In this paper, we employed the Bernstein method to prove some Liouville-type theorems of the equation $ \Delta_{p_1, \cdots, p_r}v+f(v) = 0 $. Here, $ \Delta_{p_1, \cdots, p_r}v: = \mathrm{div}(\sum_{i = 1}^r|\nabla v|^{p_i-2}\nabla v) $. This could be regarded as a natural generalization of the $ p $-Laplacian and the $ (p, q) $-Laplacian. As applications, we derived Liouville-type theorems of positive solutions to some generalized static Fisher-KPP equation, Allen-Cahn equation, static Newell-Whitehead equation, and Lichnerowicz equation.
Citation: Fanqi Zeng, Jin Ban, Peilong Dong, Xiaoqin Ma. Liouville-type theorems for positive solutions to $ \Delta_{p_1, \cdots, p_r}v+f(v) = 0 $ in $ \mathbb{R}^{m} $[J]. Electronic Research Archive, 2025, 33(10): 5990-6011. doi: 10.3934/era.2025266
In this paper, we employed the Bernstein method to prove some Liouville-type theorems of the equation $ \Delta_{p_1, \cdots, p_r}v+f(v) = 0 $. Here, $ \Delta_{p_1, \cdots, p_r}v: = \mathrm{div}(\sum_{i = 1}^r|\nabla v|^{p_i-2}\nabla v) $. This could be regarded as a natural generalization of the $ p $-Laplacian and the $ (p, q) $-Laplacian. As applications, we derived Liouville-type theorems of positive solutions to some generalized static Fisher-KPP equation, Allen-Cahn equation, static Newell-Whitehead equation, and Lichnerowicz equation.
| [1] |
T. H. Colding, W. P. Minicozzi II, Harmonic functions on manifolds, Ann. Math., 146 (1997), 725–747. https://doi.org/10.2307/2952459 doi: 10.2307/2952459
|
| [2] |
J. He, Y. Ma, Y. Wang, Universal log-gradient estimates of solutions to $\Delta_{p}v+bv^q+cv^r = 0$ on manifolds and applications, J. Differ. Equations, 434 (2025), 113233. https://doi.org/10.1016/j.jde.2025.113233 doi: 10.1016/j.jde.2025.113233
|
| [3] |
J. He, Y. Wang, G. Wei, Gradient estimate for solutions of the equation $\Delta_pv+ av^q = 0$ on a complete Riemannian manifold, Math. Z., 306 (2024), 42. https://doi.org/10.1007/s00209-024-03446-3 doi: 10.1007/s00209-024-03446-3
|
| [4] |
G. Huang, Q. Guo, L. Guo, Gradient estimates for positive weak solution to $\Delta_{p} u+au^{\sigma} = 0$ on Riemannian manifolds, J. Math. Anal. Appl., 533 (2024), 128007. https://doi.org/10.1016/j.jmaa.2023.128007 doi: 10.1016/j.jmaa.2023.128007
|
| [5] |
G. Huang, L. Zhao, Liouville-type theorems for nonlinear $p$-Laplacian equation on complete noncompact Riemannian manifolds, Chin. Ann. Math. Ser. B, 44 (2023), 379–390. https://doi.org/10.1007/s11401-023-0021-1 doi: 10.1007/s11401-023-0021-1
|
| [6] |
F. Cao, L. Fan, Symmetry and monotonicity of positive solutions for a system involving fractional p&q-Laplacian in a ball, Complex Var. Elliptic Equations, 68 (2023), 667–679. https://doi.org/10.1080/17476933.2021.2009819 doi: 10.1080/17476933.2021.2009819
|
| [7] | Y. Wang, J. Yang, L. Zhang, Liouville theorems and gradient estimates for positive solutions to $\Delta_{p} u+\Delta_{q} u+h(u) = 0$ on a complete manifold, Contemp. Math., 6 (2025), In press. |
| [8] |
Y. Wang, L. Zhang, Gradient estimates for $\Delta_{p} u+\Delta_{q} u+a|u|^{s-1}u+b|u|^{l-1}u = 0$ on a complete Riemannian manifold and applications, Int. J. Math., 36 (2025), 53. https://doi.org/10.1142/S0129167X24500708 doi: 10.1142/S0129167X24500708
|
| [9] |
M. Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Arch. Rational Mech. Anal., 107 (1989), 293–324. https://doi.org/10.1007/BF00251552 doi: 10.1007/BF00251552
|
| [10] |
M. Bidaut-Véron, L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., 106 (1991), 489–539. https://doi.org/10.1007/BF01243922 doi: 10.1007/BF01243922
|
| [11] |
W. Chen, C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615–622. https://doi.org/10.1215/S0012-7094-91-06325-8 doi: 10.1215/S0012-7094-91-06325-8
|
| [12] | C. Enache, A note on a Liouville-type theorem for $p$-Laplace equations, Electron. J. Differ. Equations, 2015 (2015), 1–7. http://ejde.math.unt.edu |
| [13] |
P. Felmer, A. Quaas, Fundamental solutions and Liouville-type theorems for nonlinear integral operators, Adv. Math., 226 (2011), 2712–2738. https://doi.org/10.1016/j.aim.2010.09.023 doi: 10.1016/j.aim.2010.09.023
|
| [14] |
M. Bidaut-Véron, S. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems, J. Anal. Math., 84 (2001), 1–49. https://doi.org/10.1007/BF02788105 doi: 10.1007/BF02788105
|
| [15] |
B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., 34 (1981), 525–598. https://doi.org/10.1002/cpa.3160340406 doi: 10.1002/cpa.3160340406
|
| [16] |
J. Serrin, H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189 (2002), 79–142. https://doi.org/10.1007/BF02392645 doi: 10.1007/BF02392645
|
| [17] |
J. A. McCoy, Bernstein properties of solutions to some higher order equations, Differ. Integr. Equations, 20 (2007), 1153–1166. https://doi.org/10.57262/die/1356039300 doi: 10.57262/die/1356039300
|
| [18] |
F. Cuccu, A. Mohammed, G. Porru, Extensions of a theorem of Cauchy-Liouville, J. Math. Anal. Appl., 369 (2010), 222–231. https://doi.org/10.1016/j.jmaa.2010.02.058 doi: 10.1016/j.jmaa.2010.02.058
|
| [19] |
A. Araya, A. Mohammed, On Cauchy-Liouville-type theorems, Adv. Nonlinear Anal., 8 (2019), 725–742. https://doi.org/10.1515/anona-2017-0158 doi: 10.1515/anona-2017-0158
|