This paper presents a numerically stable, time-accurate algorithm for simulating the gradient flow associated with the Modica–Mortola functional with a uniformly spaced multi-well potential. The scheme uses operator splitting; the nonlinear component is updated analytically, while the linear part is advanced by a Fourier spectral discretization. The method is unconditionally stable, preserves pointwise boundedness independently of the time step size, and attains spectral accuracy in space and first-order accuracy in time. We provide a theoretical analysis establishing unconditional stability and boundedness, and present comprehensive numerical experiments that demonstrate the accuracy and robustness of the proposed approach.
Citation: Hyundong Kim, Zhengang Li, Xinpei Wu, Hyunho Shin, Yunjae Nam, Junseok Kim. An unconditionally stable hybrid numerical method for the gradient flow for the high-order Modica–Mortola functional[J]. Electronic Research Archive, 2025, 33(10): 6375-6390. doi: 10.3934/era.2025281
This paper presents a numerically stable, time-accurate algorithm for simulating the gradient flow associated with the Modica–Mortola functional with a uniformly spaced multi-well potential. The scheme uses operator splitting; the nonlinear component is updated analytically, while the linear part is advanced by a Fourier spectral discretization. The method is unconditionally stable, preserves pointwise boundedness independently of the time step size, and attains spectral accuracy in space and first-order accuracy in time. We provide a theoretical analysis establishing unconditional stability and boundedness, and present comprehensive numerical experiments that demonstrate the accuracy and robustness of the proposed approach.
| [1] | L. Modica, S. Mortola, Un esempio di Gamma-convergenza, Boll. Unione Mat. Ital. B, 14 (1977), 285–299. |
| [2] |
H. Wilbuer, P. Kurzeja, J. Mosler, Phase field modeling of hyperelastic material interfaces–Theory, implementation and application to phase transformations, Comput. Methods Appl. Mech. Eng., 426 (2024), 116972. https://doi.org/10.1016/j.cma.2024.116972 doi: 10.1016/j.cma.2024.116972
|
| [3] |
A. Aspri, A phase-field approach for detecting cavities via a Kohn–Vogelius type functional, Inverse Probl., 38 (2022), 094001. https://doi.org/10.1088/1361-6420/ac82e4 doi: 10.1088/1361-6420/ac82e4
|
| [4] |
J. Wang, J. Kim, A novel modified Modica–Mortola equation with a phase-dependent interfacial function, Int. J. Mod. Phys. B, 36 (2022), 2250055. https://doi.org/10.1142/S0217979222500552 doi: 10.1142/S0217979222500552
|
| [5] | Y. Li, S. Yoon, J. Wang, J. Park, S. Kim, C. Lee, et al., Fast and efficient numerical finite difference method for multiphase image segmentation, Math. Probl. Eng., (2021), 2414209. https://doi.org/10.1155/2021/2414209 |
| [6] |
Y. Giga, J. Okamoto, M. Uesaka, A finer singular limit of a single-well Modica–Mortola functional and its applications to the Kobayashi–Warren–Carter energy, Adv. Calc. Var., 16 (2023), 163–182. https://doi.org/10.1515/acv-2020-0113 doi: 10.1515/acv-2020-0113
|
| [7] |
Y. Jin, S. Kwak, S. Ham, J. Kim, A fast and efficient numerical algorithm for image segmentation and denoising, AIMS Math., 9 (2024), 5015–5027. https://doi.org/10.3934/math.2024243 doi: 10.3934/math.2024243
|
| [8] |
Y. M. Jung, S. H. Kang, J. Shen, Multiphase image segmentation via Modica–Mortola phase transition, SIAM J. Appl. Math., 67 (2007), 1213–1232. https://doi.org/10.1137/060662708 doi: 10.1137/060662708
|
| [9] |
B. Bogosel, D. Bucur, I. Fragalà, Phase field approach to optimal packing problems and related Cheeger clusters, Appl. Math. Optim., 81 (2020), 63–87. https://doi.org/10.1007/s00245-018-9476-y doi: 10.1007/s00245-018-9476-y
|
| [10] |
S. Ham, S. Kwak, C. Lee, G. Lee, J. Kim, A second-order time-accurate unconditionally stable method for a gradient flow for the Modica–Mortola functional, J. Sci. Comput., 95 (2023), 63. https://doi.org/10.1007/s10915-023-02198-2 doi: 10.1007/s10915-023-02198-2
|
| [11] |
Z. Cao, Z. Weng, S. Zhai, An effective operator splitting scheme for general motion by mean curvature using a modified Allen–Cahn equation, Appl. Math. Lett., 163 (2025), 109472. https://doi.org/10.1016/j.aml.2025.109472 doi: 10.1016/j.aml.2025.109472
|
| [12] |
G. Peng, Y. Li, An energy stable bound-preserving finite volume scheme for the Allen-Cahn equation based on operator splitting method, Comput. Math. Appl., 178 (2025), 47–60. https://doi.org/10.1016/j.camwa.2024.11.014 doi: 10.1016/j.camwa.2024.11.014
|
| [13] |
J. Kim, Modified Wave-Front Propagation and Dynamics Coming from Higher-Order Double-Well Potentials in the Allen–Cahn Equations, Mathematics, 12 (2024), 3796. https://doi.org/10.3390/math12233796 doi: 10.3390/math12233796
|
| [14] |
Y. Hwang, I. Kim, S. Kwak, S. Ham, S. Kim, J. Kim, Unconditionally stable monte carlo simulation for solving the multi-dimensional Allen–Cahn equation, Electron. Res. Arch., 31 (2023), 5104–5123. https://doi.org/10.3934/era.2023261 doi: 10.3934/era.2023261
|
| [15] |
Y. Hwang, S. Ham, C. Lee, G. Lee, S. Kang, J. Kim, A simple and efficient numerical method for the Allen–Cahn equation on effective symmetric triangular meshes, Electron. Res. Arch., 31 (2023), 4557–4578. https://doi.org/10.3934/era.2023233 doi: 10.3934/era.2023233
|
| [16] |
H. G. Lee, A semi-analytical Fourier spectral method for the Swift–Hohenberg equation, Comput. Math. Appl., 74 (2017), 1885–1896. https://doi.org/10.1016/j.camwa.2017.06.053 doi: 10.1016/j.camwa.2017.06.053
|
| [17] |
J. Choi, S. Ham, S. Kwak, Y. Hwang, J. Kim, Stability analysis of an explicit numerical scheme for the Allen–Cahn equation with high-order polynomial potentials, AIMS Math., 9 (2024), 19332–19344. https://doi.org/10.3934/math.2024941 doi: 10.3934/math.2024941
|
| [18] |
C. Zhang, H. Wang, J. Huang, C. Wang, X. Yue, A second order operator splitting numerical scheme for the "good" Boussinesq equation, Appl. Numer. Math., 119 (2017), 179–193. https://doi.org/10.1016/j.apnum.2017.04.006 doi: 10.1016/j.apnum.2017.04.006
|
| [19] |
D. Li, C. Quan, J. Xu, Stability and convergence of Strang splitting. Part I: scalar Allen–Cahn equation, J. Comput. Phys., 458 (2022), 111087. https://doi.org/10.1016/j.jcp.2022.111087 doi: 10.1016/j.jcp.2022.111087
|