Research article

The fourth power mean of the three–term exponential sums

  • Published: 29 July 2025
  • By employing trigonometric sums and solving congruence equations, this paper explores the power mean of a specific class of high–order three–term exponential sums, and derives intriguing identities in the process. The findings presented in this paper offer insights into establishing the lower bound for these sums.

    Citation: Xiaoge Liu, Guohui Chen. The fourth power mean of the three–term exponential sums[J]. Electronic Research Archive, 2025, 33(7): 4329-4342. doi: 10.3934/era.2025197

    Related Papers:

  • By employing trigonometric sums and solving congruence equations, this paper explores the power mean of a specific class of high–order three–term exponential sums, and derives intriguing identities in the process. The findings presented in this paper offer insights into establishing the lower bound for these sums.



    加载中


    [1] L. K. Hua, On a generalized Waring problem Ⅱ, Acta Math. Sinica (Chinese Ser.), 2 (1937), 175–191. https://doi.org/10.12386/A1937sxxb0012 doi: 10.12386/A1937sxxb0012
    [2] H. Davenport, On Waring's problem for fourth powers, Ann. Math., 40 (1939), 731–747. https://doi.org/10.2307/1968889 doi: 10.2307/1968889
    [3] T. D. Wooley, Large improvements in Waring's problem, Ann. Math., 135 (1992), 131–164. https://doi.org/10.2307/2946566 doi: 10.2307/2946566
    [4] H. Weyl, Über die Gleichverteilung von Zahlen mod. eins, Math. Ann., 77 (1916), 313–352. https://doi.org/10.1007/BF01475864 doi: 10.1007/BF01475864
    [5] L. K. Hua, On an exponential sum, J. London Math. Soc., 13 (1938), 54–61. https://doi.org/10.1112/jlms/s1-13.1.54 doi: 10.1112/jlms/s1-13.1.54
    [6] A. Weil, On some exponential sums, Proc. Natl. Acad. Sci. U.S.A., 34 (1948), 204–207. https://doi.org/10.1073/pnas.34.5.204 doi: 10.1073/pnas.34.5.204
    [7] L. J. Mordell, On a sum analogous to Gauss's sum, Quart. J. Math., 3 (1932), 161–167. https://doi.org/10.1093/qmath/os-3.1.161 doi: 10.1093/qmath/os-3.1.161
    [8] J. Bourgain, Mordell type exponential sum estimates in fields of prime order, C. R. Math. Acad. Sci. Paris, 339 (2004), 321–325. https://doi.org/10.1016/j.crma.2004.06.013 doi: 10.1016/j.crma.2004.06.013
    [9] V. Pigno, C. Pinner, Twisted monomial Gauss sums modulo prime powers, Funct. Approx. Comment. Math., 51 (2014), 285–301. https://doi.org/10.7169/facm/2014.51.2.4 doi: 10.7169/facm/2014.51.2.4
    [10] H. N. Liu, W. M. Li, On the Fourth Power Mean of Generalized Three–Term Exponential Sums, J. Math. Res. Appl., 37 (2017), 169–182.
    [11] W. P. Zhang, A special three–term exponential sums and its fourth power mean, Sci. Sin. Math., 54 (2024), 1455–1466. https://doi.org/10.1360/SSM-2022-0232 doi: 10.1360/SSM-2022-0232
    [12] T. Cochrane, Z. Y. Zheng, Pure and mixed exponential sums, Acta Arith., 91 (1999), 249–278. https://doi.org/10.4064/AA-91-3-249-278 doi: 10.4064/AA-91-3-249-278
    [13] X. G. Liu, Y. Y. Meng, On the $k$–th power mean of one kind generalized cubic Gauss sums, AIMS Math., 8 (2023), 21463–21471. https://doi.org/10.3934/math.20231093 doi: 10.3934/math.20231093
    [14] E. D. Akarsu, J. Marklof, The value distribution of incomplete Gauss sums, Mathematika, 59 (2013), 381–398. https://doi.org/10.1112/S0025579312001179 doi: 10.1112/S0025579312001179
    [15] W. P. Zhang, D. Han, On the sixth power mean of the two–term exponential sums, J. Number Theory, 136 (2014), 403–413. https://doi.org/10.1016/j.jnt.2013.10.022 doi: 10.1016/j.jnt.2013.10.022
    [16] Y. Y. Liu, W. P. Zhang, The linear recurrence formula of the hybrid power mean involving the cubic Gauss sums and two–term exponential sums, J. Shaanxi Normal Univ. Nat. Sci. Ed., 45 (2017), 14–17.
    [17] I. Shparlinski, Bilinear sums of Gauss sums, Acta Arith., 202 (2022), 379–388. https://doi.org/10.4064/aa210523-3-2 doi: 10.4064/aa210523-3-2
    [18] T. M. Apostol, Introduction to Analytic Number Theory, Springer–Verlag, New York, 1976. https://doi.org/10.1007/978-1-4757-5579-4
    [19] N. M. Katz, Gauss sums, Kloosterman sums, and monodromy groups, Princeton university press, Princeton, 1988.
    [20] W. P. Zhang, H. L. Li, Elementary Number Theory, Shaanxi Normal University Press, Xi'an, 2013.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(779) PDF downloads(59) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog