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Abstract: In this paper, we employed the Bernstein method to prove some Liouville-type theorems
of the equation A, .. , v + f(v) = 0. Here, A, .. ,v := div(X[_, [Vv|[?""2Vv). This could be regarded
as a natural generalization of the p-Laplacian and the (p, ¢)-Laplacian. As applications, we derived
Liouville-type theorems of positive solutions to some generalized static Fisher-KPP equation, Allen-
Cahn equation, static Newell-Whitehead equation, and Lichnerowicz equation.
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1. Introduction

The p-Laplace equation serves as a fundamental model for nonlinear diffusion (e.g., in porous
medium flow) and image processing (e.g., in TV denoising models). And, the Liouville theorem
offers a benchmark for the qualitative analysis of solutions. As a nonlinear elliptic equation, the p-
Laplace equation is studied in the context of Liouville-type theorems to classify bounded solutions (or
those satisfying certain growth conditions) defined on the whole space or non-compact manifolds. The
central question is: Are all such solutions constant? The classical result establishes that when p = 2
(the Laplace equation), any bounded harmonic function on the entire space must be constant (see [1]).
For p # 2, the conclusion depends on both p and the spatial dimension n (see [2, 3]).

In this paper, we consider the following elliptic equation:

Ap o pv+ f(¥)=0 in R"™, (1.1)

where m > 1 and the semilinear term f is sufficiently smooth and may be positive or negative. Here,
Ap, .. pvi=div(Y IVv|Pi—2Vy), where r € N*, p; > 1 forany 1 <i<r,and 1 < p; <--- < p,. When
r = 1, the (py,-- -, pr)-Laplacian reduces to the classical p-Laplacian (see [4,5]). When r = 2, the
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(p1,--- , pr)-Laplacian reduces to the classical (p, g)-Laplacian (see [6—8]). Under certain conditions
on f and p;, we prove some Liouville-type theorems for solutions of (1.1) in R™.

It is well known that Liouville-type theorems of nonlinear elliptic equations are very important in
the study of nonlinear PDEs (see [9-11]). Furthermore, the research of Liouville-type theorems has
also been widely pursued (see [12—14]). With the aim to investigate the problem (1.1), we mainly focus
on four papers.

Gidas and Spruck [15] established Liouville-type theorems of positive solutions to the Lane-Emden
equation

Av+v" =0 (1.2)

inR”"whenm >2and 1 <a < % This finding extends the classical Liouville theorem on harmonic
functions in Euclidean space.
Serrin and Zou [16] established the Liouville-type theorems of positive solutions in R™ for the
equation
Apv+f(v)=0 (1.3)

under the conditions 1 < p < m, f > 0 is subcritical, and there is g > p such that f(f) > #*~! for ¢ large.
Recall that f > 0 is subcritical if there is 0 < 8 < mm—_”p — 1 such that

J@

J0) 3,87, Y t>0. (1.4)

This might be considered an extension of the previously mentioned study by Gidas and Spruck [15].
McCoy [17] investigated the equation

Av+ f(v)=0, (1.5)

in R” (m > 2) and proved that if the inequality

m+1 f(¢)

(1) < —Z VYV t>0.
f()_m_lt >

holds, then any positive solution to (1.5) is constant.
Cuccu et al. [18] studied equation (1.3) in R™ (m > 2), where the function f may change sign. They
proved that when

o <p-nmTLH O s, (1.6)
m-—1 t
holds, then any positive solution to (1.3) is constant.
In this paper, we study some Liouville-type theorems of (1.1) in R” (m > 2). Our aim is to extend
some work of [16—18] to the general (py,-- - , p,)-Laplacian.
Our main theorem is stated as follows

Theorem 1.1. Assume that p; satisfies

. m
L<pr <o <pe<min{ 2, (o= 1P = (0 = 2) (o1 - 3) + 1 (1.7)

or

5 -1
max {2,1+ \/’”7 (= 1+ (=2 (pr =30} < pr <+ <. (1.8)
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If one of the following conditions holds,
(i) f is nonnegative and

'@ < (pr — ft : (1.9)
or
(i) f is nonpositive and
f@=<@p r—l)mﬂfft) (1.10)

then any positive solution to (1.1) in R™ is constant.

Remark 1.1. 1) In [16], f is required to be non-negative. In our theorem, we do not require this
constraint and f can be negative. Furthermore, we extend the p-Laplacian operator to a more general
(p1,--- , py)-Laplacian operator.

2) When r = 1 and p; = 2, the Liouville-type theorem established by McCoy [17] can be recovered
by the above Theorem 1.1.

3) When r = 1 and p; = p, Cuccu-Mohammed-Porru’s Liouville-type theorems (see [18]) can be
recovered by the above Theorem 1.1.

Corollary 1.2. Let v be a positive solution of

k
—Zaiv‘”:O, (1.11)

i=1
where a; > 0. Suppose p; satisfy conditions (1.7) or (1.8). If mln {a;} > (pr — 1)’”Jrl then v is constant.

Corollary 1.3. Let v be a positive solution of

k

sV D v =0, (1.12)
i=1

m+1

o then v is constant.

where a; > 0. Suppose p; satisfy conditions (1.7) or (1.8). Ifllnai{ai} <(p—1
<i<

Corollary 1.4. Let v be a positive solution of

k 1
AppV 4 D an™ = > bpfi =0, (1.13)

where a; > 0, b; > 0, and a; and B; are constants. Suppose p; satisfy conditions (1.7) or (1.8). If one
of the following conditions holds,
() Tiyap™ =3 bp? > 0 and max{a;} < (p) - D2 < min{B;}, or

1<j<l

(i) T, v - ZJ \bpPi <0and max{a,} < (p, — D2 < min{B}},

1<j<l
then v is constant.

Remark 1.2. Theorem 1.1 can apply to the following cases.
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(@)Whenk=1=1,a, =b; >0,y =1,6, =2,and p; = 2 (r = 1), (1.13) becomes the static
Fisher-KPP equation
Av + av —ap® = 0. (1.14)

If one of the following conditions holds,
() a;v—a;v> > 0and m > 3, or
(®) av—av?* <0and m > 3,
then v is constant.
@iy Whenk=[1=1,a, =b; =a, =1,6; =3,and p; =2 (r = 1), (1.13) becomes the Allen-Cahn
equation
Av+v -1 =0. (1.15)

If one of the following conditions holds,
(¢)v—v*>0andm > 2, or
(&)v—1><0andm > 2,
then v is constant.
(iiity Whenk=1=1,a, >0,b; >0,a; = 1,6, =3,and p; =2 (r = 1), (1.13) becomes the static
Newell-Whitehead equation
Av+av —bpy? = 0. (1.16)

If one of the following conditions holds,

(®)a;v—>bv* >0and m > 2, or

(@) av—bv* <0andm > 2,
then v is constant.

(iv)yWhenk=2,l=1,a, >0,a, >0,b; >0,a;=1,an < 1,8, > 1,and p; =2 (r = 1), (1.13)
becomes the Lichnerowicz equation

Av + a1v + a,v? — b = 0. (1.17)

If one of the following conditions holds,

(@) a;v+av? —bp >0and m > %, or

(@) a;v+av? —bp» <0and m > E—fi,
then v is constant.

The remainder of this paper is structured as follows. In Section 2, we establish some important
lemmas. We employ the Bernstein method to prove Theorem 1.1 in Section 3. The proofs of Corollaries
1.2-1.4 are provided in Section 4.

2. Preliminary

To prove the main theorem, we require the following lemmas.

Lemma 2.1. Suppose p; satisfy conditions (1.7) or (1.8). Then, we have

i (pi=2)(pi=3) P2 ( m
sup <

- D> =(p,— D).
uy ST ) (pi = 1= (o= )
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Proof. We note that

i (pi=2)(pi =372
Z;Zl tpi—2

<max{(p;-2)(p;=3),i=1,---,r}. (2.1

Then, we have

Y (pi=2)(pi=3)?
Z;zl thi—2

> () (o= P = (= 1) = max{(p =) (= 3),i = 1o+ 1)
m—1
>0.

L - = —-1)-
m—1
2.2)

Through calculation, we obtain

(pr - 2) (pr - 3)
=(p,—p1+p1=2)(pr—p1+p1-3)
=, =P+ (=P Q2P =5+ (p1 =2 (p1 = 3) (2.3)
=(pr—=pPD(P1+p, =5+ (p1—-2)(p1—3)
>(pr—pD)2p1 =5+ (p1—2)(p1 —3).
Therefore, we can see that when p, > ... > p; > %, we have
max{(p; —2)(p;i—=3),i=1,---,r} =(p, = 2)(p, — 3).
On the other hand, when (p; + p, —5) <2p, —5<0, thatistosay l < p; <--- < p, < %, we have
max{(p; —2)(p;=3),i=1,---,r} =(p1 = 2)(p1 — 3).

In conclusion, we can get

=2 (p,=3) ifp,>..>p =2,
max{(ps— 2 (pr—3)i = 1o = | D7D = AP e e
(p1—2)(p1—3) 1f1<p1<"'<prS§.
Therefore, when
(5 m 5
L<pr<oe<po<min{S, (o= 1P = (1 =2 (pr = D) + 1},
2’ m-1
we have s 2 3)mi-2
m =1 (P —2) (pi = 3) 1"~
- _12_ r_l_ i=1
P =D == D ST 2
m 2.5
> (=)= 1P = (= D= (i =D (pr = 3) ()

>0,

whereas when

5 -1
maX{§,1+ \/mT((pr—1)+(pr—2)(pr—3))}<p1 < <pr
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we have
m Y (pi—2)(pi =3P
- -1 2 = 1) — i
e Cl R VRl V) ST
m 2.6
> (=) = 1P = (= D= (=2 (=) (2:0)
>0.
This completes the proof of Lemma 2.1. O
Lemma 2.2. The m X m matrix
T (pi = 2)|VyPi?
O:=1I,+ Zl_lz(:lrj |Vv)lfl'f—z| V| 2dv ® dv
i=1
is positive definite. Here, I, is the m X m identity matrix.
Proof. For any ¢ € R™\{0}, we have
Yo (pi =2
O ¢) = 0P + oo IV (L W)
Doy [Vyfpi=?
(i) If 22T > 0, we obtain ©(Z, ) = I > 0.
i=1 IVVIT!
(iNIf-1< % < 0, then we have (£, Vv) < |£]|Vv|, and thus
(¢, V)
Sl
Vvl
Consequently, we obtain
2 2ie1 (pi—2) |Vv|Pi—2 2
O.0) 2 e + S 1]
= 121 + Yy (pi—2)|Vvr?
Doy [Vyfpi=?
> 0.
Thus, in any case, we have shown that ® > 0. O

Lemma 2.3. Let 1 < p; <--- < p,and m > 2. Let v; denote the partial derivative with respect to Xx,.
Then, we have

L (pi= )W u
[1+Z 11: p,-—21 V%I+Zvlzl
2is1 V) =2

r i—2
>[ m_ T (=2 ]2 2 1

= Vi1 — V]lAV +
— ro pi—2 11 — —
m—1 vk m—1 m—1

2.7)

(Av)?.
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Proof. We note that

=2 =2 2<k<l
< Z v,2, + (ka + Vu)
=2 2<k<l
= > vi+(m-2) Z Ve
=2 1=2
Therefore,
m m 2
1
2
1
= — (Av - V11)2 28)
1
= Av)” = 2vi1Av +
po— (( V) = 2vAv +7).

By adding (1 + Zré(rp";i?v;i)vu to each side of (2.8), we get
i=1 V1

(1 + Zi:lz(:l:l v%) VIl ] nt Zvll

i=1"1

?_ P — 2 v - 1
> m + i1 (P .)2 1 v%l - ——VvjAv + (Av)?.
m—1 Zllevi’f‘ m—1 m—1
This completes the proof of Lemma 2.3. O

3. Proof of Theorem 1.1

In this section, we employ the Bernstein method to prove Theorem 1.1. We divide the proof into
several steps.
Step 1. First, we state a pointwise differential inequality.

Lemma 3.1. Let v be a positive solution of (1.1) in R™. Assume that p; satisfies (1.7) or (1.8). Assume
that f satisfies (1.9) or (1.10). Then, the following pointwise differential inequality holds:

%[Aqﬁ N Zle (pi—2) v],-—2

Vo> Bvi 1(D* 2E*\ ¢;
Vor By (—+—) i 3.1)

> A > 20"
lelv’f"_z RS TE1¥e 2¢7

where ¢ =

Proof. We know that the function v(x) is C° in {x € Q : |Vv| > 0} (see [19]). Let ¢ = 'VV—ZIQ and
{ei,ea,...,e,} be alocal orthonormal frame such that ¢; = |V ; at x*. If we denote Vv = X vie;, it is
easy to see that

Vvl=v, wvw=0, [=2,---,m (3.2)
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at x*. We observe that for k,[ =1,2,--- ,m, we have
br = 2vvv 2 = 2|VvPr (3.3)

and

¢kk = 2ka1V1V_2 + 2vk1vklv_2 - 8Vk1VkV1V_3 - 2|VV|2kaV_3 + 6|VV|2V_4V]%. (34)
Utilizing (3.3) and (3.4), we can get

d11 = 201V 2+ vyt — 10V11V%V_3 + 61/_4\/11
and
Ap =2 (Av), Vv 2+ vy — 8y, 1va_3 - 2v%v‘3Av + 6v_4v‘1‘.

Through calculations, we obtain the following at x*:

L (i =D L= 2
2 l: -2 g1 = 20v7|(Av), + Zin I: - : an]
Zis V) 2V
S (pi =2V
P——) Vv
Zis Yy
I (pi =2V
r Pi—2 Vil
2zt Yy
r i_2
Zi:l (pl - 2) VII) v4v_4
2iz1 Vlfi_z 1
Subsequently, we will focus on rearranging equation (3.5). We start by rewriting equation (1.1) in x*,
that is,

A¢ +

+ 2\/_2 (vk,vkl +
3.5

_22y [Av n [4 s

+6[1+

- — Yiei (pi = 2) VP
D IVuP Ay + SEL e vy = —f (v) . (3.6)
i=1
According to (3.2), at x*, we obtain the following equation from (3.6):
DAV Y (= DV v = —f (1), (3.7)
i=1 i=1
that is,
’.'_ P — 2 Vpi_2 1
Av + Zio (l: p,zz vy = e AR (3.8)
2i=1 Vi i1 Vi

We now differentiate (3.6) with respect to x.

Z (pi—2) vl"_3v11Av + Z vfi_z (Av), + Z (pi —2) (pi = 3) vli—?’v%l
=l i=1 i=1

=D =W+ Y (= 2V e
i=1 i=1

£2) (=W Y i+ [ v =0,
i=1

=1
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that is,

r

Z piv? (Av), + Z (pi—2) V1[_2V111

i=1

:—ZZ(p, 2) v Zv” Z(p, 2)vP v Ay

B Z (pi = 2) (pi = 3)VIvi, + Z (Pi =2V = f M),
Dividing both sides of (3.9) by X./_, v'"

(3.9)

, replacmg Av in (3.9) with (3.8), and rearranging, we obtain

';_ i~ 2 Vpi_ }-’_ i 2 % i=3
(Av), + izt (I: - )2 - _221_1 (l: ) 1 ZV 3
21 1 vl Zi:l vl =2
Z;:1 (pi—2)(pi—3) V1 2 b))
- —= U et
2ie1 Vi -1 1

— (3.10)
i (pi =)W £

+ roo P2 Vll( roopi=2
Z[:l vl 2 v

i=1 V]
Y (i =2V
+|1+ 2 V]l).
Zi:lvl

(pi =2V
Lzt (Pi - ) L yyvy =2

2 2
— Ehﬁm+Zz Z Vi
izt V1

Zi:l (pi=2)v,"
+ r Di -2 : vil
2ic1
7.'_ - 2 V ,'—2 m
+ ZZ_IZ(I: ,,32 ! 2 3.11)
TRV >

Next, we can get

ViVi +

i=1"1 I=

}‘*_ - 2 ,'—2 m
S (2 .\ lez(llr? pzzvl )Z 2
i=1 V1

[
r i 9 i—2
(1 Z[—l (15 ) Ll

=2
m
2 2
e
1=2

i=1 V]
Applying (2.7) to (3.11) and rearranging terms, we obtain

i ( i—2) W ,L(i—2)v”_2 i
ViiVi + Z 1P — L vivy =2+ Z 1P L ZV%I
S

p Vfi_z =2
’-’_ i 2 1% i=2
+( " 2t ([: pzz 1 ]V%l (5-12)
m—1 iy
1
- viiAv + (Av)?.
m-—1 -1

Electronic Research Archive
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Then, we substitute (3.10) and (3.12) into (3.5) to obtain

S (pi =2V

A¢ + — 11
2in Vfl ?
f_ i -2)v i3 P = 2 i 3)v i3 ’
szlv—ZI:_z Zl—] (}: ) 1 Z V2, — 1 1 (p - )(1:._2 ) 1 %1 _ Zc (‘2_2‘)1
izt V1 =2 2= V) 2zt V1

r L i3 2
. S (pi=2)W V11[Zf(V) i +(1 N Yo (pi - 2)v )Vn]]

ro pi—2 ropi—
2ici V) i=1 V]

r - 2 vp,~—2 m 3 P — 2 Vpi—z
+ 2v‘2[[2 + Lt (l: pzz . )Zv?l +[ n T L (l: pzz v,
2ic vy =2 m-— 2ici V1
iy (pi =2V
ropi—2 Vil
2ici V)

|
AV + (Av)z] 22y [Av+ 4+5
1 m-—1

r . — 2 VPi—Z
+ 6[1 + Z’_lz(f pzz 1 )V?v“‘.
=1V

Replacing Av in (3.13) with (3.8), we get

S (pi =2V

A¢ +

11

2zt Vfi_z
r -3 m r i—3 ,
Sy 2 _22,-:1 (pi —2)v, Z ' 2ie1 (Pi=2)(pi = 3) v} ‘' f )
= vlv - p,'—2 V” - pj—z 11 - pi_z Vl
2is1 Vi =2 2V 2is1 Vi

. o -3 r , — i~
T p-n” [Zf(v)_2 +(1 L 2 (=2, )m]]

et Vllii_z i=1 Vfl it Vfi_2
. i 2) v r T i~ 2)v -2
+ 2v_2[(2 + Zici (l: ) . )Z vy, + [ Zl_l (7 pizz 1 JV%I
2i-1 V1 =2 21 V)
2 i= 1= 2 V i~
+ 1V11[ rf(vzi_z + 2o (I: pgz l Vll]
m-— 2is1 2is1 Vi
r i~ 2
1 D) izt (i = 2) v ?
m—1 ro . pi—2 + roo o pi=2 Vil
2ic1 Vi 2
" P = 2)v 2
- 2va‘3[—( rf(v;__z pra (i) ,,32 : vn]
2ic vy 2ic vy
(=)W L (pi =)W
+(4+5Z llj p,._zl v11]+6 1+Z 1[: p,-_zl v,
Z[=1 vl Zl=1 vl

(3.13)

(3.14)
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After rearranging the terms in (3.14), we get

S (pi=2)V

A + s o 1
i=1V]
_ S (i =2V & OL
>2v 2{ [2 - p [ ] Z V%l — r—p,iZ
D=1 V) =2 2is1 Vi
N2
N [ m [Z?:I (pi—2)v) 2]
m—1 P Vllji_z
Y= pi=IVT m 2m S (pi— 2
S DR e B ]vﬁ (3.15)
2zt V1 m= m-— 2ist VY
2 =2
1 1 2 S (pi =2
+ 1 [ r Pi—Zf(v)) +[ 1 [1 + : ro . pi—2 1
m=1I{Yiv m-— 2is1 V)
SL =W fO) £
+ T R A T
i=1 V1 i=1 V1 i=1V]
T (pi =2V L(pi =2V
+ 4(1 + izt (l: p,zz ! )vn]va‘l + 3[1 + Lict (i) pfz 1 Jvilv‘z}.
2V Zist V)
From (3.2) and (3.3), we know that for [ = 2,--- ,m, ¢; = @ and
Vv v
¢ = ol (3.16)
Then, we have
2
py = 2 (3.17)
2\/‘1
We note that
Vel = > 4. (3.18)
I=1
By applying (3.17), (3.16), and (3.18), we obtain
2 A, g Xl er IVeP

=2

22y

Electronic Research Archive
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Z::I (pl - 2) vli—2

2 1Vpi_2 !
=1"1

LI =

pi—2
2 vy

A +

2 ’ 2
VL of SO
2¢ Zici Vi

2

m-—1

m

[ m (z;mm—2»4412 S (i = 2) (pi = 3V
+ - +

Dzl Vfi_z
2m T (pi-2DViT, 1 1 ’
1 PR ]vll Ll —f(v)
m -1V m 2iz1 V)

pi—2
Yiz1 vy

JO)

[ 2 ( i1 (Pi = 2) Vli_z] 2ie1 (pi—2) Vli_2
+ 1+ +

_ ro . pi—2
m—1 2i=1 V]

T P — 2)v -2
- [—% + 4[1 + 21_12(11: p,L 1 ]\M]V%v
=t V1 =1 V1

T (p;—2) Wt
+3 (1 + Zi1 (Pi=2) vy )v4v_2}.

ro pi=2 1
2is1 Vi

i—2 ]
P Vf 2

i=

-1

Based on (3.3), we obtain ¢; = 2v;;v;v=? — 2viv, and further get
¢’ Vi
By inserting (3.21) into (3.20), we obtain

Zle (pi—2) Vfi_z

pi—2
11

m-—1

V11

A¢ + s = 1
i=1"1
— , —21\2
| Za =D | Ivep +2v2{_ o +[ m [zizl (pi =2V
S | 2 R U Y
I == m L 2m T (i) vl"_z] o y’
> vll’i‘z m-1 m-1

r Pi=2
2is1 Vv 2v

1%

Di —
i=1 V] m-—1

2 r - i_2 r L ,'—2
. 1( f@ﬁ)+[2 P+2H@zzwl]+zﬂm 2)v]
m—1{y"

._2 ._2
Yie1 VI;I et vf’

er(vg._z (q;lvvz + vé) - [——f(v)_ > +4(1 L iz (Pi - 2)V1"_2](¢>1v2
i=1 Vi ! i

_ )
-1 V[1)' izl v[1)l 2v,

+ 3(1 L i (pim z)vli_z] ] -z}_

Zr Di—2 VIV
i=1 V]

+
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(3.22)
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Through rearrangement, we find that

S (pi =2V

A¢ + s = 1
=1 "1
— , —27\2
o Zaei-2” |V¢|2+[ m_(SL =297 m
- izt Vfi_z 2¢ m—1 izt Vfi_z m—1

roopi—2 - roopi—2
izt Vi m—1 izt Vi

S =D (= DWW oam S (=20

2 204
]( $1vi +ﬂ)
v A

2 [ £ )2+[ 2 [Hzgupi—z)vi’f”]

m=tvyi =) dm=l T (3.23)
LI e 4[1 L Zn(pim2) v’f"‘z] vy
2iot Vfi_z Vi Qs V119,-—2 et Vfi_z v
' ,-—2vi_2 T [—2Vi_22
211+ Zizt (P 32 L )vi‘v“‘ + 2[ m_ (2= (P 32 1
2t V’fl m—1 it Vf'
Y@= =V m 2m T (o= 20V (g2
— + + ]
> vfi_z m—1 m-1 p v117i—2 2vv;
+1 ,c P 2)v i=2 v2
+2v’2[—f'(V)+m [1+Z_1 (lj pzzl ]f(V)] . lp,_z.
m—1 2ic1 Vi LD IR
It is obvious that for ¢ > 0, since 1 < p; < --- < p,, the inequality
(pi— 272
(p—-D=1+ L 1er7 pr <(p -1 (3.24)
i=1
holds. Using (1.9) and (1.10), we obtain
(i) When f > 0,
1 ;_ i—2)v -
-+ mr (1 + Z_l(l: p.Ll )f(V)
m—1 2ic V1 v
i (3.25)
> f )+ (- DLW
m-—1
>0.
(ii) When f <0,
+1 i (pi—2)v 2
-1 p Vft v
1 (3.26)
>~ f )+ (p - DT W
m—1 v

>0.
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For the convenience of calculation, we introduce the following symbols:

2iei (pi—2) P2
D thi?

b

A(t) = — l2 -

By =2 - (z,;1 (pi=2) 1" )2 L= @i=)r
m—1 i 17
m+ 13, (pi=2)"
m—-1 Y 2 ]’

~ 2

m-—1
i i — i=2 " - i—2
D(f) = 2 (1 " Zi:l (P, 2) P )+ Zt:l (pl 2) 1P

m—1 Di 172 Yttt

b

DIEY m—1

Y (pi=2)i? ? B S (pi—=2)(pi—3)tri? N 2-m
DIY U m—1

. m
E@) = 2[
O =2 ( YT
N 2 2iei(pi-2) fpi_z]
m—1 = Y ’

F() := 2[ mn (Z?:I (pi—2) l”"_2)2 2 (i =2 (pi—3) P2 Lm

m—1 i 17
2m Yo (pi=2) fpi_z]
m—1 Yt '

Using (3.27) in (3.23), dividing both sides of (3.23) by ¢, and rearranging, we obtain

i 17 m—1

1 w1 (pi=2)v 2
—[A¢+ Lict (lr) ,,:2 1 11]
¢ Zie Yy
_ . 2\2
o L@V m (L =2
. ro o pi—2 202 m—1 roo P2 m—1
i=1V] 2i-1V)
I kLA S P RY(, —zm"z]ﬁ L2 (_rw
2im1 Vfi_z m—1 Diet Vfi_z v:ioom=1 Vi 2ic Vfi_

+[ 2 (,, S +Z,Ll<pi—2>v1"‘2] 1f ()
m—1 o v RVAR POV Y

[m (Zf:l(pi—Z)vl"_sz Z?:l(Pi—z)(Pi—3)V1i_2 2-m
+2 _ .

m—1\ 3 07 i v m—1
r i~ r i 2
2 i (pi=2)v 2]¢1v1 N 2[ m | 2ie (pi—2)Vv) 2
m—1 oy w2 Ly m=1( oy v
ZL =@ m om XL (= 2) v;“2] ¢
Z;:l V{)i_z m — 1 m — 1 Z;:l vllji_z 4¢2

)2

(3.27)

(3.28)
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Then, we have

1 i (pi =2V
—|Ag + == . p,_zl ¢
¢ Zimt VY
2 v S
>A(V1)| I Bw )—;+c(%] +D(v1)(%] (3.29)
2¢? Vi 2zt Vf dv1 Dz VI;
d1vi ¢
+E Z_+F —
(v1) v (v1) 497
Using Lemma 2.1 and (3.24), if
S (pi—2)(pi=3) " m ’
sup ST < (m_ 1)(171 -7 =(pr= 1D
holds, then we have
sup Y (pi—2)(pi—3) i
. Ziai 17 (3.30)
m (1 N -1 (Pi—2) fpi_z)z 3 (1 4 i1 (Pi = 2) tpi_z)
m—1 iz 2 DIY '
In addition, we have
B S (Pi=D T (=D (pi= 3
-1 Dimg 172 DIEY L
1 r - Di=2
N +m+121_1(p, 2)t ]
m—-1 m-1 Y tr?
_ 2[ m (1 N -1 (Pi=2) tp,-—z)z 3 (1 + i1 (Pi = 2) fpi_z)
m—1 iz P72 iy 72
B 2ie1 (Pi=2)(pi—3) fpi_z]
iz 172
and
j 2[ m (2;1 (pi —2)tP2 )2 3 S (pi=2) (pi = 3) 2
-1 iy 172 i 17
m_ 2m Y (pi—2) t”"_z]
m—-1 m-1 i thi?
_ 2[ m (1 N 2ie1 (pi—2) tp;—2)2 21 i =2 (pi-3) P2
m—1 Doy 172 D P2
Based on (3.30), we can derive that
" i—2tpi_22 " ,~—2t”"‘2 " i_2 i—3tpi_2
m (1_'_2:—1(1: ) )_(HZ,_I({J ) )_Z,_l(p r)(p LA
m—1 i 2 i 2 D P72
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That is to say, B > 0. Furthermore, we obtain

L " =2 =2
F_B:2(1+Zz_1(P ) )
DI L

Yiei (pi— D172
D 17
Since p; > 1, we can derive that F > B > 0. Then, we get

] S (pi =2V
_(A¢+ 1212_1 vfi_;] ¢“)

=2

2 2 2
>4 vy 22 +B(VI)V—;+0(L) (3.31)
¢ v V1 Zz lvl

¢1f( ) +E(V )M
Bvy SV Vogv

Using the Cauchy-Schwarz inequality, we estimate (3.31) as follows:

| L (pi =2V
5[A¢+ - lzl; v‘f'";l ¢“]

P ( fo Y 2\ A fo Y
AL AR I U N ( ) c(—]
2¢ V2 (Vl Zl 1 vl 2] 2C 2¢2 Vi Zl 1 vl

91\ _Bvi
2¢2 212
e (2,28

2w 2w 2\ TR |2

+ D(Vl)(

Thus, we have completed the proof of Lemma 3.1. O

Step 2. Below, we employ the maximal principle to (3.1). Let x, € R” be an arbitrary but fixed
point. Given R > 0, we set

Vo
2

2
H(x):= (R’ - d’(x)) ¢, where ¢= and  d(x) = |x — xo. (3.32)

1%

We observe that within B := B(x,R), H > 0 and H |,_,,=r= 0. Consequently, H attains its maximum
value at some interior point x* € B. Assuming Vv(x*) = 0, it follows that ¢ (and hence H) will be
zero at x*. But then H (and therefore ¢) would be zero throughout B. This means |[Vv| = 0 in B, and,
specifically, Vv(xy) = 0. Therefore, we assume that |[Vv| > 0 at x*. Now, at x*, we have

0=H, =-2(R - d(x)) (dz(x))k ¢+(R* - dz(x))2 b k=1, ,m (3.33)
and Hy; < 0. According to Lemma 2.2, we have ®H;; < 0 at x*. Thus, we can conclude that

Yo (pi = 2) Vw2
izt VP2

AH + Hyvv |V <0 (3.34)
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holds at x*. By using (3.32), we obtain
(dz(x))“ =2.
Therefore, from (3.34) we obtain
Zf:l (pi—2) Vfi_z
D Vllji_z
-2 ‘V (dz(x))'z -2 (R - () A(d*(x)) ¢ — 4 (R* = d*(x)) V (d*(x)) - Vb
S (i =)W
i=1 Vfi_z
- 4(R - ) (P W), 61+ (R = ) ou
<0.

AH + 11

+ (R - ) Ag +

[2 (@w) ) ¢ -4(R - d*(x) 9

We note that )
'V (dz(x))‘ =4d*(x) and A(d(0)=2m.

Therefore, using the two equations above for further calculation, we obtain
S (=2
i1 Vfi_z

2 |V (dz(x))‘2 ¢ 2UM(PW)¢  4V(d) Vo
= (R? — d2(x)) TRC d?(x) TR d*(x)

S (pi =2V 2((d2(x))])2¢ 4¢ 4(d()),
- S [ (R? — d?(x))? T R2—dXx) RY-d(x) ]

A¢g +

11

(3.35)

i=1 V1
8d(x) 4m 49 (d*(x)) - V¢
S- P+ T 2 _ 2
(R? — d*(x)) R> - d*(x) R> - d*(x)
2 2((2) Y 4(d2(x)
, Zin P 23;1 [— (e )1)2 +— 42 ¢+ 2( ):)1 ¢1].
PRRTE (R? - d*(x)) R*—d*(x)" R —d*(x)
In addition, according to (3.33), we obtain
2(¢), 2% ia
¢1 = RZ_—d2(x)¢ and V(b = R _ dz(x)V(d (.X')) .
Substituting the above two equations into (3.35) yields
r 0 pi—2
A¢ + Zl:lz(f:l pzz‘q 1
= VT
1V | 2 )
<¢{ UL Am FL i [6((‘1 x),) L4 ]}
TR -2y R-d s (R -y R -l
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Since ((dz(x) 'V dz(x))‘ = 4d?*(x), we obtain
1 2121 (pl 2) vll
—|A
¢( o izl V1 n ¢“)
24d%(x) 4m S (pi =2V

( 24d%(x) 4 )

“w-ewy F-e® |z |(@-ewy R-@m)

Moreover, since d”(x) < R? holds in B(xy, R), it follows that

r L pi—2
l[A(]§+ Zi:l (Pz 2)V1 ¢11)

’ Zw” (3.36)
__ MR AmR XL (=2 yr ( AR 4R
TR -2 (R -dx) PRV (R - d2(x))*  (R? - d%(x))
Step 3. By combining (3.1) and (3.36), we get
FIVeE  Bvi _1(D* 2E%\ 4
202 2v2 2\ C 292 237
- 24R? . 4mR? i (i =2V ( 24R? . 4R? ] (3-37)
TR -2 (R -dx) PIRRYARE (R - d(n))* (R -d*(0)*)
In other words, we have
2 r D) P2 2 A2 ) 2
0<v—§s— AR*(6 + m) . i1 (pi -)QVI 28R 2+‘1(D—~+£)—A|V¢l .
¥ 7 B (R - d2(x) S (R -y 2C 0 B 2¢
(3.38)
From (3.33), at x* we have
V¢ 2Vd%(x) IVo|? 8d%(x)
— =———" sothat = . 3.39
o~ R-—d 20 T (R - ) -39
Therefore, at x* we have , ~ )
\% C R
o< MF G (3.40)
v (R = d2(x)
where X -
~ 8 D (V]) 2E (Vl)) ~ ]
Colv :— 6+m+Tp,+2 ~ — —A(vl]. 3.41
o(v1) p 2( c Bon) (1) (3.41)

From Lemma 2.1, C(v;) is bounded by a positive constant M. Moreover, we observe that

\vJ 2
HGx') = | Z' (R - ) < MR
1%
Since H(xy) < H(x*), we conclude that

M VI2

—R* = H(xo) < H(x") < MR®
1%
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holds at xy. Thus, at xy, we have the estimate

WV
V2 R2

Letting R — oo, we observe that |Vv| = 0 at the point x,. The arbitrariness of x; leads us to conclude
that Vv = 0 in R™. Therefore, the proof of Theorem 1.1 is complete.

4. Proofs of related Corollaries

Proof of Corollary 1.2. We see that f(v) = — Zf;l av* < 0. According to Theorem 1.1, we need
to verify condition (1.10), namely

m+1f(t)

f@0<p =D ;

After substituting f(r) = — Zf;l a;t“ and f'(t) = — Zle a;a;t%"! into the above inequality, we obtain

Zk:aav“’ '> (p, - l)m il i Zaiv“i_l.

i=1 i=1

It is sufficient to have @; > (p, — 1) for all i, i.e., 1rn.ir}{{oz[} > (p, — 1) This completes the proof
<i<

of Corollary 1.2.

Proof of Corollary 1.3. Note that f(v) = 3 a® > 0. By Theorem 1.1, it is necessary to verify
condition (1.9), that is,
+ 1 f 0

t

I

After plugging f(¢) = Z, yait® and f'(¢) = Z, | @;a;1%! into the above inequality, we obtain

k
+1 a;—1
1 av
i=1

It is sufficient to have a; < (p; — )ﬁ—f{ forall i, i.e., ﬁna)]cc a; < (p) — l)fl—f{. This completes the proof of
<i<

k
Za'av“’ 1<(p1—1)

i=1

Corollary 1.3.

Proof of Corollary 1.4. (i) When f(v) = Z, Laiv’ ’ 1 b; VP > 0, according to Theorem 1.1, one
needs to verify condition (1.9). After plugging f(¢) = Z t“’ Z i= 1 bj i and f/(f) = Z _ ia; ol
ijl B;b;#*! into (1.9), we obtain

Zk:aia,-v Z,ij VWil < (py - l)m *1 iaiva"_l - 2191-\/31'_1
i=1 j=1

i=1

m+1
ml—

m+1
m—1 —

A sufficient condition for this to hold is @; < (p; — 1)

min
1<j<l{ﬁj

<pjforallij, ie., max{a,} <(p1—-DHE=
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(if) When f(v) = Z _ aiv® 25':1 b jvﬁf < 0, according to Theorem 1.1, one needs to verify condition
(1.10). After substituting f(#) and f’(¢) into (1.10), we obtain

Zkl aiaiv™ Zﬁjb Wil < (pr— l)m ] Z av ! - ZI: ijﬁf_l
=1

i=1 J 1 i=1

A sufficient condition for this to hold is @; < (p, — 1)"“ <pjforalli,j,ie., ma)li{ a;} < (pr— 1)erl <

fmnlw ;}. This completes the proof of Corollary 1.4.
<J<

5. Conclusions

Using the Bernstein method, we proved Liouville-type theorems for positive solutions to A, ... , v+
f(v) = 0in R™, where A, .. , v = div(} ], [Vv|[Pi=2Vv) was (pi,- - , p,)-Laplacian. The particular
cases of A, .., were the p-Laplacian and the (p, ¢)-Laplacian. The nonlinear item f(v) was not
required to be positive, which made our results applicable to many classical equations. Our results
improved and included many previously known results as special cases.
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