This paper investigates observer-based networked control for stochastic nonlinear systems under false data injection (FDI) attacks and limited communication bandwidth. To mitigate the impact of FDI attacks while reducing communication load, we propose an FDI attack-resilient periodic encoding–decoding scheme based on uniform quantization. We first establish a detectability criterion for the stochastic nonlinear system under this periodic encoding–decoding scheme. Then, we derive a condition to further guarantee the input-to-state stability of the resulting closed-loop system. The condition, which enables the determination of the desired observer and controller gains, involves a series of linear matrix inequalities that are straightforward to verify using available MATLAB numerical tools. Finally, we validate the effectiveness and robustness of the proposed controller design through a case study.
Citation: Xinyi Bai, Qinru Yang. Observer-based networked control for stochastic nonlinear systems under false data injection attacks and limited bandwidth[J]. Electronic Research Archive, 2025, 33(8): 5022-5044. doi: 10.3934/era.2025225
This paper investigates observer-based networked control for stochastic nonlinear systems under false data injection (FDI) attacks and limited communication bandwidth. To mitigate the impact of FDI attacks while reducing communication load, we propose an FDI attack-resilient periodic encoding–decoding scheme based on uniform quantization. We first establish a detectability criterion for the stochastic nonlinear system under this periodic encoding–decoding scheme. Then, we derive a condition to further guarantee the input-to-state stability of the resulting closed-loop system. The condition, which enables the determination of the desired observer and controller gains, involves a series of linear matrix inequalities that are straightforward to verify using available MATLAB numerical tools. Finally, we validate the effectiveness and robustness of the proposed controller design through a case study.
| [1] |
X. Ge, F. Yang, Q. L. Han, Distributed networked control systems: A brief overview, Inf. Sci., 380 (2017), 117–131. https://doi.org/10.1016/j.ins.2015.07.047 doi: 10.1016/j.ins.2015.07.047
|
| [2] |
X. M. Zhang, Q. L. Han, X. Ge, D. Ding, L. Ding, D. Yue, et al., Networked control systems: A survey of trends and techniques, IEEE/CAA J. Autom. Sin., 7 (2019), 1–17. https://doi.org/10.1109/JAS.2019.1911651 doi: 10.1109/JAS.2019.1911651
|
| [3] |
J. Zhang, B. Zhou, D. Yang, Y. Luo, G. Li, Distributed dynamic event-triggered consensus control of multiagent systems subject to external disturbances, Inf. Sci., 709 (2025), 122072. https://doi.org/10.1016/j.ins.2025.122072 doi: 10.1016/j.ins.2025.122072
|
| [4] |
J. Zhao, B. Li, S. Wo, X. Han, Hidden Markov model-based finite-time ${H}_\infty$ control for singular Markovian jump delay systems with input saturation, Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng., 237 (2023), 1469–1479. https://doi.org/10.1177/09596518231153256 doi: 10.1177/09596518231153256
|
| [5] |
Y. Gong, Consensus control of multi-agent systems with delays, Electron. Res. Arch., 32 (2024), 4887–4904. https://doi.org/10.3934/era.2024224 doi: 10.3934/era.2024224
|
| [6] |
X. Yang, A. Li, Q. Zhu, Dynamic periodic event-triggered control of stochastic complex networks with time-varying delays, Neural Networks, 190 (2025), 107659. https://doi.org/10.1016/j.neunet.2025.107659 doi: 10.1016/j.neunet.2025.107659
|
| [7] |
N. Gunasekaran, M. S. Ali, S. Arik, H. I. A. Ghaffar, A. A. Z. Diab, Finite-time and sampled-data synchronization of complex dynamical networks subject to average dwell-time switching signal, Neural Networks, 149 (2022), 137–145. https://doi.org/10.1016/j.neunet.2022.02.013 doi: 10.1016/j.neunet.2022.02.013
|
| [8] |
H. Wei, Q. Li, S. Zhu, D. Fan, Y. Zheng, Event-triggered resilient asynchronous estimation of stochastic Markovian jumping CVNs with missing measurements: A co-design control strategy, Inf. Sci., 712 (2025), 122167. https://doi.org/10.1016/j.ins.2025.122167 doi: 10.1016/j.ins.2025.122167
|
| [9] |
Y. Zhao, H. Wu, Fixed/Prescribed stability criterions of stochastic system with time-delay, AIMS Math., 9 (2024), 14425–14453. https://doi.org/10.3934/math.2024701 doi: 10.3934/math.2024701
|
| [10] |
Q. Li, K. Zhang, H. Wei, F. Sun, J. Wang, Non-fragile asynchronous H∞ estimation for piecewise-homogeneous Markovian jumping neural networks with partly available transition rates: A dynamic event-triggered scheme, Neurocomputing, 640 (2025), 130292. https://doi.org/10.1016/j.neucom.2025.130292 doi: 10.1016/j.neucom.2025.130292
|
| [11] |
Y. Yao, J. Tan, J. Wu, X. Zhang, A unified fuzzy control approach for stochastic high-order nonlinear systems with or without state constraints, IEEE Trans. Fuzzy Syst., 30 (2022), 4530–4540. https://doi.org/10.1109/TFUZZ.2022.3155297 doi: 10.1109/TFUZZ.2022.3155297
|
| [12] |
X. Hou, H. Wu, J. Cao, Practical finite-time synchronization for Lur'e systems with performance constraint and actuator faults: A memory-based quantized dynamic event-triggered control strategy, Appl. Math. Comput., 487 (2025), 129108. https://doi.org/10.1016/j.amc.2024.129108 doi: 10.1016/j.amc.2024.129108
|
| [13] |
H. Wu, X. Zhao, L. Wang, J. Cao, Observer-based fixed-time topology identification and synchronization for complex networks via quantized pinning control strategy, Appl. Math. Comput., 507 (2025), 129568. https://doi.org/10.1016/j.amc.2025.129568 doi: 10.1016/j.amc.2025.129568
|
| [14] |
H. Xu, Q. Zhu, W. X. Zheng, Exponential stability of stochastic nonlinear delay systems subject to multiple periodic impulses, IEEE Trans. Autom. Control, 69 (2024), 2621–2628. https://doi.org/10.1109/TAC.2023.3335005 doi: 10.1109/TAC.2023.3335005
|
| [15] |
X. Zhao, H. Wu, J. Cao, L. Wang, Prescribed-time synchronization for complex dynamic networks of piecewise smooth systems: A hybrid event-triggering control approach, Qual. Theory Dyn. Syst., 24 (2025), 11. https://doi.org/10.1007/s12346-024-01166-x doi: 10.1007/s12346-024-01166-x
|
| [16] |
Q. Zhu, Event-triggered sampling problem for exponential stability of stochastic nonlinear delay systems driven by Lévy processes, IEEE Trans. Autom. Control, 70 (2025), 1176–1183. https://doi.org/10.1109/TAC.2024.3448128 doi: 10.1109/TAC.2024.3448128
|
| [17] |
H. Sun, H. G. Han, J. F. Qiao, Observer-based control for networked Takagi-Sugeno fuzzy systems with stochastic packet losses, Inf. Sci., 644 (2023), 119275. https://doi.org/10.1016/j.ins.2023.119275 doi: 10.1016/j.ins.2023.119275
|
| [18] |
X. Li, X. Qin, Z. Wan, W. Tai, Chaos synchronization of stochastic time-delay Lur'e systems: An asynchronous and adaptive event-triggered control approach, Electron. Res. Arch., 31 (2023), 5589–5608. https://doi.org/10.3934/era.2023284 doi: 10.3934/era.2023284
|
| [19] |
G. Zhang, Q. Zhu, Event-triggered optimized control for nonlinear delayed stochastic systems, IEEE Trans. Circuits Syst. I: Regul. Pap., 68 (2021), 3808–3821. https://doi.org/10.1109/TCSI.2021.3095092 doi: 10.1109/TCSI.2021.3095092
|
| [20] |
R. Vadivel, P. Hammachukiattikul, Q. Zhu, N. Gunasekaran, Event-triggered synchronization for stochastic delayed neural networks: Passivity and passification case, Asian J. Control, 25 (2023), 2681–2698. https://doi.org/10.1002/asjc.2965 doi: 10.1002/asjc.2965
|
| [21] |
F. Xu, X. Ruan, X. Pan, Event-triggered leader-following consensus control of multiagent systems against DoS attacks, Int. J. Control Autom. Syst., 22 (2024), 3424–3433. https://doi.org/10.1007/s12555-024-0327-0 doi: 10.1007/s12555-024-0327-0
|
| [22] |
Y. Ni, Z. Wang, Y. Fan, X. Huang, H. Shen, Resilient hybrid event-triggered control for secure synchronization of Lur'e systems against DoS attacks, IEEE Trans. Network Sci. Eng., 12 (2025), 1053–1065. https://doi.org/10.1109/TNSE.2024.3522991 doi: 10.1109/TNSE.2024.3522991
|
| [23] |
J. Zhou, D. Xu, W. Tai, C. K. Ahn, Switched event-triggered $\mathcal{H}_{\infty}$ security control for networked systems vulnerable to aperiodic DoS attacks, IEEE Trans. Network Sci. Eng., 10 (2023), 2109–2123. https://doi.org/10.1109/TNSE.2023.3243095 doi: 10.1109/TNSE.2023.3243095
|
| [24] |
X. Si, Z. Wang, X. Huang, Y. Fan, H. Shen, Resilient-sampling-based bipartite synchronization of cooperative-antagonistic neural networks with hybrid attacks: Designing interval-dependent functions, IEEE Trans. Autom. Sci. Eng., 22 (2025), 2935–2945. https://doi.org/10.1109/TASE.2024.3386699 doi: 10.1109/TASE.2024.3386699
|
| [25] |
Y. Zhang, Z. Peng, G. Wen, J. Wang, T. Huang, Optimal stealthy linear man-in-the-middle attacks with resource constraints on remote state estimation, IEEE Trans. Syst., Man, Cybern.: Syst., 54 (2023), 445–456. https://doi.org/10.1109/TSMC.2023.3311853 doi: 10.1109/TSMC.2023.3311853
|
| [26] | T. Chen, K. Shi, X. Cai, M. Zhu, D. Chen, S. Han, et al., UUB stability of Ncss under asynchronous packet loss and random UDP attacks: LMI method-based controller design technology, Int. J. Robust Nonlinear Control, (2025), in press. https://doi.org/10.1002/rnc.70117 |
| [27] |
X. Cai, Y. Sun, K. Shi, X. Xie, Y. C. Soh, C. Qiao, et al., Enhancing networked control system resilience to TCP/IP protocol DoS attacks: Performance analysis and intelligent controller design, IEEE Trans. Autom. Sci. Eng., 22 (2025), 6608–6618. https://doi.org/10.1109/TASE.2024.3449882 doi: 10.1109/TASE.2024.3449882
|
| [28] |
Y. Yao, Y. Kang, Y. Zhao, P. Li, J. Tan, Prescribed-time output feedback control for cyber–physical systems under output constraints and malicious attacks, IEEE Trans. Cybern., 54 (2024), 6518–6530. https://doi.org/10.1109/TCYB.2024.3418384 doi: 10.1109/TCYB.2024.3418384
|
| [29] |
J. Zhou, J. Dong, S. Xu, C. K. Ahn, Input-to-state stabilization for Markov jump systems with dynamic quantization and multimode injection attacks, IEEE Trans. Syst., Man, Cybern.: Syst., 54 (2024), 2517–2529. https://doi.org/10.1109/TSMC.2023.3344869 doi: 10.1109/TSMC.2023.3344869
|
| [30] |
M. Ahmed, A. S. K. Pathan, False data injection attack (FDIA): An overview and new metrics for fair evaluation of its countermeasure, Complex Adapt. Syst. Model., 8 (2020), 1–14. https://doi.org/10.1186/s40294-020-00070-w doi: 10.1186/s40294-020-00070-w
|
| [31] |
M. A. Husnoo, A. Anwar, N. Hosseinzadeh, S. N. Islam, A. N. Mahmood, R. Doss, False data injection threats in active distribution systems: A comprehensive survey, Future Gener. Comput. Syst., 140 (2023), 344–364. https://doi.org/10.1016/j.future.2022.10.021 doi: 10.1016/j.future.2022.10.021
|
| [32] |
H. Guo, Z. Pang, J. Sun, J. Li, Detection of stealthy false data injection attacks against cyber-physical systems: A stochastic coding scheme, J. Syst. Sci. Complexity, 35 (2022), 1668–1684. https://doi.org/10.1007/s11424-022-1005-z doi: 10.1007/s11424-022-1005-z
|
| [33] |
M. Irfan, A. Sadighian, A. Tanveer, S. J. Al-Naimi, G. Oligeri, A survey on detection and localisation of false data injection attacks in smart grids, IET Cyber-Phys. Syst.: Theory Appl., 9 (2024), 313–333. https://doi.org/10.1049/cps2.12093 doi: 10.1049/cps2.12093
|
| [34] |
W. Xu, I. M. Jaimoukha, F. Teng, Robust moving target defence against false data injection attacks in power grids, IEEE Trans. Inf. Forensics Secur., 18 (2023), 29–40. https://doi.org/10.1109/TIFS.2022.3210864 doi: 10.1109/TIFS.2022.3210864
|
| [35] |
Y. Liu, Z. Fang, J. H. Park, F. Fang, Quantized event-triggered synchronization of discrete-time chaotic neural networks with stochastic deception attack, IEEE Trans. Syst., Man, Cybern.: Syst., 53 (2023), 4511–4521. https://doi.org/10.1109/TSMC.2023.3251355 doi: 10.1109/TSMC.2023.3251355
|
| [36] |
M. Joby, M. Sathishkumar, L. S. Ramya, S. Santra, Resilient control strategies for probabilistic nonlinear systems with time delays subject to scaling attacks, Math. Methods Appl. Sci., 48 (2025), 12174–12185. https://doi.org/10.1002/mma.11020 doi: 10.1002/mma.11020
|
| [37] |
P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, IEEE Trans. Autom. Control, 52 (2007), 1680–1685. https://doi.org/10.1109/TAC.2007.904277 doi: 10.1109/TAC.2007.904277
|
| [38] |
M. C. F. Donkers, W. P. M. H. Heemels, Output-based event-triggered control with guaranteed $\mathcal{L}_{\infty}$-gain and improved and decentralized event-triggering, IEEE Trans. Autom. Control, 57 (2012), 1362–1376. https://doi.org/10.1109/TAC.2011.2174696 doi: 10.1109/TAC.2011.2174696
|
| [39] |
J. Wang, Quantized feedback control of discrete-time MIMO linear systems with input and output quantization over finite data rate channels, IEEE Trans. Autom. Control, 68 (2022), 6277–6284. https://doi.org/10.1109/TAC.2022.3232991 doi: 10.1109/TAC.2022.3232991
|
| [40] |
Y. Liu, W. Yang, C. Y. Su, Y. Luo, X. Wang, Observer-based control of networked periodic piecewise systems with encoding–decoding mechanism, IEEE Trans. Cybern., 55 (2025), 2754–2764. https://doi.org/10.1109/TCYB.2025.3543878 doi: 10.1109/TCYB.2025.3543878
|
| [41] | S. Singh, A. Sachan, J. K. Goyal, S. Purwar, X. Xiong, Encoder/decoder mismatch for input quantisation with discrete time $[\mathcal{K}, \mathcal{KL}]$ sector, Int. J. Syst. Sci., (2025), in press. https://doi.org/10.1080/00207721.2025.2467839 |
| [42] |
S. Zhou, J. Song, H. K. Lam, S. He, Z. Cao, Coding–decoding-based sliding mode control for Markovian jump systems under constrained bit bate: An adaptive quantizer approach, IEEE Trans. Control Network Syst., 11 (2023), 257–270. https://doi.org/10.1109/TCNS.2023.3280458 doi: 10.1109/TCNS.2023.3280458
|
| [43] |
Z. Zhang, X. Huang, Y. Chen, J. Zhou, Input-to-state learning of recurrent neural networks with delay and disturbance, Int. J. Adapt. Control Signal Process., 35 (2021), 1438–1453. https://doi.org/10.1002/acs.3251 doi: 10.1002/acs.3251
|
| [44] |
M. Sathishkumar, M. Joby, Y. K. Ma, S. M. Anthoni, S. Santra, Secure finite-time filtering for switched fuzzy systems with scaling attacks and stochastic sensor faults, Nonlinear Dyn., 113 (2025), 13485–13506. https://doi.org/10.1007/s11071-025-11042-1 doi: 10.1007/s11071-025-11042-1
|
| [45] |
X. Liu, K. Shi, Y. Tang, L. Tang, Y. Wei, Y. Han, A novel adaptive event-triggered reliable ${H}_\infty$ control approach for networked control systems with actuator faults, Electron. Res. Arch., 31 (2023), 1840–1862. https://doi.org/10.3934/era.2023095 doi: 10.3934/era.2023095
|
| [46] |
J. Wu, X. Zhang, F. Wang, Fuzzy adaptive output feedback control for a class of stochastic nonlinear systems under input/output quantization, Nonlinear Dyn., 113 (2025), 8555–8570. https://doi.org/10.1007/s11071-024-10576-0 doi: 10.1007/s11071-024-10576-0
|
| [47] |
Y. X. Li, X. Y. Hu, C. K. Ahn, Z. S. Hou, H. H. Kang, Event-based adaptive neural asymptotic tracking control for networked nonlinear stochastic systems, IEEE Trans. Network Sci. Eng., 9 (2022), 2290–2300. https://doi.org/10.1109/TNSE.2022.3161645 doi: 10.1109/TNSE.2022.3161645
|
| [48] |
L. Fan, Q. Zhu, W. X. Zheng, Stability analysis of switched stochastic nonlinear systems with state-dependent delay, IEEE Trans. Autom. Control, 69 (2024), 2567–2574. https://doi.org/10.1109/TAC.2023.3315672 doi: 10.1109/TAC.2023.3315672
|
| [49] |
M. E. Hesari, A. A. Bagheri, M. Davoudi, N. Pariz, Observer-based controller design for class of nonlinear wireless stochastic networked systems with communication delays and denial of service jamming attacks: Comparison of observer position, Int. J. Dyn. Control, 13 (2025), 1–15. https://doi.org/10.1007/s40435-024-01505-5 doi: 10.1007/s40435-024-01505-5
|
| [50] |
Y. Yao, Y. Kang, Y. Zhao, P. Li, J. Tan, A novel prescribed-time control approach of state-constrained high-order nonlinear systems, IEEE Trans. Syst., Man, Cybern.: Syst., 54 (2024), 2941–2951. https://doi.org/10.1109/TSMC.2024.3352905 doi: 10.1109/TSMC.2024.3352905
|
| [51] |
S. Tong, L. Zhang, Y. Li, Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones, IEEE Trans. Syst., Man, Cybern.: Syst., 46 (2016), 37–47. https://doi.org/10.1109/TSMC.2015.2426131 doi: 10.1109/TSMC.2015.2426131
|
| [52] |
Y. Yao, X. Liang, Y. Kang, Y. Zhao, J. Tan, L. Gu, Dual flexible prescribed performance control of input saturated high-order nonlinear systems, IEEE Trans. Cybern., 55 (2025), 1147–1158. https://doi.org/10.1109/TCYB.2024.3524242 doi: 10.1109/TCYB.2024.3524242
|
| [53] |
H. Yuan, Q. Zhu, The well-posedness and stabilities of mean-field stochastic differential equations driven by G-Brownian motion, SIAM J. Control Optim., 63 (2025), 596–624. https://doi.org/10.1137/23M1593681 doi: 10.1137/23M1593681
|
| [54] |
Q. Li, H. Wei, D. Hua, J. Wang, J. Yang, Stabilization of semi-Markovian jumping uncertain complex-valued networks with time-varying delay: A sliding-mode control approach, Neural Process. Lett., 56 (2024), 111. https://doi.org/10.1007/s11063-024-11585-1 doi: 10.1007/s11063-024-11585-1
|
| [55] |
J. Zhou, Y. Wang, X. Zheng, Z. Wang, H. Shen, Weighted $\mathcal{H}_{\infty}$ consensus design for stochastic multi-agent systems subject to external disturbances and ADT switching topologies, Nonlinear Dyn., 96 (2019), 853–868. https://doi.org/10.1007/s11071-019-04826-9 doi: 10.1007/s11071-019-04826-9
|
| [56] |
D. Xu, X. Li, W. Tai, J. Zhou, Event-triggered stabilization for networked control systems under random occurring deception attacks, Math. Biosci. Eng., 20 (2023), 859–878. https://doi.org/10.3934/mbe.2023039 doi: 10.3934/mbe.2023039
|
| [57] | S. Xu, J. Hu, D. Chen, Z. Wu, State estimation for uncertain discrete-time nonlinear systems via the coding-decoding scheme, in 2020 Chinese Control And Decision Conference (CCDC), IEEE, (2020), 862–867. https://doi.org/10.1109/CCDC49329.2020.9164587 |
| [58] |
L. Wang, Z. Wang, Q. L. Han, G. Wei, Synchronization control for a class of discrete-time dynamical networks with packet dropouts: A coding–decoding-based approach, IEEE Trans. Cybern., 48 (2017), 2437–2448. https://doi.org/10.1109/TCYB.2017.2740309 doi: 10.1109/TCYB.2017.2740309
|
| [59] | S. Boyd, L. E. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994. https://doi.org/10.1137/1.9781611970777 |