Research article

Stability analysis of delayed neural networks via improved negative definite conditions

  • Published: 30 October 2025
  • This article discusses the issue of delay-dependent stability in generalized neural networks (GNNs). First, a suitable Lyapunov-Krasovskii functional (LKF), including more state information on time delays, was constructed, effectively reducing the system's conservatism. Second, a novel stability condition was established by utilizing the suitable LKF and the matrix-valued cubic polynomials to determine the negative definite conditions. Finally, the experimental simulation results were validated using three typical numerical examples. The experimental results demonstrated the efficiency and merits of our proposed approach compared with the existing methods.

    Citation: Xiao-Gui Liu, Xiang-Jie Zhou, Min-Hai Zhang, Xin Zhou. Stability analysis of delayed neural networks via improved negative definite conditions[J]. Electronic Research Archive, 2025, 33(10): 6514-6532. doi: 10.3934/era.2025287

    Related Papers:

  • This article discusses the issue of delay-dependent stability in generalized neural networks (GNNs). First, a suitable Lyapunov-Krasovskii functional (LKF), including more state information on time delays, was constructed, effectively reducing the system's conservatism. Second, a novel stability condition was established by utilizing the suitable LKF and the matrix-valued cubic polynomials to determine the negative definite conditions. Finally, the experimental simulation results were validated using three typical numerical examples. The experimental results demonstrated the efficiency and merits of our proposed approach compared with the existing methods.



    加载中


    [1] Y. Q. Yang, J. H. Cai, H. F. Yang, J. F. Zhang, X. J. Zhao, Tad: A trajectory clustering algorithm based on spatial-temporal density analysis, Expert Syst. Appl., 139 (2019), 112846. https://doi.org/10.1016/j.eswa.2019.112846 doi: 10.1016/j.eswa.2019.112846
    [2] H. C. Lin, J. X. Dong, H. B. Zeng, J. H. Park, Stability analysis of delayed neural networks via a time-varying Lyapunov functional, IEEE Trans. Syst. Man Cybern.: Syst., 54 (2024), 2563–2575. https://doi.org/10.1109/TSMC.2023.3346060 doi: 10.1109/TSMC.2023.3346060
    [3] X. M. Zhang, Q. L. Han, Global asymptotic stability for a class of generalized neural networks with interval time-varying delays, IEEE Trans. Neural Networks, 22 (2011), 1180–1192. https://doi.org/10.1109/TNN.2011.2147331 doi: 10.1109/TNN.2011.2147331
    [4] Y. X. Tian, H. C. Yan, H. Zhang, J. Cheng, H. Shen, Asynchronous output feedback control of hidden semi-Markov jump systems with random mode-dependent delays, IEEE Trans. Autom. Control, 67 (2021), 4107–4114. https://doi.org/10.1109/TAC.2021.3110006 doi: 10.1109/TAC.2021.3110006
    [5] M. J. Park, S. M. Lee, O. M. Kwon, J. H. Ryu, Enhanced stability criteria of neural networks with time-varying delays via a generalized free-weighting matrix integral inequality, J. Franklin Inst., 355 (2018), 6531–6548. https://doi.org/10.1016/j.jfranklin.2018.06.023 doi: 10.1016/j.jfranklin.2018.06.023
    [6] H. B. Zeng, Z. J. Zhu, S. P. Xiao, X. M. Zhang, A switched system model for exponential stability and dissipativity of delayed neural networks, IEEE Trans. Neural Networks Learn. Syst., (2025). https://doi.org/10.1109/TNNLS.2025.3590251
    [7] H. C. Lin, J. X. Dong, J. H. Park, Observer-based ${H_\infty}$ fault-tolerant tracking control of multi-agent systems with nonideal communication links and external disturbances, IEEE Trans. Autom. Sci. Eng., 22 (2025), 14096–14107. https://doi.org/10.1109/TASE.2025.3557951 doi: 10.1109/TASE.2025.3557951
    [8] J. A. Wang, L. Fan, X. Y. Wen, Y. Wang, Enhanced stability results for generalized neural networks with time-varying delay, J. Franklin Inst., 357 (2020), 6932–6950. https://doi.org/10.1016/j.jfranklin.2020.04.049 doi: 10.1016/j.jfranklin.2020.04.049
    [9] B. Yang, J. J. Cao, M. N. Hao, X. J. Pan, Further stability analysis of generalized neural networks with time-varying delays based on a novel Lyapunov-Krasovskii functional, IEEE Access, 7 (2019), 91253–91264. https://doi.org/10.1109/ACCESS.2019.2925912 doi: 10.1109/ACCESS.2019.2925912
    [10] H. B. Zeng, Z. J. Zhu, T. S. Peng, W. Wang, X. M. Zhang, Robust tracking control design for a class of nonlinear networked control systems considering bounded package dropouts and external disturbance, IEEE Trans. Fuzzy Syst., 32 (2024), 3608–3617. https://doi.org/10.1109/TFUZZ.2024.3377799 doi: 10.1109/TFUZZ.2024.3377799
    [11] W. Wang, J. M. Liang, H. B. Zeng, X. M. Zhang, Novel looped functionals in designing output feedback controllers for aperiodic sampled-data control systems, IEEE Trans. Autom. Sci. Eng., 22 (2025), 16397–16402. https://doi.org/10.1109/TASE.2025.3573304 doi: 10.1109/TASE.2025.3573304
    [12] W. M. Wang, H. B. Zeng, J. M. Liang, S. P. Xiao, Sampled-data-based load frequency control for power systems considering time delays, J. Franklin Inst., 362 (2025), 107477. https://doi.org/10.1016/j.jfranklin.2024.107477 doi: 10.1016/j.jfranklin.2024.107477
    [13] H. B. Zeng, Y. J. Chen, Y. He, X. M. Zhang, A delay-derivative-dependent switched system model method for stability analysis of linear systems with time-varying delay, Automatica, 175 (2025), 112183. https://doi.org/10.1016/j.automatica.2025.112183 doi: 10.1016/j.automatica.2025.112183
    [14] H. B. Zeng, W. M. Wang, W. Wang, H. Q. Xiao, Improved looped-functional approach for dwell-time-dependent stability analysis of impulsive systems, Nonlinear Anal. Hybrid Syst., 52 (2024), 101477. https://doi.org/10.1016/j.nahs.2024.101477 doi: 10.1016/j.nahs.2024.101477
    [15] Y. He, C. K. Zhang, H. B. Zeng, M. Wu, Additional functions of variable-augmented-based free-weighting matrices and application to systems with time-varying delay, Int. J. Syst. Sci., 54 (2022), 991–1003. https://doi.org/10.1080/00207721.2022.2157198 doi: 10.1080/00207721.2022.2157198
    [16] Y. Chen, C. Lu, X. M. Zhang, Allowable delay set flexible fragmentation approach to passivity analysis of delayed neural networks, Neurocomputing, 629 (2025), 129730. https://doi.org/10.1016/j.neucom.2025.129730 doi: 10.1016/j.neucom.2025.129730
    [17] H. B. Zeng, Y. He, K. Teo, Monotone-delay-interval-based Lyapunov functionals for stability analysis of systems with a periodically varying delay, Automatica, 138 (2022), 110030. https://doi.org/10.1016/j.automatica.2021.110030 doi: 10.1016/j.automatica.2021.110030
    [18] X. F. Jiang, Z. M. Yin, J. J. Wu, Stability analysis of linear systems under time-varying samplings by a non-standard discretization method, Electronics, 7 (2018), 278. https://doi.org/10.3390/electronics7110278 doi: 10.3390/electronics7110278
    [19] Y. Chen, Y. Q. Li, G. Chen, New results on stability analysis for a class of generalized delayed neural networks, Appl. Math. Comput., 469 (2024), 128529. https://doi.org/10.1016/j.amc.2024.128529 doi: 10.1016/j.amc.2024.128529
    [20] Y. Chen, H. B. Zeng, Y. Li, Stability analysis oflinear delayed systems based on an allowable delay set partitioning approach, Automatica, 163 (2024), 111603. https://doi.org/10.1016/j.automatica.2024.111603 doi: 10.1016/j.automatica.2024.111603
    [21] W. Wang, C. X. Li, A. Q. Luo, H. Q. Xiao, Stability analysis of linear systems with a periodical time-varying delay based on an improved non-continuous piecewise Lyapunov functional, AIMS Math., 10 (2025), 9073–9093. https://doi.org/10.3934/math.2025418 doi: 10.3934/math.2025418
    [22] O. M. Kwon, J. H. Park, S. M. Lee, E. J. Cha, New augmented Lyapunov-Krasovskii functional approach to stability analysis of neural networks with time-varying delay, Nonlinear Dyn., 76 (2014), 221–236. https://doi.org/10.1007/s11071-013-1122-2 doi: 10.1007/s11071-013-1122-2
    [23] C. Ge, C. C. Hua, X. P. Guan, New delay-dependent stability criteria for neural networks with time-varying delay using delay-decomposition approach, IEEE Trans. Neural Networks Learn. Syst., 25 (2014), 1378–1383. https://doi.org/10.1007/s11071-013-1122-2 doi: 10.1007/s11071-013-1122-2
    [24] J. A. Wang, X. Y. Wen, B. Y. Hou, Advanced stability criteria for static neural networks with interval time-varying delays via the improved Jensen inequality, Neurocomputing, 377 (2020), 49–56. https://doi.org/10.1016/j.neucom.2019.10.034 doi: 10.1016/j.neucom.2019.10.034
    [25] J. Chen, J. H. Park, S. Y. Xu, Stability analysis for neural networks with time-varying delay via improved techniques, IEEE Trans. Cybern., 49 (2019), 4495–4500. https://doi.org/10.1109/TCYB.2018.2868136 doi: 10.1109/TCYB.2018.2868136
    [26] W. J. Lin, Y. He, C. K. Zhang, M. Wu, Stability analysis of neural networks with time-varying delay: Enhanced stability criteria and conservatism comparisons, Commun. Nonlinear Sci. Numer. Simul., 54 (2018), 118–135. https://doi.org/10.1109/TCYB.2018.2868136 doi: 10.1109/TCYB.2018.2868136
    [27] W. J. Lin, Y. He, C. K. Zhang, M. Wu, J. Shen, Extended dissipativity analysis for Markovian jump neural networks with time-varying delay via delay-product-type functionals, IEEE Trans. Neural Networks Learn. Syst., 30 (2019), 2528–2537. https://doi.org/10.1109/TNNLS.2018.2885115 doi: 10.1109/TNNLS.2018.2885115
    [28] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
    [29] A. Seuret, F. Gouaisbaut, Stability of linear systems with time-varying delays using Bessel-Legendre inequalities, IEEE Trans. Autom. Control, 63 (2018), 225–232. https://doi.org/10.1109/TAC.2017.2730485 doi: 10.1109/TAC.2017.2730485
    [30] N. Cheng, W. Wang, H. B. Zeng, X. Liu, X. M. Zhang, Novel exponential-weighted integral inequality for exponential stability analysis of time-varying delay systems, Appl. Math. Lett., 172 (2025), 109730. https://doi.org/10.1016/j.aml.2025.109730 doi: 10.1016/j.aml.2025.109730
    [31] P. Park, W. I. Lee, S. Y. Lee, Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, J. Franklin Inst., 352 (2015), 1378–1396. https://doi.org/10.1016/j.jfranklin.2015.01.004 doi: 10.1016/j.jfranklin.2015.01.004
    [32] H. B. Zeng, X. G. Liu, W. Wang, A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems, Appl. Math. Comput., 354 (2019), 1–8. https://doi.org/10.1016/j.amc.2019.02.009 doi: 10.1016/j.amc.2019.02.009
    [33] H. B. Zeng, Z. J. Zhu, W. Wang, X. M. Zhang, Relaxed stability criteria of delayed neural networks using delay-parameters-dependent slack matrices, Neural Networks, 180 (2024), 106676. https://doi.org/10.1016/j.neunet.2024.106676 doi: 10.1016/j.neunet.2024.106676
    [34] W. Wang, J. M. Liang, H. B. Zeng, Sampled-data-based stability and stabilization of Lurie systems, Appl. Math. Comput., 501 (2025), 129455. https://doi.org/10.1016/j.amc.2025.129455 doi: 10.1016/j.amc.2025.129455
    [35] T. S. Peng, H. B. Zeng, W. Wang, X. M. Zhang, X. G. Liu, General and less conservative criteria on stability and stabilization of $T$-$S$ fuzzy systems with time-varying delay, IEEE Trans. Fuzzy Syst., 31 (2023), 1531–1541. https://doi.org/10.1109/TFUZZ.2022.3204899 doi: 10.1109/TFUZZ.2022.3204899
    [36] A. Seuret, K. Liu, F. Gouaisbaut, Generalized reciprocally convex combination lemmas and its application to time-delay systems, Automatica, 95 (2018), 488–493. https://doi.org/10.1016/j.automatica.2018.06.017 doi: 10.1016/j.automatica.2018.06.017
    [37] H. B. Zeng, H. C. Lin, Y. He, K. L. Teo, W. Wang, Hierarchical stability conditions for time-varying delay systems via an extended reciprocally convex quadratic inequality, J. Franklin Inst., 357 (2020), 9930–9941. https://doi.org/10.1016/j.jfranklin.2020.07.034 doi: 10.1016/j.jfranklin.2020.07.034
    [38] J. Park, P. Park, Finite-interval quadratic polynomial inequalities and their application to time-delay systems, J. Franklin Inst., 357 (2020), 4316–4327. https://doi.org/10.1016/j.jfranklin.2020.01.022 doi: 10.1016/j.jfranklin.2020.01.022
    [39] C. K. Zhang, F. Long, Y. He, W. Yao, L. Jiang, M. Wu, A relaxed quadratic function negative-determination lemma and its application to time-delay systems, Automatica, 113 (2020), 108764. https://doi.org/10.1016/j.automatica.2019.108764 doi: 10.1016/j.automatica.2019.108764
    [40] H. B. Zeng, Z. L. Zhai, W. Wang, Hierarchical stability conditions of systems with time-varying delay, Appl. Math. Comput., 404 (2021), 126222. https://doi.org/10.1016/j.amc.2021.126222 doi: 10.1016/j.amc.2021.126222
    [41] S. Xiao, J. Yu, S. X. Yang, Y. Qiu, Stability analysis for time-delay systems via a new negativity condition on quadratic functions, Mathematics, 10 (2022), 3096. https://doi.org/10.3390/math10173096 doi: 10.3390/math10173096
    [42] X. M. Zhang, Q. L. Han, X. Ge, Suffcient conditions for a class of matrix-valued polynomial inequalities on closed intervals and application to ${H_\infty}$ filtering for linear systems with time-varying delays, Automatica, 125 (2021), 109390. https://doi.org/10.1016/j.automatica.2020.109390 doi: 10.1016/j.automatica.2020.109390
    [43] B. Wang, J. Yan, J. Cheng, S. Zhong, New criteria of stability analysis for generalized neural networks subject to time-varying delayed signals, Appl. Math. Comput., 314 (2017), 322–333. https://doi.org/10.1016/j.amc.2017.06.031 doi: 10.1016/j.amc.2017.06.031
    [44] W. Wang, H. B. Zeng, K. Teo, Y. Chen, Relaxed stability criteria of time-varying delay systems via delay-derivative-dependent slack matrices, J. Franklin Inst., 360 (2023), 6099–6109. https://doi.org/10.1016/j.jfranklin.2023.04.019 doi: 10.1016/j.jfranklin.2023.04.019
    [45] P. Park, J. W. Ko, C. K. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235–238. https://doi.org/10.1016/j.automatica.2010.10.014 doi: 10.1016/j.automatica.2010.10.014
    [46] S. H. Kim, P. Park, C. Jeong, Robust ${H_\infty}$ stabilization of networked control systems with packet analyser, IET Control Theory Appl., 4 (2010), 1828–1837. https://doi.org/10.1049/iet-cta.2009.0346 doi: 10.1049/iet-cta.2009.0346
    [47] X. M. Zhang, Q. L. Han, A. Seuret, F. Gouaisbaut, Y. He, Overview of recent advances in stability of linear systems with time-varying delays, IET Control Theory Appl., 13 (2019), 1–16. https://doi.org/10.1049/iet-cta.2018.5188 doi: 10.1049/iet-cta.2018.5188
    [48] Z. Y. Feng, H. Y. Shao, L. Shao, Further improved stability results for generalized neural networks with time-varying delays, Neurocomputing, 367 (2019), 308–318. https://doi.org/10.1016/j.neucom.2019.07.019 doi: 10.1016/j.neucom.2019.07.019
    [49] M. J. Park, O. M. Kwon, J. H. Ryu, Passivity and stability analysis of neural networks with time-varying delays via extended free-weighting matrices integral inequality, Neural Networks, 106 (2018), 67–78. https://doi.org/10.1016/j.neunet.2018.06.010 doi: 10.1016/j.neunet.2018.06.010
    [50] H. C. Lin, H. B. Zeng, X. M. Zhang, Stability analysis for delayed neural networks via a generalized reciprocally convex inequality, IEEE Trans. Neural Networks Learn. Syst., 34 (2023), 7491–7499. https://doi.org/10.1109/TNNLS.2022.3144032 doi: 10.1109/TNNLS.2022.3144032
    [51] F. Long, C. K. Zhang, Y. J. Shen, Q. C. Mei, Q. Chen, Stability analysis of delayed neural networks via novel delay-dependent LKF and integral inequality, ISA Trans., 165 (2025), 222–231. https://doi.org/10.1016/j.isatra.2025.06.027 doi: 10.1016/j.isatra.2025.06.027
    [52] S. Q. Wang, W. C. Ji, Y. L. Jiang, D. R. Liu, Relaxed stability criteria for neural networks with time-varying delay using extended secondary delay partitioning and equivalent reciprocal convex combination techniques, IEEE Trans. Neural Networks Learn. Syst., 31 (2019), 4157–4169. https://doi.org/10.1016/j.ins.2017.08.072 doi: 10.1016/j.ins.2017.08.072
    [53] B. Yang, J. Wang, X. Liu, Improved delay-dependent stability criteria for generalized neural networks with time-varying delays, Inf. Sci., 420 (2017), 299–321. https://doi.org/10.1016/j.ins.2017.08.072 doi: 10.1016/j.ins.2017.08.072
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(237) PDF downloads(23) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog