-2
|
| [20] |
R. Racke, Thermoelasticity with second sound – exponential stability in linear and non-linear 1-d, Math. Methods Appl. Sci., 25 (2002), 409–441. https://doi.org/10.1002/mma.298 doi: 10.1002/mma.298
|
| [21] | R. Racke, Thermoelasticity, Chapter 4 in: Handbook of Differential Equations, Evolutionary Equations. Eds.: C. M. Dafermos, M. Pokorný. Elsevier, 5 (2009), 315–420. https://doi.org/10.1016/S1874-5717(08)00211-9 |
| [22] |
H. D. Fernández Sare, R. Racke, On the stability of damped Timoshenko systems — Cattaneo versus Fourier law, Arch. Rational Anal. Mech., 194 (2009), 221–251. https://doi.org/10.1007/s00205-009-0220-2 doi: 10.1007/s00205-009-0220-2
|
| [23] | Y. Hu, R. Racke, Compressible Navier-Stokes equations with revised Maxwell's law. J. Math. Fluid Mechanics, 19 (2017), 77–90. https://doi.org/10.1007/s00021-016-0266-5 |
| [24] | W. A. Yong, Newtonian limit of Maxwell fluid flows, Arch. Rational Mech. Anal., 214 (2014) 913–922. https://doi.org/10.1007/s00205-014-0769-2 |
| [25] |
M. Pelton, D. Chakraborty, E. Malachosky, P. Guyot-Sionnest, J. E. Sader, Viscoelastic flows in simple liquids generated by vibrating nanostructures, Phys. Rev. Letters, 111 (2013), 244502. https://doi.org/10.1103/PhysRevLett.111.244502 doi: 10.1103/PhysRevLett.111.244502
|
| [26] |
D. Chakraborty, J. E. Sader, Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales, Phys. Fluids, 27 (2015), 052002. https://doi.org/10.1063/1.4919620 doi: 10.1063/1.4919620
|
| [27] |
Y. Hu, R. Racke, Hyperbolic compressible Navier-Stokes equations, J. Differential Equations, 269 (2020), 3196-3220. https://doi.org/10.1016/j.jde.2020.02.025 doi: 10.1016/j.jde.2020.02.025
|
| [28] |
C. I. Christov, P. M. Jordan, Heat conduction paradox involving second-sound propagation in moving media, Phys. Rev. Letters, 94 (2005), 154301. https://doi.org/10.1103/PhysRevLett.94.154301 doi: 10.1103/PhysRevLett.94.154301
|
| [29] |
B. D. Coleman, M. Fabrizio, D. R. Owen, On the thermodynamics of second sound in dielectric crystals, Arch. Rational Mech. Anal., 80 (1986), 135–158. https://doi.org/10.1007/BF00250739 doi: 10.1007/BF00250739
|
| [30] |
P. J. Chen, M. E. Gurtin, On second sound in materials with memory, Z. Ang. Math. Phys., 21 (1970), 232–241. https://doi.org/10.1007/BF01590647 doi: 10.1007/BF01590647
|
| [31] |
B. D. Coleman, W. J. Hrusa, D. R. Owen, Stability of equilibrium for a nonlinear hyperbolic system describing heat propagation by second sound in solids, Arch. Rational Mech. Anal., 94 (1986), 267–289. https://doi.org/10.1007/BF00279867 doi: 10.1007/BF00279867
|
| [32] |
M. A. Tarabek, On the existence of smooth solutions in one-dimensional nonlinear thermoelasticity with second sound, Quart. Appl. Math., 50 (1992), 727–742. https://doi.org/10.1090/qam/1193663 doi: 10.1090/qam/1193663
|
| [33] |
Y. Hu, R. Racke, Global existence versus blow-up for multi-dimensional hyperbolized compressible Navier-Stokes equations, SIAM J. Math. Anal., 55 (2023), 4788–4815. https://doi.org/10.1137/22M1497468 doi: 10.1137/22M1497468
|
| [34] |
B. Sharma, R. Kumar, Estimation of bulk viscosity of dilute gases using a nonequlibirium molecular dynamics approach, Phys. Rev. E, 100 (2019), 013309. https://doi.org/10.1103/PhysRevE.100.013309 doi: 10.1103/PhysRevE.100.013309
|
| [35] |
Y. Hu, R. Racke, Blow-up of solutions for relaxed compressible Navier–Stokes equations, J. Hyperbolic Differential Equations, 21 (2024), 129–141. https://doi.org/10.1142/S0219891624500048 doi: 10.1142/S0219891624500048
|
| [36] | H. Freistühler, A Galilei invariant version of Yong's model, arXiv: 2012.09059, 2020. |
| [37] |
H. Freistühler, Time-Asymptotic Stability for First-Order Symmetric Hyperbolic Systems of Balance Laws in Dissipative Compressible Fluid Dynamics, Quart. Appl. Math., 80 (2022), 597–606. https://doi.org/10.1090/qam/1620 doi: 10.1090/qam/1620
|
| [38] |
T. Ruggeri, Symmetric-hyperbolic system of conservative equations for a viscous heat conducting fluid, Acta Mech., 47 (1983), 167–183. https://doi.org/10.1007/BF01189206 doi: 10.1007/BF01189206
|
| [39] |
I. Müller, Zum paradoxen der Wärmeleitungstheorie, Z. Physik, 198 (1967), 329–344. https://doi.org/10.1007/BF01326412 doi: 10.1007/BF01326412
|
| [40] |
T. C. Sideris, Formation of singularities in solutions to nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 86 (1984), 369–381. https://doi.org/10.1007/BF00280033 doi: 10.1007/BF00280033
|
| [41] |
T. C. Sideris, Formation of singularities in three-dimensional compressible fluids, Commun. Math. Phys., 101 (1985), 475–485. https://doi.org/10.1007/BF01210741 doi: 10.1007/BF01210741
|
| [42] | S. Kawashima, Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, Doctoral Thesis, Kyoto University, 1983. |
| [43] | S. Jiang, R. Racke, Evolution equations in thermoelasticity, $\pi$ Monographs Surveys Pure Appl. Math., 112, Chapman & Hall/CRC, Boca Raton, 2000. |
| [44] | R. Racke, Lectures on Nonlinear Evolution Equations: Initial Value Problems, 2nd edition, Birkhäuser, Basel, 2015. https://doi.org/10.1007/978-3-319-21873-1 |
| [45] |
Y. J. Peng, L. Zhao, Global convergence to compressible full Navier–Stokes equations by approximation with Oldroyd-type constitutive laws, J. Math. Fluid Mech., 24 (2022), 17. https://doi.org/10.1007/s00021-022-00669-4 doi: 10.1007/s00021-022-00669-4
|
| [46] | S. Benzoni-Gavage, D. Serre, Multi-dimensional hyperbolic partial differential equations: first-order system and applications, Clarendon Press, Oxford, 2007. https://doi.org/10.1093/acprof: oso/9780199211234.001.0001 |
| [47] | M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston, 1991. https://doi.org/10.1007/978-1-4612-0431-2_5 |
| [48] |
A. V. Kazhikhov, Cauchy problem for viscous gas equations, Sib Math J, 23 (1982), 44–49. https://doi.org/10.1007/BF00971419 doi: 10.1007/BF00971419
|
| [49] |
Y. Hu, R. Racke, N. Wang, Formation of singularities for one-dimensional relaxed compressible Navier-Stokes equations, J. Differential Equations, 327 (2022), 145–165. https://doi.org/10.1016/j.jde.2022.04.028 doi: 10.1016/j.jde.2022.04.028
|
| [50] | H. Freistühler, Formation of singularities in solutions to Ruggeri's hyperbolic Navier-Stokes equations, arXiv: 2305.05426, 2023. |
| [51] | J. Bärlin, Formation of singularities in solutions to nonlinear hyperbolic systems with general sources, Nonlinear Anal. Real World Appl., 73 (2023). https://doi.org/10.1016/j.nonrwa.2023.103901 |