
Electronic  
Research Archive

https://www.aimspress.com/journal/era

ERA, 33(10): 5990–6011.
DOI: 10.3934/era.2025266
Received: 07 August 2025
Revised: 25 September 2025
Accepted: 10 October 2025
Published: 15 October 2025

Research article

Liouville-type theorems for positive solutions to ∆p1,··· ,prv + f (v) = 0 in Rm

Fanqi Zeng1, Jin Ban1, Peilong Dong2,*and Xiaoqin Ma1

1 School of Mathematics and Statistics, Henan Provincial Center for Applied Mathematics, Xinyang
Normal University, Xinyang 464000, Henan, China

2 School of Mathematics and Statistics, Zhengzhou Normal University, Zhengzhou 450044, China

* Correspondence: Email: dpl2021@163.com.

Abstract: In this paper, we employed the Bernstein method to prove some Liouville-type theorems
of the equation ∆p1,··· ,pr v + f (v) = 0. Here, ∆p1,··· ,pr v := div(

∑r
i=1 |∇v|pi−2∇v). This could be regarded

as a natural generalization of the p-Laplacian and the (p, q)-Laplacian. As applications, we derived
Liouville-type theorems of positive solutions to some generalized static Fisher-KPP equation, Allen-
Cahn equation, static Newell-Whitehead equation, and Lichnerowicz equation.
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1. Introduction

The p-Laplace equation serves as a fundamental model for nonlinear diffusion (e.g., in porous
medium flow) and image processing (e.g., in TV denoising models). And, the Liouville theorem
offers a benchmark for the qualitative analysis of solutions. As a nonlinear elliptic equation, the p-
Laplace equation is studied in the context of Liouville-type theorems to classify bounded solutions (or
those satisfying certain growth conditions) defined on the whole space or non-compact manifolds. The
central question is: Are all such solutions constant? The classical result establishes that when p = 2
(the Laplace equation), any bounded harmonic function on the entire space must be constant (see [1]).
For p , 2, the conclusion depends on both p and the spatial dimension n (see [2, 3]).

In this paper, we consider the following elliptic equation:

∆p1,··· ,pr v + f (v) = 0 in Rm, (1.1)

where m ≥ 1 and the semilinear term f is sufficiently smooth and may be positive or negative. Here,
∆p1,··· ,pr v := div(

∑r
i=1 |∇v|pi−2∇v), where r ∈ N+, pi > 1 for any 1 ≤ i ≤ r, and 1 < p1 < · · · < pr. When

r = 1, the (p1, · · · , pr)-Laplacian reduces to the classical p-Laplacian (see [4, 5]). When r = 2, the
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(p1, · · · , pr)-Laplacian reduces to the classical (p, q)-Laplacian (see [6–8]). Under certain conditions
on f and pi, we prove some Liouville-type theorems for solutions of (1.1) in Rm.

It is well known that Liouville-type theorems of nonlinear elliptic equations are very important in
the study of nonlinear PDEs (see [9–11]). Furthermore, the research of Liouville-type theorems has
also been widely pursued (see [12–14]). With the aim to investigate the problem (1.1), we mainly focus
on four papers.

Gidas and Spruck [15] established Liouville-type theorems of positive solutions to the Lane-Emden
equation

∆v + vα = 0 (1.2)

in Rm when m > 2 and 1 ≤ α < m+2
m−2 . This finding extends the classical Liouville theorem on harmonic

functions in Euclidean space.
Serrin and Zou [16] established the Liouville-type theorems of positive solutions in Rm for the

equation
∆pv + f (v) = 0 (1.3)

under the conditions 1 < p < m, f ≥ 0 is subcritical, and there is q > p such that f (t) ≥ tq−1 for t large.
Recall that f ≥ 0 is subcritical if there is 0 < β < mp

m−p − 1 such that

f ′(t) ≤ β
f (t)
t
, ∀ t > 0. (1.4)

This might be considered an extension of the previously mentioned study by Gidas and Spruck [15].
McCoy [17] investigated the equation

∆v + f (v) = 0, (1.5)

in Rm (m ≥ 2) and proved that if the inequality

f ′(t) ≤
m + 1
m − 1

f (t)
t
, ∀ t > 0.

holds, then any positive solution to (1.5) is constant.
Cuccu et al. [18] studied equation (1.3) in Rm (m ≥ 2), where the function f may change sign. They

proved that when

f ′(t) ≤ (p − 1)
m + 1
m − 1

f (t)
t
, ∀ t > 0, (1.6)

holds, then any positive solution to (1.3) is constant.
In this paper, we study some Liouville-type theorems of (1.1) in Rm (m ≥ 2). Our aim is to extend

some work of [16–18] to the general (p1, · · · , pr)-Laplacian.
Our main theorem is stated as follows

Theorem 1.1. Assume that pi satisfies

1 < p1 < · · · < pr < min
{5

2
,

m
m − 1

(p1 − 1)2 − (p1 − 2) (p1 − 3) + 1
}

(1.7)

or

max
{5

2
, 1 +

√
m − 1

m
((pr − 1) + (pr − 2) (pr − 3))

}
< p1 < · · · < pr. (1.8)
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If one of the following conditions holds,
(i) f is nonnegative and

f ′(t) ≤ (p1 − 1)
m + 1
m − 1

f (t)
t
, (1.9)

or
(ii) f is nonpositive and

f ′(t) ≤ (pr − 1)
m + 1
m − 1

f (t)
t
, (1.10)

then any positive solution to (1.1) in Rm is constant.

Remark 1.1. 1) In [16], f is required to be non-negative. In our theorem, we do not require this
constraint and f can be negative. Furthermore, we extend the p-Laplacian operator to a more general
(p1, · · · , pr)-Laplacian operator.

2) When r = 1 and p1 = 2, the Liouville-type theorem established by McCoy [17] can be recovered
by the above Theorem 1.1.

3) When r = 1 and p1 = p, Cuccu-Mohammed-Porru’s Liouville-type theorems (see [18]) can be
recovered by the above Theorem 1.1.

Corollary 1.2. Let v be a positive solution of

∆p1,··· ,pr v −
k∑

i=1

aivαi = 0, (1.11)

where ai > 0. Suppose pi satisfy conditions (1.7) or (1.8). If min
1≤i≤k
{αi} ≥ (pr − 1)m+1

m−1 , then v is constant.

Corollary 1.3. Let v be a positive solution of

∆p1,··· ,pr v +
k∑

i=1

aivαi = 0, (1.12)

where ai > 0. Suppose pi satisfy conditions (1.7) or (1.8). If max
1≤i≤k
{αi} ≤ (p1 − 1)m+1

m−1 , then v is constant.

Corollary 1.4. Let v be a positive solution of

∆p1,··· ,pr v +
k∑

i=1

aivαi −

l∑
j=1

b jvβ j = 0, (1.13)

where ai > 0, b j > 0, and αi and β j are constants. Suppose pi satisfy conditions (1.7) or (1.8). If one
of the following conditions holds,

(i)
∑k

i=1 aivαi −
∑l

j=1 b jvβ j ≥ 0 and max
1≤i≤k
{αi} ≤ (p1 − 1)m+1

m−1 ≤ min
1≤ j≤l
{β j}, or

(ii)
∑k

i=1 aivαi −
∑l

j=1 b jvβ j ≤ 0 and max
1≤i≤k
{αi} ≤ (pr − 1)m+1

m−1 ≤ min
1≤ j≤l
{β j},

then v is constant.

Remark 1.2. Theorem 1.1 can apply to the following cases.
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(i) When k = l = 1, a1 = b1 > 0, α1 = 1, β1 = 2, and p1 = 2 (r = 1), (1.13) becomes the static
Fisher-KPP equation

∆v + a1v − a1v2 = 0. (1.14)

If one of the following conditions holds,
(•) a1v − a1v2 ≥ 0 and m ≥ 3, or
(•) a1v − a1v2 ≤ 0 and m ≥ 3,

then v is constant.
(ii) When k = l = 1, a1 = b1 = α1 = 1, β1 = 3, and p1 = 2 (r = 1), (1.13) becomes the Allen-Cahn

equation
∆v + v − v3 = 0. (1.15)

If one of the following conditions holds,
(•) v − v3 ≥ 0 and m ≥ 2, or
(•) v − v3 ≤ 0 and m ≥ 2,

then v is constant.
(iii) When k = l = 1, a1 > 0, b1 > 0, α1 = 1, β1 = 3, and p1 = 2 (r = 1), (1.13) becomes the static

Newell-Whitehead equation
∆v + a1v − b1v3 = 0. (1.16)

If one of the following conditions holds,
(•) a1v − b1v3 ≥ 0 and m ≥ 2, or
(•) a1v − b1v3 ≤ 0 and m ≥ 2,

then v is constant.
(iv) When k = 2, l = 1, a1 > 0, a2 > 0, b1 > 0, α1 = 1, α2 < 1, β1 > 1, and p1 = 2 (r = 1), (1.13)

becomes the Lichnerowicz equation

∆v + a1v + a2vα2 − b1vβ1 = 0. (1.17)

If one of the following conditions holds,
(•) a1v + a2vα2 − b1vβ1 ≥ 0 and m ≥ 1+β1

β1−1 , or

(•) a1v + a2vα2 − b1vβ1 ≤ 0 and m ≥ 1+β1
β1−1 ,

then v is constant.

The remainder of this paper is structured as follows. In Section 2, we establish some important
lemmas. We employ the Bernstein method to prove Theorem 1.1 in Section 3. The proofs of Corollaries
1.2–1.4 are provided in Section 4.

2. Preliminary

To prove the main theorem, we require the following lemmas.

Lemma 2.1. Suppose pi satisfy conditions (1.7) or (1.8). Then, we have

sup
t>0

∑r
i=1 (pi − 2) (pi − 3) tpi−2∑r

i=1 tpi−2 <
( m
m − 1

)
(p1 − 1)2 − (pr − 1).
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Proof. We note that∑r
i=1 (pi − 2) (pi − 3) tpi−2∑r

i=1 tpi−2 ≤ max{(pi − 2) (pi − 3) , i = 1, · · · , r}. (2.1)

Then, we have

m
m − 1

(p1 − 1)2 − (pr − 1) −
∑r

i=1 (pi − 2) (pi − 3) tpi−2∑r
i=1 tpi−2

≥

( m
m − 1

)
(p1 − 1)2 − (pr − 1) −max{(pi − 2) (pi − 3) , i = 1, · · · , r}

>0.

(2.2)

Through calculation, we obtain

(pr − 2) (pr − 3)

= (pr − p1 + p1 − 2) (pr − p1 + p1 − 3)

= (pr − p1)2 + (pr − p1) (2p1 − 5) + (p1 − 2) (p1 − 3)

= (pr − p1) (p1 + pr − 5) + (p1 − 2) (p1 − 3)

≥ (pr − p1) (2p1 − 5) + (p1 − 2) (p1 − 3) .

(2.3)

Therefore, we can see that when pr > ... > p1 ≥
5
2 , we have

max{(pi − 2) (pi − 3) , i = 1, · · · , r} = (pr − 2) (pr − 3) .

On the other hand, when (p1 + pr − 5) ≤ 2pr − 5 ≤ 0, that is to say 1 < p1 < · · · < pr ≤
5
2 , we have

max{(pi − 2) (pi − 3) , i = 1, · · · , r} = (p1 − 2) (p1 − 3) .

In conclusion, we can get

max{(pi − 2) (pi − 3) , i = 1, · · · , r} =

(pr − 2) (pr − 3) if pr > ... > p1 ≥
5
2 ,

(p1 − 2) (p1 − 3) if 1 < p1 < · · · < pr ≤
5
2 .

(2.4)

Therefore, when

1 < p1 < · · · < pr < min
{5

2
,

m
m − 1

(p1 − 1)2 − (p1 − 2) (p1 − 3) + 1
}
,

we have
m

m − 1
(p1 − 1)2 − (pr − 1) −

∑r
i=1 (pi − 2) (pi − 3) tpi−2∑r

i=1 tpi−2

≥

( m
m − 1

)
(p1 − 1)2 − (pr − 1) − (p1 − 2) (p1 − 3)

>0,

(2.5)

whereas when

max
{5

2
, 1 +

√
m − 1

m
((pr − 1) + (pr − 2) (pr − 3))

}
< p1 < · · · < pr,
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we have
m

m − 1
(p1 − 1)2 − (pr − 1) −

∑r
i=1 (pi − 2) (pi − 3) tpi−2∑r

i=1 tpi−2

≥

( m
m − 1

)
(p1 − 1)2 − (pr − 1) − (pr − 2) (pr − 3)

>0.

(2.6)

This completes the proof of Lemma 2.1. □

Lemma 2.2. The m × m matrix

Θ := Im +

∑r
i=1 (pi − 2) |∇v|pi−2∑r

i=1 |∇v|pi−2 |∇v|−2dv ⊗ dv

is positive definite. Here, Im is the m × m identity matrix.

Proof. For any ζ ∈ Rm\{0}, we have

Θ(ζ, ζ) := |ζ |2 +
∑r

i=1 (pi − 2) |∇v|pi−2∑r
i=1 |∇v|pi−2 |∇v|−2 ⟨ζ,∇v⟩2 .

(i) If
∑r

i=1(pi−2)|∇v|pi−2∑r
i=1 |∇v|pi−2 ≥ 0, we obtain Θ(ζ, ζ) ≥ |ζ |2 > 0.

(ii) If −1 <
∑r

i=1(pi−2)|∇v|pi−2∑r
i=1 |∇v|pi−2 < 0, then we have ⟨ζ,∇v⟩ ≤ |ζ ||∇v|, and thus

⟨ζ,∇v⟩2

|∇v|2
≤ |ζ |2.

Consequently, we obtain

Θ(ζ, ζ) ≥ |ζ |2 +
∑r

i=1 (pi − 2) |∇v|pi−2∑r
i=1 |∇v|pi−2 |ζ |2

= |ζ |2
(
1 +

∑r
i=1 (pi − 2) |∇v|pi−2∑r

i=1 |∇v|pi−2

)
> 0.

Thus, in any case, we have shown that Θ > 0. □

Lemma 2.3. Let 1 < p1 < · · · < pr and m ≥ 2. Let vi denote the partial derivative with respect to xi.
Then, we have 1 + ∑r

i=1 (pi − 2) vpi−2
1∑r

i=1 vpi−2
1

 v2
11 +

m∑
l=2

v2
ll

≥

 m
m − 1

+

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v2
11 −

2
m − 1

v11∆v +
1

m − 1
(∆v)2 .

(2.7)
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Proof. We note that  m∑
l=2

vll

2

=

m∑
l=2

v2
ll + 2

m∑
2≤k<l

vkkvll

≤

m∑
l=2

v2
ll +

m∑
2≤k<l

(
v2

kk + v2
ll

)
=

m∑
l=2

v2
ll + (m − 2)

m∑
l=2

v2
ll.

Therefore,
m∑

l=2

v2
ll ≥

1
m − 1

 m∑
l=2

vll

2

=
1

m − 1
(∆v − v11)2

=
1

m − 1

(
(∆v)2

− 2v11∆v + v2
11

)
.

(2.8)

By adding
(
1 +

∑r
i=1(pi−2)vpi−2

1∑r
i=1 vpi−2

1

)
v2

11 to each side of (2.8), we get

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v2
11 +

m∑
l=2

v2
ll

≥

 m
m − 1

+

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v2
11 −

2
m − 1

v11∆v +
1

m − 1
(∆v)2 .

This completes the proof of Lemma 2.3. □

3. Proof of Theorem 1.1

In this section, we employ the Bernstein method to prove Theorem 1.1. We divide the proof into
several steps.

Step 1. First, we state a pointwise differential inequality.

Lemma 3.1. Let v be a positive solution of (1.1) in Rm. Assume that pi satisfies (1.7) or (1.8). Assume
that f satisfies (1.9) or (1.10). Then, the following pointwise differential inequality holds:

1
ϕ

∆ϕ + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

ϕ11

 ≥ Ã
|∇ϕ|2

2ϕ2 +
B̃
2

v2
1

v2 −
1
2

(
D̃2

C̃
+

2Ẽ2

B̃

)
ϕ2

1

2ϕ2 , (3.1)

where ϕ = |∇v|2

v2 , and the variables Ã, B̃, C̃, D̃, and Ẽ are defined as in (3.27).

Proof. We know that the function v(x) is C3 in {x ∈ Ω : |∇v| > 0} (see [19]). Let ϕ = |∇v|2

v2 and
{e1, e2, . . . , em} be a local orthonormal frame such that e1 =

∇v
|∇v| at x∗. If we denote ∇v = Σm

i=1viei, it is
easy to see that

|∇v| = v1, vl = 0, l = 2, · · · ,m (3.2)
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at x∗. We observe that for k, l = 1, 2, · · · ,m, we have

ϕk = 2vklvlv−2 − 2|∇v|2vkv−3 (3.3)

and
ϕkk = 2vkklvlv−2 + 2vklvklv−2 − 8vklvkvlv−3 − 2|∇v|2vkkv−3 + 6|∇v|2v−4v2

k . (3.4)

Utilizing (3.3) and (3.4), we can get

ϕ11 = 2v111v1v−2 + 2v1lv1lv−2 − 10v11v2
1v−3 + 6v−4v4

1

and
∆ϕ = 2 (∆v)1 v1v−2 + 2vklvklv−2 − 8v11v2

1v−3 − 2v2
1v−3∆v + 6v−4v4

1.

Through calculations, we obtain the following at x∗:

∆ϕ +

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

ϕ11 = 2v1v−2
[
(∆v)1 +

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

v111

]
+ 2v−2

vklvkl +

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

v1lv1l


− 2v2

1v−3
[
∆v +

4 + 5
∑r

i=1 (pi − 2) vpi−2
1∑r

i=1 vpi−2
1

 v11

]
+ 6

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v4
1v−4.

(3.5)

Subsequently, we will focus on rearranging equation (3.5). We start by rewriting equation (1.1) in x∗,
that is,

r∑
i=1

|∇v|pi−2∆v +
∑r

i=1 (pi − 2) |∇v|pi−3

|∇v|
vklvkvl = − f (v) . (3.6)

According to (3.2), at x∗, we obtain the following equation from (3.6):
r∑

i=1

vpi−2
1 ∆v +

r∑
i=1

(pi − 2) vpi−2
1 v11 = − f (v) , (3.7)

that is,

∆v +
∑r

i=1 (pi − 2) vpi−2
1∑r

i=1 vpi−2
1

v11 = −
1∑r

i=1 vpi−2
1

f (v) . (3.8)

We now differentiate (3.6) with respect to x1.
r∑

i=1

(pi − 2) vpi−3
1 v11∆v +

r∑
i=1

vpi−2
1 (∆v)1 +

r∑
i=1

(pi − 2) (pi − 3) vpi−3
1 v2

11

−

r∑
i=1

(pi − 2) vpi−3
1 v2

11 +

r∑
i=1

(pi − 2) vpi−2
1 v111

+ 2
r∑

i=1

(pi − 2) vpi−3
1

m∑
l=1

v2
1l + f ′ (v) v1 = 0,
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that is,
r∑

i=1

vpi−2
1 (∆v)1 +

r∑
i=1

(pi − 2) vpi−2
1 v111

= − 2
r∑

i=1

(pi − 2) vpi−3
1

m∑
l=2

v2
1l −

r∑
i=1

(pi − 2) vpi−3
1 v11∆v

−

r∑
i=1

(pi − 2) (pi − 3) vpi−3
1 v2

11 +

r∑
i=1

(pi − 2) vpi−3
1 v2

11 − f ′ (v) v1.

(3.9)

Dividing both sides of (3.9) by
∑r

i=1 vpi−2
1 , replacing ∆v in (3.9) with (3.8), and rearranging, we obtain

(∆v)1 +

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

v111 = −2
∑r

i=1 (pi − 2) vpi−3
1∑r

i=1 vpi−2
1

m∑
l=2

v2
1l

−

∑r
i=1 (pi − 2) (pi − 3) vpi−3

1∑r
i=1 vpi−2

1

v2
11 −

f ′ (v)∑r
i=1 vpi−2

1

v1

+

∑r
i=1 (pi − 2) vpi−3

1∑r
i=1 vpi−2

1

v11

( f (v)∑r
i=1 vpi−2

1

+

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v11

)
.

(3.10)

Next, we can get

vklvkl +

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

v1lv1l = 2
m∑

l=2

v2
1l + v2

11 +

m∑
l=2

v2
ll +

m∑
k,l≥2,k,l

v2
kl

+

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

v2
11

+

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

m∑
l=2

v2
1l

≥

2 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 m∑
l=2

v2
1l

+

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v2
11 +

m∑
l=2

v2
ll.

(3.11)

Applying (2.7) to (3.11) and rearranging terms, we obtain

vklvkl +

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

v1lv1l ≥

2 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 m∑
l=2

v2
1l

+

 m
m − 1

+

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v2
11

−
2

m − 1
v11∆v +

1
m − 1

(∆v)2 .

(3.12)

Electronic Research Archive Volume 33, Issue 10, 5990–6011.



5999

Then, we substitute (3.10) and (3.12) into (3.5) to obtain

∆ϕ +

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

ϕ11

≥2v1v−2
[
−2

∑r
i=1 (pi − 2) vpi−3

1∑r
i=1 vpi−2

1

m∑
l=2

v2
1l −

∑r
i=1 (pi − 2) (pi − 3) vpi−3

1∑r
i=1 vpi−2

1

v2
11 −

f ′ (v)∑r
i=1 vpi−2

1

v1

+

∑r
i=1 (pi − 2) vpi−3

1∑r
i=1 vpi−2

1

v11

 f (v)∑r
i=1 vpi−2

1

+

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v11

]
+ 2v−2

[ 2 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 m∑
l=2

v2
1l +

 m
m − 1

+

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v2
11

−
2

m − 1
v11∆v +

1
m − 1

(∆v)2
]
− 2v2

1v−3
[
∆v +

4 + 5
∑r

i=1 (pi − 2) vpi−2
1∑r

i=1 vpi−2
1

 v11

]
+ 6

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v4
1v−4.

(3.13)

Replacing ∆v in (3.13) with (3.8), we get

∆ϕ +

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

ϕ11

≥2v1v−2
[
−2

∑r
i=1 (pi − 2) vpi−3

1∑r
i=1 vpi−2

1

m∑
l=2

v2
1l −

∑r
i=1 (pi − 2) (pi − 3) vpi−3

1∑r
i=1 vpi−2

1

v2
11 −

f ′ (v)∑r
i=1 vpi−2

1

v1

+

∑r
i=1 (pi − 2) vpi−3

1∑r
i=1 vpi−2

1

v11

 f (v)∑r
i=1 vpi−2

1

+

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v11

]
+ 2v−2

[ 2 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 m∑
l=2

v2
1l +

 m
m − 1

+

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v2
11

+
2

m − 1
v11

 f (v)∑r
i=1 vpi−2

1

+

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

v11


+

1
m − 1

 f (v)∑r
i=1 vpi−2

1

+

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

v11

2 ]
− 2v2

1v−3
[
−

 f (v)∑r
i=1 vpi−2

1

+

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

v11


+

4 + 5
∑r

i=1 (pi − 2) vpi−2
1∑r

i=1 vpi−2
1

 v11

]
+ 6

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v4
1v−4.

(3.14)
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After rearranging the terms in (3.14), we get

∆ϕ +

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

ϕ11

≥2v−2
{ 2 − ∑r

i=1 (pi − 2) vpi−2
1∑r

i=1 vpi−2
1

 m∑
l=2

v2
1l −

f ′ (v) v2
1∑r

i=1 vpi−2
1

+

[ m
m − 1

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

2

−

∑r
i=1 (pi − 2) (pi − 3) vpi−2

1∑r
i=1 vpi−2

1

+
m

m − 1
+

2m
m − 1

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

]
v2

11

+
1

m − 1

 1∑r
i=1 vpi−2

1

f (v)

2

+

[ 2
m − 1

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1


+

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

] f (v)∑r
i=1 vpi−2

1

v11 −

[
−

f (v)∑r
i=1 vpi−2

1

+ 4

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v11

]
v2

1v−1 + 3

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v4
1v−2

}
.

(3.15)

From (3.2) and (3.3), we know that for l = 2, · · · ,m, ϕl =
2v1lv1

v2 and

ϕ =
|∇v|2

v2 =
v2

1

v2 . (3.16)

Then, we have

v1l =
ϕlv2

2v1
. (3.17)

We note that

|∇ϕ|2 =

m∑
l=1

ϕ2
l . (3.18)

By applying (3.17), (3.16), and (3.18), we obtain

2
v2

m∑
l=2

v2
1l =

∑m
l=2 ϕ

2
l

2
(

v1
v

)2 =

∑m
l=2 ϕ

2
l

2ϕ
≤
|∇ϕ|2

2ϕ
. (3.19)
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Using (3.19) and (3.15), we obtain

∆ϕ +

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

ϕ11

≥ −

∣∣∣∣∣∣∣2 −
∑r

i=1 (pi − 2) vpi−2
1∑r

i=1 vpi−2
1

∣∣∣∣∣∣∣ |∇ϕ|22ϕ
+ 2v−2

{
−

f ′ (v) v2
1∑r

i=1 vpi−2
1

+

[ m
m − 1

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

2

−

∑r
i=1 (pi − 2) (pi − 3) vpi−2

1∑r
i=1 vpi−2

1

+
m

m − 1

+
2m

m − 1

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

]
v2

11 +
1

m − 1

 1∑r
i=1 vpi−2

1

f (v)

2

+

[ 2
m − 1

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

] f (v)∑r
i=1 vpi−2

1

v11

−

[
−

f (v)∑r
i=1 vpi−2

1

+ 4

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v11

]
v2

1v−1

+ 3

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v4
1v−2

}
.

(3.20)

Based on (3.3), we obtain ϕ1 = 2v11v1v−2 − 2v3
1v−3, and further get

v11 =
ϕ1v2

2v1
+

v2
1

v
. (3.21)

By inserting (3.21) into (3.20), we obtain

∆ϕ +

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

ϕ11

≥ −

∣∣∣∣∣∣∣2 −
∑r

i=1 (pi − 2) vpi−2
1∑r

i=1 vpi−2
1

∣∣∣∣∣∣∣ |∇ϕ|22ϕ
+ 2v−2

{
−

f ′ (v) v2
1∑r

i=1 vpi−2
1

+

[ m
m − 1

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

2

−

∑r
i=1 (pi − 2) (pi − 3) vpi−2

1∑r
i=1 vpi−2

1

+
m

m − 1
+

2m
m − 1

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

] (
ϕ1v2

2v1
+

v2
1

v

)2

+
1

m − 1

 f (v)∑r
i=1 vpi−2

1

2

+

[ 2
m − 1

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

]
f (v)∑r

i=1 vpi−2
1

(
ϕ1v2

2v1
+

v2
1

v

)
−

[
−

f (v)∑r
i=1 vpi−2

1

+ 4

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 (ϕ1v2

2v1
+

v2
1

v

)]
v2

1v−1

+ 3

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v4
1v−2

}
.

(3.22)
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Through rearrangement, we find that

∆ϕ +

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

ϕ11

≥ −

∣∣∣∣∣∣∣2 −
∑r

i=1 (pi − 2) vpi−2
1∑r

i=1 vpi−2
1

∣∣∣∣∣∣∣ |∇ϕ|22ϕ
+

[ m
m − 1

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

2

+
m

m − 1

−

∑r
i=1 (pi − 2) (pi − 3) vpi−2

1∑r
i=1 vpi−2

1

+
2m

m − 1

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

] (2ϕ1v1

v
+

2v4
1

v4

)

+
2

m − 1

 f (v)

v
∑r

i=1 vpi−2
1

2

+

[ 2
m − 1

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1


+

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

]
ϕ1 f (v)

v1
∑r

i=1 vpi−2
1

− 4

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 ϕ1v1

v

− 2

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 v4
1v−4 + 2

[ m
m − 1

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

2

−

∑r
i=1 (pi − 2) (pi − 3) vpi−2

1∑r
i=1 vpi−2

1

+
m

m − 1
+

2m
m − 1

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

] (
ϕ1v2

2vv1

)2

+ 2v−2
[
− f ′ (v) +

m + 1
m − 1

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 f (v)
v

] v2
1∑r

i=1 vpi−2
1

.

(3.23)

It is obvious that for t > 0, since 1 < p1 < · · · < pr, the inequality

(p1 − 1) ≤ 1 +
∑r

i=1(pi − 2)tpi−2∑r
i=1 tpi−2 ≤ (pr − 1) (3.24)

holds. Using (1.9) and (1.10), we obtain
(i) When f ≥ 0,

− f ′ (v) +
m + 1
m − 1

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 f (v)
v

≥ − f ′ (v) + (p1 − 1)
m + 1
m − 1

f (v)
v

≥0.

(3.25)

(ii) When f ≤ 0,

− f ′ (v) +
m + 1
m − 1

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 f (v)
v

≥ − f ′ (v) + (pr − 1)
m + 1
m − 1

f (v)
v

≥0.

(3.26)
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For the convenience of calculation, we introduce the following symbols:

Ã(t) := −

∣∣∣∣∣∣2 −
∑r

i=1 (pi − 2) tpi−2∑r
i=1 tpi−2

∣∣∣∣∣∣ ,
B̃(t) := 2

[ m
m − 1

(∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

)2

−

∑r
i=1 (pi − 2) (pi − 3) tpi−2∑r

i=1 tpi−2 +
1

m − 1

+
m + 1
m − 1

∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

]
,

C̃ :=
2

m − 1
,

D̃(t) :=
2

m − 1

(
1 +

∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

)
+

∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2 ,

Ẽ(t) := 2
[ m
m − 1

(∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

)2

−

∑r
i=1 (pi − 2) (pi − 3) tpi−2∑r

i=1 tpi−2 +
2 − m
m − 1

+
2

m − 1

∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

]
,

F̃(t) := 2
[ m
m − 1

(∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

)2

−

∑r
i=1 (pi − 2) (pi − 3) tpi−2∑r

i=1 tpi−2 +
m

m − 1

+
2m

m − 1

∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

]
.

(3.27)

Using (3.27) in (3.23), dividing both sides of (3.23) by ϕ, and rearranging, we obtain

1
ϕ

∆ϕ + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

ϕ11


≥ −

∣∣∣∣∣∣∣2 −
∑r

i=1 (pi − 2) vpi−2
1∑r

i=1 vpi−2
1

∣∣∣∣∣∣∣ |∇ϕ|22ϕ2 + 2
[ m
m − 1

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

2

+
1

m − 1

−

∑r
i=1 (pi − 2) (pi − 3) vpi−2

1∑r
i=1 vpi−2

1

+
m + 1
m − 1

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

]v2
1

v2 +
2

m − 1

 f (v)

v1
∑r

i=1 vpi−2
1

2

+

[ 2
m − 1

1 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

 + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

]
ϕ1 f (v)

ϕv1
∑r

i=1 vpi−2
1

+ 2
[ m
m − 1

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

2

−

∑r
i=1 (pi − 2) (pi − 3) vpi−2

1∑r
i=1 vpi−2

1

+
2 − m
m − 1

+
2

m − 1

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

]
ϕ1v1

ϕv
+ 2

[ m
m − 1

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

2

−

∑r
i=1 (pi − 2) (pi − 3) vpi−2

1∑r
i=1 vpi−2

1

+
m

m − 1
+

2m
m − 1

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

] ϕ2
1

4ϕ2 .

(3.28)
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Then, we have

1
ϕ

∆ϕ + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

ϕ11


≥Ã (v1)

|∇ϕ|2

2ϕ2 + B̃ (v1)
v2

1

v2 + C̃

 f (v)

v1
∑r

i=1 vpi−2
1

2

+ D̃ (v1)

 ϕ1 f (v)

ϕv1
∑r

i=1 vpi−2
1


+ Ẽ (v1)

ϕ1v1

ϕv
+ F̃ (v1)

ϕ2
1

4ϕ2 .

(3.29)

Using Lemma 2.1 and (3.24), if

sup
t>0

∑r
i=1 (pi − 2) (pi − 3) tpi−2∑r

i=1 tpi−2 <
( m
m − 1

)
(p1 − 1)2 − (pr − 1)

holds, then we have

sup
t>0

∑r
i=1 (pi − 2) (pi − 3) tpi−2∑r

i=1 tpi−2

<
m

m − 1

(
1 +

∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

)2

−

(
1 +

∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

)
.

(3.30)

In addition, we have

B̃ = 2
[ m
m − 1

(∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

)2

−

∑r
i=1 (pi − 2) (pi − 3) tpi−2∑r

i=1 tpi−2

+
1

m − 1
+

m + 1
m − 1

∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

]
= 2

[ m
m − 1

(
1 +

∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

)2

−

(
1 +

∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

)
−

∑r
i=1 (pi − 2) (pi − 3) tpi−2∑r

i=1 tpi−2

]
and

F̃ = 2
[ m
m − 1

(∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

)2

−

∑r
i=1 (pi − 2) (pi − 3) tpi−2∑r

i=1 tpi−2

+
m

m − 1
+

2m
m − 1

∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

]
= 2

[ m
m − 1

(
1 +

∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

)2

−

∑r
i=1 (pi − 2) (pi − 3) tpi−2∑r

i=1 tpi−2

]
.

Based on (3.30), we can derive that

m
m − 1

(
1 +

∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

)2

−

(
1 +

∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

)
−

∑r
i=1 (pi − 2) (pi − 3) tpi−2∑r

i=1 tpi−2 > 0.
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6005

That is to say, B̃ > 0. Furthermore, we obtain

F̃ − B̃ = 2
(
1 +

∑r
i=1 (pi − 2) tpi−2∑r

i=1 tpi−2

)
= 2

∑r
i=1 (pi − 1) tpi−2∑r

i=1 tpi−2 .

Since pi > 1, we can derive that F̃ > B̃ > 0. Then, we get

1
ϕ

∆ϕ + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

ϕ11


≥Ã (v1)

|∇ϕ|2

2ϕ2 + B̃ (v1)
v2

1

v2 + C̃

 f (v)

v1
∑r

i=1 vpi−2
1

2

+ D̃ (v1)

 ϕ1 f (v)

ϕv1
∑r

i=1 vpi−2
1

 + Ẽ (v1)
ϕ1v1

ϕv
.

(3.31)

Using the Cauchy-Schwarz inequality, we estimate (3.31) as follows:

1
ϕ

∆ϕ + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

ϕ11


≥Ã
|∇ϕ|2

2ϕ2 + B̃
v2

1

v2 + C̃

 f (v)

v1
∑r

i=1 vpi−2
1

2

−
D̃2

2C̃

(
ϕ2

1

2ϕ2

)
− C̃

 f (v)

v1
∑r

i=1 vpi−2
1

2

−
Ẽ2

B̃

(
ϕ2

1

2ϕ2

)
−

B̃
2

v2
1

v2

=Ã
|∇ϕ|2

2ϕ2 +
B̃
2

v2
1

v2 −
1
2

(
D̃2

C
+

2Ẽ2

B̃

)
ϕ2

1

2ϕ2 .

Thus, we have completed the proof of Lemma 3.1. □

Step 2. Below, we employ the maximal principle to (3.1). Let x0 ∈ R
m be an arbitrary but fixed

point. Given R > 0, we set

H (x) :=
(
R2 − d2(x)

)2
ϕ, where ϕ =

|∇v|2

v2 and d(x) = |x − x0|. (3.32)

We observe that within B := B(x0,R), H ≥ 0 and H ||x−x0 |=R= 0. Consequently, H attains its maximum
value at some interior point x∗ ∈ B. Assuming ∇v(x∗) = 0, it follows that ϕ (and hence H) will be
zero at x∗. But then H (and therefore ϕ) would be zero throughout B. This means |∇v| = 0 in B, and,
specifically, ∇v(x0) = 0. Therefore, we assume that |∇v| > 0 at x∗. Now, at x∗, we have

0 = Hk = −2
(
R2 − d2(x)

) (
d2(x)

)
k
ϕ +

(
R2 − d2(x)

)2
ϕk, k = 1, · · · ,m (3.33)

and Hkl ≤ 0. According to Lemma 2.2, we have ΘHkl ≤ 0 at x∗. Thus, we can conclude that

∆H +
∑r

i=1 (pi − 2) |∇v|pi−2∑r
i=1 |∇v|pi−2 Hklvkvl|∇v|−2 ≤ 0 (3.34)

Electronic Research Archive Volume 33, Issue 10, 5990–6011.



6006

holds at x∗. By using (3.32), we obtain (
d2(x)

)
11
= 2.

Therefore, from (3.34) we obtain

∆H +
∑r

i=1 (pi − 2) vpi−2
1∑r

i=1 vpi−2
1

H11

=2
∣∣∣∣∇ (

d2(x)
)∣∣∣∣2 ϕ − 2

(
R2 − d2(x)

)
∆

(
d2(x)

)
ϕ − 4

(
R2 − d2(x)

)
∇

(
d2(x)

)
· ∇ϕ

+
(
R2 − d2(x)

)2
∆ϕ +

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

[
2
((

d2(x)
)

1

)2
ϕ − 4

(
R2 − d2(x)

)
ϕ

− 4
(
R2 − d2(x)

) (
d2(x)

)
1
ϕ1 +

(
R2 − d2(x)

)2
ϕ11

]
≤0.

We note that ∣∣∣∣∇ (
d2(x)

)∣∣∣∣2 = 4d2(x) and ∆
(
d2(x)

)
= 2m.

Therefore, using the two equations above for further calculation, we obtain

∆ϕ +

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

ϕ11

≤ −
2
∣∣∣∣∇ (

d2(x)
)∣∣∣∣2 ϕ(

R2 − d2(x)
)2 +

2∆
(
d2(x)

)
ϕ

R2 − d2(x)
+

4∇
(
d2(x)

)
· ∇ϕ

R2 − d2(x)

−

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

[2
((

d2(x)
)

1

)2
ϕ(

R2 − d2(x)
)2 −

4ϕ
R2 − d2(x)

−
4
(
d2(x)

)
1
ϕ1

R2 − d2(x)

]
≤ −

8d2(x)(
R2 − d2(x)

)2ϕ +
4m

R2 − d2(x)
ϕ +

4∇
(
d2(x)

)
· ∇ϕ

R2 − d2(x)

+

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

[
−

2
((

d2(x)
)

1

)2

(
R2 − d2(x)

)2ϕ +
4

R2 − d2(x)
ϕ +

4
(
d2(x)

)
1

R2 − d2(x)
ϕ1

]
.

(3.35)

In addition, according to (3.33), we obtain

ϕ1 =
2
(
d2(x)

)
1

R2 − d2(x)
ϕ and ∇ϕ =

2ϕ
R2 − d2(x)

∇
(
d2(x)

)
.

Substituting the above two equations into (3.35) yields

∆ϕ +

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

ϕ11

≤ϕ
{ 24d2(x)(

R2 − d2(x)
)2 +

4m
R2 − d2(x)

+

∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

[ 6
((

d2(x)
)

1

)2

(
R2 − d2(x)

)2 +
4

R2 − d2(x)

]}
.
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Since
((

d2(x)
)

1

)2
≤

∣∣∣∣∇ (
d2(x)

)∣∣∣∣2 = 4d2(x), we obtain

1
ϕ

∆ϕ + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

ϕ11


≤

24d2(x)(
R2 − d2(x)

)2 +
4m

R2 − d2(x)
+

∣∣∣∣∣∣∣
∑r

i=1 (pi − 2) vpi−2
1∑r

i=1 vpi−2
1

∣∣∣∣∣∣∣
 24d2(x)(

R2 − d2(x)
)2 +

4
R2 − d2(x)

 .
Moreover, since d2(x) < R2 holds in B(x0,R), it follows that

1
ϕ

∆ϕ + ∑r
i=1 (pi − 2) vpi−2

1∑r
i=1 vpi−2

1

ϕ11


≤

24R2(
R2 − d2(x)

)2 +
4mR2(

R2 − d2(x)
)2 +

∣∣∣∣∣∣∣
∑r

i=1 (pi − 2) vpi−2
1∑r

i=1 vpi−2
1

∣∣∣∣∣∣∣
 24R2(

R2 − d2(x)
)2 +

4R2(
R2 − d2(x)

)2

 . (3.36)

Step 3. By combining (3.1) and (3.36), we get

Ã
|∇ϕ|2

2ϕ2 +
B̃
2

v2
1

v2 −
1
2

(
D̃2

C
+

2Ẽ2

B̃

)
ϕ2

1

2ϕ2

≤
24R2(

R2 − d2(x)
)2 +

4mR2(
R2 − d2(x)

)2 +

∣∣∣∣∣∣∣
∑r

i=1 (pi − 2) vpi−2
1∑r

i=1 vpi−2
1

∣∣∣∣∣∣∣
 24R2(

R2 − d2(x)
)2 +

4R2(
R2 − d2(x)

)2

 . (3.37)

In other words, we have

0 ≤
v2

1

v2 ≤
2
B̃

 4R2(6 + m)(
R2 − d2(x)

)2 +

∣∣∣∣∣∣∣
∑r

i=1 (pi − 2) vpi−2
1∑r

i=1 vpi−2
1

∣∣∣∣∣∣∣ 28R2(
R2 − d2(x)

)2 +

∣∣∣∣∣∣12
(

D̃2

C̃
+

2Ẽ2

B̃

)
− Ã

∣∣∣∣∣∣ |∇ϕ|22ϕ2

 .
(3.38)

From (3.33), at x∗ we have

∇ϕ

ϕ
=

2∇d2(x)
R2 − d2(x)

, so that
|∇ϕ|2

2ϕ2 =
8d2(x)(

R2 − d2(x)
)2 . (3.39)

Therefore, at x∗ we have

0 ≤
|∇v|2

v2 ≤
C̃0(v1)R2(

R2 − d2(x)
)2 , (3.40)

where

C̃0(v1) :=
8
B̃

[
6 + m + 7pr + 2

∣∣∣∣∣∣12
(

D̃2(v1)
C̃
+

2Ẽ2(v1)
B̃(v1)

)
− Ã(v1)

∣∣∣∣∣∣
]
. (3.41)

From Lemma 2.1, C̃0(v1) is bounded by a positive constant M. Moreover, we observe that

H(x∗) =
|∇v|2

v2

(
R2 − d2(x)

)2
≤ MR2.

Since H(x0) ≤ H(x∗), we conclude that

|∇v|2

v2 R4 = H(x0) ≤ H(x∗) ≤ MR2
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holds at x0. Thus, at x0, we have the estimate

|∇v|2

v2 ≤
M
R2 .

Letting R → ∞, we observe that |∇v| = 0 at the point x0. The arbitrariness of x0 leads us to conclude
that ∇v ≡ 0 in Rm. Therefore, the proof of Theorem 1.1 is complete.

4. Proofs of related Corollaries

Proof of Corollary 1.2. We see that f (v) = −
∑k

i=1 aivαi ≤ 0. According to Theorem 1.1, we need
to verify condition (1.10), namely

f ′(t) ≤ (pr − 1)
m + 1
m − 1

f (t)
t
.

After substituting f (t) = −
∑k

i=1 aitαi and f ′(t) = −
∑k

i=1 αiaitαi−1 into the above inequality, we obtain

k∑
i=1

αiaivαi−1 ≥ (pr − 1)
m + 1
m − 1

k∑
i=1

aivαi−1.

It is sufficient to have αi ≥ (pr − 1)m+1
m−1 for all i, i.e., min

1≤i≤k
{αi} ≥ (pr − 1)m+1

m−1 . This completes the proof

of Corollary 1.2.
Proof of Corollary 1.3. Note that f (v) =

∑k
i=1 aivαi ≥ 0. By Theorem 1.1, it is necessary to verify

condition (1.9), that is,

f ′(t) ≤ (p1 − 1)
m + 1
m − 1

f (t)
t
.

After plugging f (t) =
∑k

i=1 aitαi and f ′(t) =
∑k

i=1 αiaitαi−1 into the above inequality, we obtain

k∑
i=1

αiaivαi−1 ≤ (p1 − 1)
m + 1
m − 1

k∑
i=1

aivαi−1.

It is sufficient to have αi ≤ (p1 − 1)m+1
m−1 for all i, i.e., max

1≤i≤k
αi ≤ (p1 − 1)m+1

m−1 . This completes the proof of

Corollary 1.3.
Proof of Corollary 1.4. (i) When f (v) =

∑k
i=1 aivαi −

∑l
j=1 b jvβ j ≥ 0, according to Theorem 1.1, one

needs to verify condition (1.9). After plugging f (t) =
∑k

i=1 aitαi −
∑l

j=1 b jtβ j and f ′(t) =
∑k

i=1 αiaitαi−1 −∑l
j=1 β jb jtβ j−1 into (1.9), we obtain

k∑
i=1

αiaivαi−1 −

l∑
j=1

β jb jvβ j−1 ≤ (p1 − 1)
m + 1
m − 1

 k∑
i=1

aivαi−1 −

l∑
j=1

b jvβ j−1

 .
A sufficient condition for this to hold is αi ≤ (p1 − 1)m+1

m−1 ≤ β j for all i, j, i.e., max
1≤i≤k
{αi} ≤ (p1 − 1)m+1

m−1 ≤

min
1≤ j≤l
{β j}.
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(ii) When f (v) =
∑k

i=1 aivαi−
∑l

j=1 b jvβ j ≤ 0, according to Theorem 1.1, one needs to verify condition
(1.10). After substituting f (t) and f ′(t) into (1.10), we obtain

k∑
i=1

αiaivαi−1 −

l∑
j=1

β jb jvβ j−1 ≤ (pr − 1)
m + 1
m − 1

 k∑
i=1

aivαi−1 −

l∑
j=1

b jvβ j−1

 ,
A sufficient condition for this to hold is αi ≤ (pr − 1)m+1

m−1 ≤ β j for all i, j, i.e., max
1≤i≤k
{αi} ≤ (pr − 1)m+1

m−1 ≤

min
1≤ j≤l
{β j}. This completes the proof of Corollary 1.4.

5. Conclusions

Using the Bernstein method, we proved Liouville-type theorems for positive solutions to ∆p1,··· ,pr v+
f (v) = 0 in Rm, where ∆p1,··· ,pr v := div(

∑r
i=1 |∇v|pi−2∇v) was (p1, · · · , pr)-Laplacian. The particular

cases of ∆p1,··· ,pr were the p-Laplacian and the (p, q)-Laplacian. The nonlinear item f (v) was not
required to be positive, which made our results applicable to many classical equations. Our results
improved and included many previously known results as special cases.
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