Correction

Correction: Time-dependent modulation of FoxO activity by HDAC inhibitor in oncogene-transformed E1A+Ras cells

  • Received: 07 September 2018 Accepted: 12 September 2018 Published: 13 September 2018
  • A correction on
    Time-dependent modulation of FoxO activity by HDAC inhibitor in oncogene-transformed E1A+Ras cells.
    by Alisa Morshneva, Olga Gnedina, Svetlana Svetlikova, Valery Pospelov, Maria Igotti. AIMS Genetics, 2018, 5(1): 41–52. Doi: 10.3934/genet.2018.1.41

    Citation: Alisa Morshneva, Olga Gnedina, Svetlana Svetlikova, Valery Pospelov, Maria Igotti. Correction: Time-dependent modulation of FoxO activity by HDAC inhibitor in oncogene-transformed E1A+Ras cells[J]. AIMS Genetics, 2018, 5(3): 191-191. doi: 10.3934/genet.2018.3.191

    Related Papers:

    [1] Margarida Camarinha . A natural 4th-order generalization of the geodesic problem. Electronic Research Archive, 2024, 32(5): 3396-3412. doi: 10.3934/era.2024157
    [2] Shanshan Liu, Abdenacer Makhlouf, Lina Song . The full cohomology, abelian extensions and formal deformations of Hom-pre-Lie algebras. Electronic Research Archive, 2022, 30(8): 2748-2773. doi: 10.3934/era.2022141
    [3] Frédéric Campana . Algebraicity of foliations on complex projective manifolds, applications. Electronic Research Archive, 2022, 30(4): 1187-1208. doi: 10.3934/era.2022063
    [4] Neşet Deniz Turgay . On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28(2): 951-959. doi: 10.3934/era.2020050
    [5] Qiang Li, Lili Ma . 1-parameter formal deformations and abelian extensions of Lie color triple systems. Electronic Research Archive, 2022, 30(7): 2524-2539. doi: 10.3934/era.2022129
    [6] Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214
    [7] Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061
    [8] Wen Teng, Xiansheng Dai . Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063
    [9] Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124
    [10] Hye Jeang Hwang, Gwang Hui Kim . Superstability of the $ p $-power-radical functional equation related to sine function equation. Electronic Research Archive, 2023, 31(10): 6347-6362. doi: 10.3934/era.2023321
  • A correction on
    Time-dependent modulation of FoxO activity by HDAC inhibitor in oncogene-transformed E1A+Ras cells.
    by Alisa Morshneva, Olga Gnedina, Svetlana Svetlikova, Valery Pospelov, Maria Igotti. AIMS Genetics, 2018, 5(1): 41–52. Doi: 10.3934/genet.2018.1.41


    Dubrovin [1] invented the notion of Frobenius manifolds in order to give geometrical expressions associated with WDVV equations. In 1999, Hertling and Manin [2] introduced the concept of F-manifolds as a relaxation of the conditions of Frobenius manifolds. Inspired by the investigation of describing F-manifolds algebraically, Dotsenko [3] defined F-manifold algebras in 2019 to relate operad F-manifold algebras to operad pre-Lie algebras. By definition, an F-manifold algebra is a triple $ (F, \cdot, [, ]) $ satisfying the following Hertling–Manin relation:

    $ H_{x_1\cdot x_2}(x_3,x_4) = x_1\cdot H_{x_2}(x_3,x_4) + x_2\cdot H_{x_1}(x_3,x_4),\ \ \ \forall x_1,x_2,x_3,x_4\in F, $

    where $ (F, \cdot) $ is a commutative associative algebra, $ (F, [, ]) $ is a Lie algebra, and $ H_{x_1}(x_2, x_3) = [x_1, x_2\cdot x_3]-[x_1, x_2]\cdot x_3-x_2\cdot [x_1, x_3] $.

    A vector space $ F $ admitting a linear map $ \cdot $ is called a pre-Lie algebra if the following holds:

    $ (x_1\cdot x_2)\cdot x_3-x_1\cdot (x_2\cdot x_3) = (x_2\cdot x_1)\cdot x_3-x_2\cdot (x_1\cdot x_3),\ \ \ \forall x_1,x_2,x_3\in F. $

    In recent years, pre-Lie algebras have attracted a great deal of attention in many areas of mathematics and physics (see [4,5,6,7] and so on).

    Liu et al. [8] introduced the concept of pre-F-manifold algebras. Note that these algebras allow us to construct F-manifold algebras. They also studied representations of F-manifold algebras and constructed many other examples of these algebras. The definition of super F-manifold algebras and related categories was stated by Cruz Morales et al. [9]. Chen et al. [10] discussed the classification of three-dimensional F-manifold algebras over the complex field $ \mathbb{C} $, which was based on the results of the classifications of low-dimensional commutative associative algebras and low-dimensional Lie algebras. Recently, the concept of Hom-F-manifold algebras and their properties have been given by Ben Hassine et al. [11].

    In this paper, we provide the concepts of an F-manifold color algebra and a pre-F-manifold color algebra, respectively. We extend some properties of F-manifold algebras that were obtained in [8] to the color case. In Section 2, we summarize some concepts of Lie color algebras, pre-Lie color algebras, and representations of $ \chi $-commutative associative algebras and Lie color algebras, respectively. In Section 3, we provide the concept of an F-manifold color algebra and then study its representation. The concept of a coherence F-manifold color algebra is also introduced, and it follows that an F-manifold color algebra admitting a non-degenerate symmetric bilinear form is a coherence F-manifold color algebra. The concept of pre-F-manifold color algebras is defined in Section 4, and using these algebras, one can construct F-manifold color algebras.

    Throughout this paper, we assume that $ k $ is a field with char $ k = 0 $ and all vector spaces are finite dimensional over $ k $.

    A preprint of this paper was posted on arXiv [12].

    The concept of a Lie color algebra was introduced in [13] and systematically studied in [14]. Since then, Lie color algebras have been studied from different aspects: Lie color ideals [15], generalized derivations [16], representations [17,18], $ T^{*} $-extensions of Lie color algebras [19,20] and hom-Lie color algebras [21], cohomology groups [22] and the color left-symmetric structures on Lie color algebras [23]. In this section, we collect some basic definitions that will be needed in the remainder of the paper. In the following, we assume that $ G $ is an abelian group and denote $ k \backslash \{0\} $ by $ k^{*} $.

    Definition 2.1. A skew-symmetric bicharacter is a map $ \chi :G\times G\rightarrow k^{*} $ satisfying

    (i) $ \chi(g_1, g_2) = \chi(g_2, g_1)^{-1} $,

    (ii) $ \chi(g_1, g_2)\chi(g_1, g_3) = \chi(g_1, g_2+g_3) $,

    (iii) $ \chi(g_1, g_3)\chi(g_2, g_3) = \chi(g_1+g_2, g_3) $,

    for all $ g_1, g_2, g_3\in G $.

    By the definition, it is obvious that $ \mbox{for any}\; a\in G $, we have $ \chi(a, 0) = \chi(0, a) = 1 $ and $ \chi(a, a) = \pm 1 $.

    Definition 2.2. A pre-Lie color algebra is the $ G $-graded vector space

    $ F = \bigoplus\limits_{g\in G }F_{g} $

    with a bilinear multiplication operation $ \cdot $ satisfying

    1) $ F_{g_1}\cdot F_{g_2}\subseteq F_{g_1+g_2}, $

    2) $ (x_1\cdot x_2)\cdot x_3-x_1\cdot (x_2\cdot x_3) = \chi(g_1, g_2)((x_2\cdot x_1)\cdot x_3-x_2\cdot (x_1\cdot x_3)), $

    for all $ x_1\in F_{g_1}, x_2\in F_{g_2}, x_3\in F_{g_3} $, and $ g_1, g_2, g_3\in G $.

    Definition 2.3. A Lie color algebra is the $ G $-graded vector space

    $ F = \bigoplus\limits_{g\in G }F_{g} $

    with a bilinear multiplication $ [, ] $ satisfying

    (i) $ [F_{g_1}, F_{g_2}]\subseteq F_{g_1+g_2}, $

    (ii) $ [x_1, x_2] = -\chi(g_1, g_2)[x_2, x_1], $

    (iii) $ \chi(g_3, g_1)[x_1, [x_2, x_3]]+ \chi(g_1, g_2)[x_2, [x_3, x_1]]+ \chi(g_2, g_3)[x_3, [x_1, x_2]] = 0, $

    for all $ x_1\in F_{g_1}, x_2\in F_{g_2}, x_3\in F_{g_3} $, and $ g_1, g_2, g_3\in G $.

    Remark Given a pre-Lie algebra $ (F, \cdot) $, if we define the bracket $ [x_1, x_2] = x_1\cdot x_2-x_2\cdot x_1 $, then $ (F, [, ]) $ becomes a Lie algebra. Similarly, one has a pre-Lie color algebra's version, that is to say, a pre-Lie color algebra $ (A, \cdot, \chi) $ with the bracket $ [x_1, x_2] = x_1\cdot x_2-\chi(x_1, x_2)x_2\cdot x_1 $ becomes a Lie color algebra.

    Let the vector space $ F $ be $ G $-graded. An element $ x\in F $ is called homogeneous with degree $ g\in G $ if $ x\in F_{g} $. In the rest of this paper, for any $ x_1\in F_{g_1}, x_2\in F_{g_2}, x_3\in F_{g_3} $, we will write $ \chi(x_1, x_2) $ instead of $ \chi(g_1, g_2) $, $ \chi(x_1+x_2, x_3) $ instead of $ \chi(g_1 + g_2, g_3) $, and so on. Furthermore, when we write the skew-symmetric bicharacter $ \chi(x_1, x_2) $, it is always assumed that the elements $ x_1 $ and $ x_2 $ are both homogeneous.

    For a $ \chi $-commutative associative algebra $ (F, \cdot, \chi) $, we mean that $ (F, \cdot) $ is a $ G $-graded associative algebra with the following $ \chi $-commutativity:

    $ x_1\cdot x_2 = \chi(x_1, x_2)x_2\cdot x_1 $

    for all $ x_1\in F_{g_1} $ and $ x_2\in F_{g_2}. $

    Now, we assume that the vector space $ V $ is $ G $-graded. A representation $ (V, \mu) $ of the algebra $ (F, \cdot, \chi) $ is a linear map $ \mu:F\longrightarrow {\text{End}}_{k}(V)_{G}: = \bigoplus _{g\in G}{\text{End}}_{k}(V)_{g} $ satisfying

    $ \mu(x_2)v\in V_{g_1 + g_2},\ \ \ \ \mu(x_2\cdot x_3) = \mu(x_2)\circ\mu(x_3) $

    for all $ v\in V_{g_1}, x_2\in F_{g_2}, x_3\in F_{g_3}, $ where $ {\text{End}}_{k}(V)_{g}: = \{f\in {\text{End}}_{k}(V)| f(V_{h})\subseteq V_{h+g}\} $. Given a Lie color algebra $ (F, [, ], \chi) $, its representation $ (V, \rho) $ is a linear map $ \rho:F\longrightarrow {\text{End}}_{k}(V)_{G} $ satisfying

    $ \rho(x_2)v\in V_{g_1 + g_2},\ \ \ \ \rho([x_2, x_3]) = \rho(x_2)\circ\rho(x_3)-\chi(x_2, x_3)\rho(x_3)\circ \rho(x_2) $

    for all $ v\in V_{g_1}, x_2\in F_{g_2}, x_3\in F_{g_3}. $

    The dual space $ V^* = \bigoplus_{g\in G }V^*_{g} $ is also $ G $-graded, where

    $ V^*_{g_1} = \{\xi \in V^*| \xi(x) = 0, g_2\neq -g_1, \forall x\in V_{g_2}, g_2\in G \}. $

    Define a linear map $ \mu^*:F\longrightarrow {\text{End}}_{k}(V^*)_{G} $ satisfying

    $ \mu^*(x_1)\xi\in V^*_{g_1+g_3},\ \ \ \ \langle \mu^*(x_1)\xi,v\rangle = -\chi(x_1, \xi)\langle \xi,\mu(x_1)v\rangle $

    for all $ x_1\in F_{g_1}, v\in V_{g_2}, \xi\in V^*_{g_3}. $

    It is easy to see that

    1) If $ (V, \mu) $ is one representation of the algebra $ (F, \cdot, \chi) $, then $ (V^*, -\mu^*) $ is also its representation;

    2) If $ (V, \mu) $ is one representation of the algebra $ (F, [, ], \chi) $, then $ (V^*, \mu^*) $ is also its representation.

    The concept of F-manifold color algebras is presented, and some results in [8] to the color case are established.

    Definition 3.1. Let $ (F, [, ], \chi) $ be a Lie color algebra and $ (F, \cdot, \chi) $ be a $ \chi $-commutative associative algebra. A quadruple $ (F, \cdot, [, ], \chi) $ is called an F-manifold color algebra if the following holds for any homogeneous element $ x_1, x_2, x_3, x_4\in F $,

    $ Hx1x2(x3,x4)=x1Hx2(x3,x4)+χ(x1,x2)x2Hx1(x3,x4),
    $
    (3.1)

    where $ H_{x_1}(x_2, x_3) $ is the color Leibnizator given by

    $ Hx1(x2,x3)=[x1,x2x3][x1,x2]x3χ(x1,x2)x2[x1,x3].
    $
    (3.2)

    Remark It is noticed that if we set $ G = \{0\} $ and $ \chi(0, 0) = 1 $, then $ (F, \cdot, [, ], \chi) $ is exactly an F-manifold algebra.

    Definition 3.2. Let $ (F, \cdot, [, ], \chi) $ be an F-manifold color algebra, $ (V, \mu) $ be a representation of the algebra $ (F, \cdot, \chi) $, and $ (V, \rho) $ be a representation of the algebra $ (F, [, ], \chi) $. A representation of $ (F, \cdot, [, ], \chi) $ is a triple $ (V, \rho, \mu) $ if the following holds for any homogeneous element $ x_{1}, x_{2}, x_{3}\in F $,

    $ M1(x1x2,x3)=μ(x1)M1(x2,x3)+χ(x1,x2)μ(x2)M1(x1,x3),μ(Hx1(x2,x3))=χ(x1,x2+x3)M2(x2,x3)μ(x1)μ(x1)M2(x2,x3),
    $

    where the linear maps $ M_1 $ and $ M_2 $ from $ F\otimes F $ to $ {\text{End}}_{k}(V)_{G} $ are given by

    $ M1(x1,x2)=ρ(x1)μ(x2)χ(x1,x2)μ(x2)ρ(x1)μ([x1,x2]),
    $
    (3.3)
    $ M2(x1,x2)=μ(x1)ρ(x2)+χ(x1,x2)μ(x2)ρ(x1)ρ(x1x2).
    $
    (3.4)

    Example 3.1. Let $ (F, \cdot, [, ], \chi) $ be an F-manifold color algebra. We have that $ (F, {\text{ad}}, \mathcal{L}) $ is a representation of $ (F, \cdot, [, ], \chi) $, where $ {\text{ad}}: F\longrightarrow {\text{End}}_{k}(F)_{G} $ is given by

    $ {\text{ad}}_{x_1}x_2 = [x_1,x_2] $

    and the left multiplication operator $ \mathcal{L}:F\longrightarrow {\text{End}}_{k}(F)_{G} $ is given by

    $ \mathcal{L}_{x_1}x_2 = x_1\cdot x_2 $

    for any homogeneous element $ x_1, x_2\in F $.

    Proof. Note that $ (F, \mathcal{L}) $ is a representation of the algebra $ (F, \cdot, \chi) $ and $ (F, {\text{ad}}) $ is a representation of the algebra $ (F, [, ], \chi) $.

    Now, for any homogeneous element $ x_{1}, x_{2}, x_{3}, x_{4}\in F $, we obtain

    $ M1(x1,x2)x3=(adx1Lx2χ(x1,x2)Lx2adx1L[x1,x2])x3=[x1,x2x3]χ(x1,x2)x2[x1,x3][x1,x2]x3=Hx1(x2,x3).
    $

    Thus

    $ Hx1x2(x3,x4)=x1Hx2(x3,x4)+χ(x1,x2)x2Hx1(x3,x4)
    $

    implies the equation

    $ M1(x1x2,x3)x4=Lx1M1(x2,x3)x4+χ(x1,x2)Lx2M1(x1,x3)x4.
    $

    On the other hand, we obtain

    $ M2(x2,x3)x4=(Lx2adx3+χ(x2,x3)Lx3adx2adx2x3)x4=x2[x3,x4]+χ(x2,x3)x3[x2,x4][x2x3,x4]=χ(x3,x4)x2[x4,x3]χ(x2,x4)χ(x3,x4)[x4,x2]x3+χ(x2+x3,x4)[x4,x2x3]=χ(x2+x3,x4)([x4,x2x3][x4,x2]x3χ(x4,x2)x2[x4,x3])=χ(x2+x3,x4)Hx4(x2,x3).
    $

    Thus

    $ χ(x1,x2+x3)M2(x2,x3)Lx1x4Lx1M2(x2,x3)x4=χ(x1,x2+x3)M2(x2,x3)(x1x4)xM2(x2,x3)x4=χ(x1,x2+x3)χ(x2+x3,x1+x4)Hx1x4(x2,x3)χ(x2+x3,x4)x1Hx4(x2,x3)=χ(x2+x3,x4){Hx1x4(x2,x3)xHx4(x2,x3)}=χ(x2+x3,x4)χ(x1,x4)x4Hx1(x2,x3)=χ(x1+x2+x3,x4)x4Hx1(x2,x3)=Hx1(x2,x3)x4.
    $

    Hence, the proof is completed.

    Let $ (V, \rho, \mu) $ be a representation of the F-manifold color algebra $ (F, \cdot, [, ], \chi) $. Note that $ F\oplus V $ is a G-graded vector space. In the following, if we write $ x+v\in F\oplus V $ as a homogeneous element for $ x\in F, v\in V $, it means that $ x $ and $ v $ are of the same degree as $ x+v $. Now assume that $ x_1+v_1 $ and $ x_2+v_2 $ are both homogeneous elements in $ F\oplus V $. Define

    $ [x_1+v_1,x_2+v_2]_\rho = [x_1,x_2]+\rho(x_1)v_2-\chi(x_{1},x_{2})\rho(x_2)v_1. $

    Then we obtain that $ (F\oplus V, [, ]_\rho, \chi) $ is a Lie color algebra. Moreover, define

    $ (x_1+v_1)\cdot_{\mu}(x_2+v_2) = x_1\cdot x_2+\mu(x_1)v_2+\chi(x_{1},x_{2})\mu(x_2)v_1. $

    It is easy to see that $ (F\oplus V, \cdot_\mu, \chi) $ is a $ \chi $-commutative associative algebra. In fact, we have

    Proposition 3.2. With the above notations, $ (F\oplus V, \cdot_{\mu}, [, ]_\rho, \chi) $ is an F-manifold color algebra.

    Proof. It is sufficient to check that the relation in Definition 3.1 holds.

    For any homogeneous element $ x_1+v_1, x_2+v_2, x_3+v_3\in F\oplus V $, we have

    $ Hx1+v1(x2+v2,x3+v3)=[x1+v1,(x2+v2)μ(x3+v3)]ρ[x1+v1,x2+v2]ρμ(x3+v3)χ(x1,x2)(x2+v2)μ[x1+v1,x3+v3]ρ=[x1,x2x3]+ρ(x1){μ(x2)v3+χ(x2,x3)μ(x3)v2}χ(x1,x2+x3)ρ(x2x3)v1III.
    $

    where

    $ I={[x1,x2]+ρ(x1)v3χ(x1,x2)ρ(x2)v1}μ(x3+v3)=[x1,x2]x3+μ([x1,x2])v3+χ(x1+x2,x3)μ(x3){ρ(x1)v2χ(x1,x2)ρ(x2)v1},
    $

    and

    $ II=χ(x1,x2)(x2+v2)μ{[x1,x3]+ρ(x1)v3χ(x1,x3)ρ(x3)v1}=χ(x1,x2){x2[x1,x3]+μ(x2)(ρ(x1)v3χ(x1,x3)ρ(x3)v1)+χ(x2,x1+x3)μ([x1,x3])v2}.
    $

    Thus

    $ Hx1+v1(x2+v2,x3+v3)=Hx1(x2,x3)+{ρ(x1)μ(x2)μ([x1,x2])χ(x1,x2)μ(x2)ρ(x1)}v3+{χ(x2,x3)ρ(x1)μ(x3)χ(x1+x2,x3)μ(x3)ρ(x1)χ(x1,x2)χ(x2,x1+x3)μ([x1,x3])}v2+{χ(x1,x2+x3)ρ(x2x3)+χ(x1+x2,x3)χ(x1,x2)μ(x3)ρ(x2)+χ(x1,x2)χ(x1,x3)μ(x2)ρ(x3)}v1=Hx1(x2,x3)+M1(x1,x2)v3+χ(x2,x3)M1(x1,x3)v2+χ(x1,x2+x3)M2(x2,x3)v1.
    $

    Hence, for any homogeneous element $ x_4+v_4\in F\oplus V $, we have

    $ H(x1+v1)μ(x2+v2)(x3+v3,x4+v4)=Hx1x2+μ(x1)v2+χ(x1,x2)μ(x2)v1(x3+v3,x4+v4)=Hx1x2(x3,x4)+M1(x1x2,x3)v4+χ(x3,x4)M1(x1x2,x4)v3+χ(x1+x2,x3+x4)M2(x3,x4)(μ(x1)v2+χ(x1,x2)μ(x2)v1).
    $

    On the other hand

    $ (x1+v1)μHx2+v2(x3+v3,x4+v4)=(x1+v1)μ{Hx2(x3,x4)+M1(x2,x3)v4+χ(x3,x4)M1(x2,x4)v3+χ(x2,x3+x4)M2(x3,x4)v2}=x1Hx2(x3,x4)+μ(x1){M1(x2,x3)v4+χ(x3,x4)M1(x2,x4)v3+χ(x2,x3+x4)M2(x3,x4)v2}+χ(x1,x2+x3+x4)μ(Hx2(x3,x4))v1,
    $

    and

    $ χ(x1,x2)(x2+v2)μHx1+v1(x3+v3,x4+v4)=χ(x1,x2){x2Hx1(x3,x4)+μ(x2){M1(x1,x3)v4+χ(x3,x4)M1(x1,x4)v3+χ(x1,x3+x4)M2(x3,x4)v1}+χ(x2,x1+x3+x4)μ(Hx1(x3,x4))v2}.
    $

    Thus

    $ (x1+v1)μHx2+v2(x3+v3,x4+v4)+χ(x1,x2)(x2+v2)μHx1+v1(x3+v3,x4+v4)=x1Hx2(x3,x4)+χ(x1,x2)x2Hx1(x3,x4)+{μ(x1)M1(x2,x3)+χ(x1,x2)μ(x2)(M1(x1,x3))}v4+{χ(x3,x4)μ(x1)M1(x2,x4)+χ(x1,x2)χ(x3,x4)μ(x2)M1(x1,x4)}v3+{χ(x2,x3+x4)μ(x1)M2(x3,x4)+χ(x1,x2)χ(x2,x1+x3+x4)μ(Hx1(x3,x4))}v2+χ(x1,x2+x3+x4){μ(x2)M2(x3,x4)+μ(Hx2(x3,x4))}v1=H(x1+v1)μ(x2+v2)(x3+v3,x4+v4),
    $

    which satisfies the relation in Definition 3.1. Hence, the conclusion follows immediately.

    It is noticed that, given a representation $ (V, \rho, \mu) $ of an F-manifold algebra, Liu, Sheng, and Bai [8] asserted that $ (V^*, \rho^*, -\mu^*) $ may not be its representation. Now, assume that $ (F, \cdot, [, ], \chi) $ is an F-manifold color algebra, together with a representation $ (V, \mu) $ of the algebra $ (F, \cdot, \chi) $ and a representation $ (V, \rho) $ of the algebra $ (F, [, ], \chi) $. In order to prove the following proposition associated with an F-manifold color algebra, we need to define the linear map $ M_3 $ from $ F\otimes F $ to $ {\text{End}}_{k}(V)_{G} $ by

    $ M3(x1,x2)=χ(x1,x2)ρ(x2)μ(x1)ρ(x1)μ(x2)+ρ(x1x2),
    $

    and the linear maps $ M_1^{*}, M_2^{*} $ from $ F\otimes F $ to $ {\text{End}}_{k}(V^*)_{G} $ by

    $ M1(x1,x2)=ρ(x1)μ(x2)+χ(x1,x2)μ(x2)ρ(x1)+μ([x1,x2]),M2(x1,x2)=μ(x1)ρ(x2)χ(x1,x2)μ(x2)ρ(x1)ρ(x1x2)
    $

    for any homogeneous element $ x_1, x_2\in F $.

    Proposition 3.3. With the above notations, assume that for any homogeneous element $ x_1, x_2, x_3\in F $, the following holds:

    $ M1(x1x2,x3)=χ(x1,x2+x3)M1(x2,x3)μ(x1)+χ(x2,x3)M1(x1,x3)μ(x2),μ(Hx1(x2,x3))=χ(x1,x2+x3)M3(x2,x3)μ(x1)+μ(x1)M3(x2,x3).
    $

    Then $ (V^*, \rho^*, -\mu^*) $ is a representation of $ (F, \cdot, [, ], \chi) $.

    Proof. Suppose that $ x_1, x_2, x_3\in F, v\in V, \xi\in V^* $ are all homogeneous elements. First, we claim the following two identities:

    $ M1(x1,x2)(ξ),v=ξ,χ(x1+x2,ξ)M1(x1,x2)v;M2(x1,x2)(ξ),v=ξ,χ(x1+x2,ξ)M3(x1,x2)v.
    $

    The claims follow from some direct calculations, respectively:

    $ M1(x1,x2)(ξ),v=(ρ(x1)μ(x2)+χ(x1,x2)μ(x2)ρ(x1)+μ([x1,x2]))ξ,v=χ(x1,x2+ξ)μ(x2)ξ,ρ(x1)vχ(x1,x2)χ(x2,x1+ξ)(ρ(x1)ξ,μ(x2)vχ(x1+x2,ξ)ξ,μ([x1,x2])v=χ(x1,x2)χ(x1+x2,ξ)ξ,μ(x2)ρ(x1)v+χ(x2,ξ)χ(x1,ξ)ξ,ρ(x1)μ(x2)vχ(x1+x2,ξ)ξ,μ([x1,x2])v=ξ,χ(x1+x2,ξ){χ(x1,x2)μ(x2)ρ(x1)+ρ(x1)μ(x2)μ([x1,x2])}v=ξ,χ(x1+x2,ξ)M1(x1,x2)v,
    $

    and

    $ M2(x1,x2)(ξ),v={μ(x1)ρ(x2)χ(x1,x2)μ(x2)ρ(x1)ρ(x1x2)}ξ,v=χ(x1,x2+ξ)χ(x2,ξ)ξ,ρ(x2)μ(x1)vχ(x2,ξ)χ(x1,ξ)ξ,ρ(x1)μ(x2)v+χ(x1+x2,ξ)ξ,ρ(x1x2)v=ξ,χ(x1+x2,ξ){χ(x1,x2)ρ(x2)μ(x1)ρ(x1)μ(x2)+ρ(x1x2)}v=ξ,χ(x1+x2,ξ)M3(x1,x2)v.
    $

    With the above identities, we have

    $ {M1(x1x2,x3)+μ(x1)M1(x2,x3)+χ(x1,x2)μ(x2)M1(x1,x3)}ξ,v=ξ,χ(x1+x2+x3,ξ)M1(x1x2,x3)vχ(x1,x2+x3+ξ)χ(x2+x3,ξ)ξ,M1(x2,x3)μ(x1)vχ(x1+x3,ξ)χ(x2,x3+ξ)ξ,M1(x1,x3)μ(x2)v=χ(x1+x2+x3,ξ)ξ,{M1(x1x2,x3)χ(x1,x2+x3)M1(x2,x3)μ(x1)χ(x2,x3)M1(x1,x3)μ(x2)}v=0,
    $

    and

    $ {μ(Hx1(x2,x3))+χ(x1,x2+x3)M2(x2,x3)μ(x1)μ(x1)M2(x2,x3)}ξ,v=χ(x1+x2+x3,ξ)ξ,μ(Hx1(x2,x3))v+χ(x1,x2+z)χ(x2+x3,x1+ξ)μ(x1)ξ,M3(x2,x3)v+χ(x1,x2+x3+ξ)M2(x2,x3)ξ,μ(x1)v=χ(x1+x2+x3,ξ)ξ,μ(Hx1(x2,x3))vχ(x2+x3,ξ)χ(x,ξ)ξ,μ(x1)M3(x2,x3)v+χ(x,x2+x3+ξ)χ(x2+x3,ξ)ξ,M3(x2,x3)μ(x1)v=χ(x1+x2+x3,ξ)ξ,{μ(Hx1(x2,x3))μ(x1)M3(x2,x3)+χ(x1,x2+x3)M3(x2,x3)μ(x1)}v=0.
    $

    Therefore, the conclusion follows immediately from the hypothesis and Definition 3.2.

    Given an F-manifold color algebra $ (F, \cdot, [, ], \chi) $, we define the linear map $ T $ from $ F\otimes F $ to $ {\text{End}}_{k}(F)_{G} $ by

    $ T(x_1,x_2)(x_3) = -\chi(x_1,x_2)[x_2, x_1\cdot x_3]-[x_1,x_2\cdot x_3]+[x_1\cdot x_2, x_3] $

    for any homogeneous elements $ x_1, x_2, x_3\in F $.

    Definition 3.3. An F-manifold color algebra $ (F, \cdot, [, ], \chi) $ is called a coherence one if for any homogeneous elements $ x_1, x_2, x_3, x_4\in F $, the following hold:

    $ Hx1x2(x3,x4)=χ(x1,x2+x3)Hx2(x3,x1x4)+χ(x2,x3)Hx1(x3,x2x4),Hx1(x2,x3)x4=χ(x1,x2+x3)T(x2,x3)(x1x4)+x1T(x2,x3)(x4).
    $

    Proposition 3.4. Assume that $ (, ) $ is a non-degenerate symmetric bilinear form on the F-manifold color algebra $ (F, \cdot, [, ], \chi) $ satisfying

    $ (x1x2,x3)=(x1,x2x3)  and  ([x1,x2],x3)=(x1,[x2,x3])
    $

    for any homogeneous elements $ x_1, x_2, x_3\in F $. Then $ (F, \cdot, [, ], \chi) $ is a coherence F-manifold color algebra.

    Proof. First, we prove that

    $ (H_{x_1}(x_2,x_3),x_4) = \chi(x_1+x_2,x_3)(x_3, H_{x_1}(x_2,x_4)) $

    for any homogeneous elements $ x_1, x_2, x_3, x_4\in F $.

    In fact, we obtain

    $ (Hx1(x2,x3),x4)=([x1,x2x3][x1,x2]x3χ(x1,x2)x2[x1,x3],x4)=χ(x1,x2+x3)([x2x3,x1],x4)χ(x1+x2,x3)(x3,[x1,x2]x4)χ(x1,x2)χ(x2,x1+x3)([x1,x3],x2x4)=χ(x1,x2+x3)(x2x3,[x1,x4])χ(x1+x2,x3)(x3,[x1,x2]x4)+χ(x2,x3)χ(x1,x3)(x3,[x1,x2x4])=χ(x1,x2+x3)χ(x2,x3)(x3,x2[x1,x4])χ(x1+x2,x3)(x3,[x1,x2]x4)+χ(x1+x2,x3)(x3,[x1,x2x4])=χ(x1+x2,x3)(x3,χ(x1,x2)x2[x1,x4][x1,x2]x4+[x1,x2x4])=χ(x1+x2,x3)(x3,Hx1(x2,x4)).
    $

    By the above relation, for every homogeneous element $ x_1, x_2, x_3, w_1, w_2\in F $, we have

    $ (Hx1x2(x3,w1)χ(x1,x2+x3)Hx2(x3,x1w1)χ(x2,x3)Hx1(x3,x2w1),w2)=χ(x1+x2+x3,w1)(w1,Hx1x2(x3,w2))χ(x1,x2+x3)χ(x2+x3,x1+w1)(x1w1,Hx2(x3,w2))χ(x2,x3)χ(x1+x3,x2+w1)(x2w1,Hx1(x3,w2))=χ(x1+x2+x3,w1)(w1,Hx1x2(x3,w2))χ(x1,x2+x3)χ(x2+x3,x1+w1)χ(x1,w1)(w1,x1Hx2(x3,w2))χ(x2,x3)χ(x1+x3,x2+w1)χ(x2,w1)(w1,x2Hx1(x3,w2))=χ(x1+x2+x3,w1)(w1,Hx1x2(x3,w2))χ(x1+x2+x3,w1)(w1,x1Hx2(x3,w2))χ(x2,x3)χ(x1+x3,x2)χ(x1+x2+x3,w1)(w1,x2Hx1(x3,w2))=χ(x1+x2+x3,w1)(w1,Hx1x2(x3,w2))χ(x1+x2+x3,w1)(w1,x1Hx2(x3,w2))χ(x1,x2)χ(x1+x2+x3,w1)(w1,x2Hx1(x3,w2))=χ(x1+x2+x3,w1)(w1,Hx1x2(x3,w2)x1Hx2(x3,w2)χ(x1,x2)x2Hx1(x3,w2))=0.
    $

    We claim the following identity:

    $ (T(x_2,x_3)(w_1), w_2) = \chi(x_2+x_3, w_1+w_2)(w_1, H_{w_2}(x_2,x_3)). $

    In fact, we have

    $ (T(x2,x3)(w1),w2)=(χ(x2,x3)[x3,x2w1][x2,x3w1]+[x2x3,w1],w2)=χ(x2,x3)χ(x3,x2+w1)(x2w1,[x3,w2])+χ(x2,x3+w1)(x3w1,[x2,w2])χ(x2+x3,w1)(w1,[x2x3,w2])=χ(x3,w1)χ(x2,w1)(w1,x2[x3,w2])+χ(x2,x3+w1)χ(x3,w1)(w1,x3[x2,w2])χ(x2+x3,w1)(w1,[x2x3,w2])=χ(x2+x3,w1)(w1,x2[x3,w2])+χ(x2+x3,w1)χ(x2,x3)(w1,x3[x2,w2])χ(x2+x3,w1)(w1,[x2x3,w2])=χ(x2+x3,w1)(w1,x2[x3,w2]+χ(x2,x3)x3[x2,w2][x2x3,w2])=χ(x2+x3,w1)(w1,χ(x2+x3,w2)Hw2(x2,x3))=χ(x2+x3,w1+w2)(w1,Hw2(x2,x3)).
    $

    With the above identity, we have

    $ (Hx1(x2,x3)w1+χ(x1,x2+x3)T(x2,x3)(x1w1)x1T(x2,x3)(w1),w2)=χ(x1+x2+x3,w1)(w1,Hx1(x2,x3)w2)+χ(x1,x2+x3)χ(x2+x3,x1+w1+w2)(x1w1,Hw2(x2,x3))χ(x1,x2+x3+w1)(T(x2,x3)w1,x1w2)=χ(x1+x2+x3,w1)(w1,Hx1(x2,x3)w2)+χ(x1,w1)χ(x2+x3,w1+w2)(w1,x1Hw2(x2,x3))χ(x1,x2+x3+w1)χ(x2+x3,x+w1+w2)(w1,Hx1w2(x2,x3))=χ(x1+x2+x3,w1)(w1,Hx1(x2,x3)w2)+χ(x1,w1)χ(x2+x3,w1+w2)(w1,x1Hw2(x2,x3))χ(x1,w1)χ(x2+x3,w1+w2)(w1,Hx1w2(x2,x3))=χ(x1+x2+x3,w1)(w1,Hx1(x2,x3)w2+χ(x2+x3,w2)x1Hw2(x2,x3)χ(x2+x3,w2)Hx1w2(x2,x3))=χ(x1+x2+x3,w1)(w1,Hx1(x2,x3)w2+χ(x2+x3,w2)x1Hw2(x2,x3)(Hx1(x2,x3)w2+χ(x2+x3,w2)x1Hw2(x2,x3)))=0.
    $

    Then, according to the assumption that the symmetric bilinear form $ (, ) $ is non-degenerate, the conclusion is obtained.

    The concept of pre-F-manifold color algebras is presented in this section, and using these algebras we construct F-manifold color algebras.

    Definition 4.1. Let the vector space $ F $ be G-graded and $ \bullet $ be a bilinear multiplication operator on $ F $. A triple $ (F, \bullet, \chi) $ is called a Zinbiel color algebra if the following hold:

    (i) $ F_{g_1}\bullet F_{g_2}\subseteq F_{g_1+g_2}, $

    (ii) $ x_1\bullet(x_2\bullet x_3) = (x_1\bullet x_2)\bullet x_3+\chi(x_1, x_2)(x_2\bullet x_1)\bullet x_3, $

    for any homogeneous elements $ x_1\in F_{g_1}, x_2\in F_{g_2}, x_3\in F_{g_3} $, and $ g_1, g_2, g_3\in G $.

    Given a Zinbiel color algebra $ (F, \bullet, \chi) $, define

    $ x1x2=x1x2+χ(x1,x2)x2x1,
    $
    (4.1)

    for any homogeneous elements $ x_1, x_2\in F $. Then it is not difficult to see that the algebra $ (F, \cdot, \chi) $ is both $ \chi $-commutative and associative.

    Define a linear map $ \mathfrak L: F\longrightarrow {\text{End}}_{k}(F)_{G} $ by

    $ Lx1x2=x1x2,
    $
    (4.2)

    for any homogeneous elements $ x_1, x_2\in F $. Then one has the following result.

    Lemma 4.1. With the above notations, $ (F, \mathfrak L) $ is a representation of $ (F, \cdot, \chi) $.

    Proof. According to the definition of $ \mathfrak L $, we get

    $ \mathfrak L_{ x_1\cdot x_2}x_3 = (x_1\cdot x_2) \bullet x_3 = (x_1\bullet x_2+\chi(x_1, x_2)(x_2\bullet x_1))\bullet x_3 = x_1\bullet (x_2\bullet x_3) = \mathfrak L_{x_1} \mathfrak L_{x_2}x_3. $

    Thus, the proof follows.

    Let $ (F, \bullet, \chi) $ be a Zinbiel color algebra and $ (F, \ast, \chi) $ be a pre-Lie color algebra. For any homogeneous elements $ x_1, x_2, x_3\in F, $ define two linear maps $ Q_1, Q_2:F\otimes F\otimes F\longrightarrow F $ by

    $ Q1(x1,x2,x3)=x1(x2x3)χ(x1,x2)x2(x1x3)[x1,x2]x3,Q2(x1,x2,x3)=x1(x2x3)+χ(x1,x2)x2(x1x3)(x1x2)x3,
    $

    where the operation $ \cdot $ is given by (4.1) and the bracket $ [, ] $ is given by

    $ [x1,x2]=x1x2χ(x1,x2)x2x1.
    $
    (4.3)

    Definition 4.2. With the above notations, $ (F, \bullet, \ast, \chi) $ is called a pre-$ F $-manifold color algebra if the following hold

    $ (Q1(x1,x2,x3)+χ(x2,x3)Q1(x1,x3,x2)+χ(x1,x2+x3)Q2(x2,x3,x1))x4=χ(x1,x2+x3)Q2(x2,x3,x1x4)x1Q2(x2,x3,x4),
    $
    $ Q_1(x_1\cdot x_2,x_3,x_4) = x_1\bullet Q_1(x_2,x_3,x_4)+\chi(x_1,x_2)x_2\bullet Q_1(x_1,x_3,x_4) $

    for any homogeneous elements $ x_1, x_2, x_3, x_4\in F $.

    Since $ (F, [, ], \chi) $ is a Lie color algebra, it is known that $ (F, L) $ is a representation of $ (F, [, ], \chi) $ if one defines the linear map $ L: F\longrightarrow {\text{End}}_{k}(F)_{G} $ by

    $ Lx1x2=x1x2,
    $
    (4.4)

    for any homogeneous elements $ x_1, x_2\in F $.

    Theorem 4.2. Suppose that $ (F, \bullet, \ast, \chi) $ is a pre-F-manifold color algebra; then

    (1) $ (F, \cdot, [, ], \chi) $ is an F-manifold color algebra, where the operation $ \cdot $ is given by (4.1) and the bracket $ [, ] $ is given by (4.3);

    (2) $(F; L, \mathfrak L) $ is a representation of $ (F, \cdot, [, ], \chi) $, where the map $ L $ is given by (4.4) and the map $ \mathfrak L $ is given by (4.2).

    Proof. (1) It is known that $ (F, [, ], \chi) $ is a Lie color algebra and $ (F, \cdot, \chi) $ is a $ \chi $-commutative associative algebra. Thus, we only need to prove that the relation in Definition 3.1 is satisfied.

    Assume that $ x_1, x_2, x_3, x_4\in F $ are all homogeneous elements. We claim the following identity:

    $ Hx1(x2,x3)=Q1(x1,x2,x3)+χ(x2,x3)Q1(x1,x3,x2)+χ(x1,x2+x3)Q2(x2,x3,x1).
    $
    (4.5)

    In fact, we have

    $ Hx1(x2,x3)=[x1,x2x3][x1,x2]x3χ(x1,x2)x2[x1,x3]=x1(x2x3)χ(x1,x2+x3)(x2x3)x1[x1,x2]x3χ(x+x2,x3)x3[x1,x2]χ(x1,x2){x2[x1,x3]+χ(x2,x1+x3)[x1,x3]x2}=x1(x2x3)χ(x1,x2)x2(x1x3)[x1,x2]x3+χ(x2,x3){x1(x3x2)χ(x1,x3)x3(x1x2)[x1,x3]x2}+χ(x1,x2+x3){x2(x3x1)+χ(x2,x3)x3(x2x1)(x2x3)x1}=Q1(x1,x2,x3)+χ(x2,x3)Q1(x1,x3,x2)+χ(x1,x2+x3)Q2(x2,x3,x1).
    $

    With the above identity, we obtain

    $ Hx1x2(x3,x4)x1Hx2(x3,x4)χ(x1,x2)x2Hx1(x3,x4)=Q1(x1x2,x3,x4)+χ(x3,x4)Q1(x1x2,x4,x3)+χ(x1+x2,x3+x4)Q2(x3,x4,x1x2)x1{Q1(x2,x3,x4)+χ(x3,x4)Q1(x2,x4,x3)+χ(x2,x3+x4)Q2(x3,x4,x2)}χ(x1,x2)x2{Q1(x1,x3,x4)+χ(x3,x4)Q1(x1,x4,x3)+χ(x1,x3+x4)Q2(x3,x4,x1)}={Q1(x1x2,x3,x4)x1Q1(x2,x3,x4)χ(x1,x2)x2Q1(x1,x3,x4)}+{χ(x3,x4)Q1(x1x2,x4,x3)χ(x3,x4)x1Q1(x2,x4,x3)χ(x1,x2)χ(x3,x4)x2Q1(x1,x4,x3)}+{χ(x1+x2,x3+x4)Q2(x3,x4,x1x2)χ(x1,x2)χ(x2,x1+x3+x4)Q1(x1,x3,x4)x2χ(x1,x2)χ(x3,x4)χ(x2,x1+x3+x4)Q1(x1,x4,x3)x2χ(x1,x2)χ(x1,x3+x4)χ(x2,x1+x3+x4)Q2(x3,x4,x1)x2χ(x2,x3+x4)x1Q2(x3,x4,x2)}+{χ(x1+x2,x3+x4)χ(x1,x2)Q2(x3,x4,x2x1)χ(x1,x2+x3+x4)Q1(x2,x3,x4)x1χ(x3,x4)χ(x1,x2+x3+x4)Q1(x2,x4,x3)x1χ(x2,x3+x4)χ(x1,x3+x4+x2)Q2(x3,x4,x2)x1χ(x1,x2)χ(x1,x3+x4)x2Q2(x3,x4,x1)}=χ(x1+x2,x3+x4){Q2(x3,x4,x1x2)χ(x3+x4,x1)Q1(x1,x3,x4)x2χ(x3,x4)χ(x3+x4,x1)Q1(x1,x4,x3)x2Q2(x3,x4,x1)x2χ(x3+x4,x1)x1Q2(x3,x4,x2)}+χ(x1,x2+x3+x4){χ(x2,x3+x4)Q2(x3,x4,x2x1)Q1(x2,x3,x4)x1χ(x3,x4)Q1(x2,x4,x3)x1χ(x2,x3+x4)Q2(x3,x4,x2)x1x2Q2(x3,x4,x1)}=χ(x2,x3+x4){χ(x1,x3+x4)Q2(x3,x4,x1x2)Q1(x1,x3,x4)x2χ(x3,x4)Q1(x1,x4,x3)x2χ(x1,x3+x4)Q2(x3,x4,x1)x2x1Q2(x3,x4,x2)}=0.
    $

    Hence, $ (F, \cdot, [, ], \chi) $ is an F-manifold color algebra.

    (2) It is known that $ (F, L) $ is a representation of the Lie color algebra $ (F, [, ], \chi) $. According to Lemma 4.1, $ (F, \mathfrak L) $ is a representation of the $ \chi $-commutative associative algebra $ (F, \cdot, \chi) $. Define the linear map $ M_4 $ from $ F\otimes F $ to $ {\text{End}}_{k}(F)_{G} $ by

    $ M4(x1,x2)=Lx1Lx2χ(x1,x2)Lx2Lx1L[x1,x2].
    $

    Thus $ Q_1(x_{1}, x_{2}, x_3) = M_4(x_{1}, x_{2})(x_3) $, and the equation

    $ Q_1(x_1\cdot x_{2},x_3,x_4) = x_1\bullet Q_1(x_{2},x_3,x_4)+\chi(x_1,x_{2})x_{2}\bullet Q_1(x_1,x_3,x_4) $

    implies

    $ M_4(x_1\cdot x_{2},x_3) = \mathfrak L_{x_1}M_4(x_{2},x_3)+\chi(x_1,x_{2}) \mathfrak L_{x_{2}}M_4(x_1,x_3). $

    On the other hand, define the linear map $ M_5 $ from $ F\otimes F $ to $ {\text{End}}_{k}(F)_{G} $ by

    $ M5(x1,x2)=Lx1Lx2+χ(x1,x2)Lx2Lx1Lx1x2.
    $

    Thus $ Q_2(x_{1}, x_{2}, x_3) = M_5(x_{1}, x_{2})(x_3) $. Combining (4.5), the equation

    $ (Q1(x1,x2,x3)+χ(x2,x3)Q1(x1,x3,x2)+χ(x1,x2+x3)Q2(x2,x3,x1))x4=χ(x1,x2+x3)Q2(x2,x3,x1x4)x1Q2(x2,x3,x4)
    $

    implies

    $ \mathfrak L_{H_{x_1}(x_{2},x_3)} = \chi(x_{1},x_{2}+x_3)M_5(x_{2},x_3) \mathfrak L_{x_1}- \mathfrak L_{x_1} M_5(x_{2},x_3). $

    Hence, the proof is completed.

    An F-manifold is "locally" an F-manifold algebra. We generalize the definition of an F-manifold algebra by introducing an F-manifold color algebra and study its representation theory. Then we provide the concept of a coherence F-manifold color algebra and obtain that an F-manifold color algebra admitting a non-degenerate symmetric bilinear form is a coherence F-manifold color algebra. The concept of a pre-F-manifold color algebra is also defined, and with the help of these algebras, one can construct F-manifold color algebras.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the Guangdong Basic and Applied Basic Research Foundation (2023A1515011739) and the Basic Research Joint Funding Project of University and Guangzhou City under Grant 202201020103.

    The authors declare there are no conflicts of interest.

    [1] Igotti M, Gnedina O, Morshneva A, et al. (2018) Time-dependent modulation of FoxO activity by HDAC inhibitor in oncogene-transformed E1A+Ras cells. AIMS Genetics 5: 41–52. doi: 10.3934/genet.2018.1.41
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4534) PDF downloads(1673) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog