Research article Special Issues

The ADI difference and extrapolation scheme for high-dimensional variable coefficient evolution equations

  • Published: 26 May 2025
  • This paper investigated a numerical method for a two-dimensional variable coefficient evolution equation (VCEE), utilizing the alternating direction implicit (ADI) method and an extrapolation formula. The time derivative was discretised by the backward Euler (BE) scheme on a uniform mesh and the finite difference method (FDM) was applied to spatial discretization. We proved an priori estimate and the error bound of the solution to the difference scheme using the energy analysis method, and verified the uniqueness, stability, and convergence of the proposed scheme. To further improve numerical accuracy, we introduced a Richardson extrapolation method, which enhances the global accuracy to fourth order. Finally, some numerical examples were provided to demonstrate the validity of the theoretical analysis.

    Citation: Jinxiu Zhang, Xuehua Yang, Song Wang. The ADI difference and extrapolation scheme for high-dimensional variable coefficient evolution equations[J]. Electronic Research Archive, 2025, 33(5): 3305-3327. doi: 10.3934/era.2025146

    Related Papers:

  • This paper investigated a numerical method for a two-dimensional variable coefficient evolution equation (VCEE), utilizing the alternating direction implicit (ADI) method and an extrapolation formula. The time derivative was discretised by the backward Euler (BE) scheme on a uniform mesh and the finite difference method (FDM) was applied to spatial discretization. We proved an priori estimate and the error bound of the solution to the difference scheme using the energy analysis method, and verified the uniqueness, stability, and convergence of the proposed scheme. To further improve numerical accuracy, we introduced a Richardson extrapolation method, which enhances the global accuracy to fourth order. Finally, some numerical examples were provided to demonstrate the validity of the theoretical analysis.



    加载中


    [1] R. K. Mohanty, M. K. Jain, High accuracy difference schemes for the system of two space nonlinear parabolic differential equations with mixed derivatives and variable coefficients, J. Aomput. Appl. Math., 70 (1996), 15–32. https://doi.org/10.1016/0377-0427(95)00135-2 doi: 10.1016/0377-0427(95)00135-2
    [2] L. Zhang, X. Lü, S. Zhu, Painlevé analysis, Bäcklund transformation and soliton solutions of the (2+1)-dimensional variable-coefficient Boussinesq equation, Int. J. Theor. Phys., 63 (2024), 160. https://doi.org/10.1007/s10773-024-05478-9 doi: 10.1007/s10773-024-05478-9
    [3] C. Han, X. Lü, Variable coefficient-informed neural network for PDE inverse problem in fluid dynamics, Physica D, 472 (2025), 134362. https://doi.org/10.1016/j.physd.2024.134362 doi: 10.1016/j.physd.2024.134362
    [4] S. Chen, X. Lü, Adaptive network traffic control with approximate dynamic programming based on a non-homogeneous Poisson demand model, Transp. B: Transp. Dyn., 12 (2024), 2336029. https://doi.org/10.1080/21680566.2023.2336029 doi: 10.1080/21680566.2023.2336029
    [5] X. Peng, Y. Zhao, X. Lü, Data-driven solitons and parameter discovery to the (2+1)-dimensional NLSE in optical fiber communications, Nonlinear Dyn., 112 (2024), 1291–1306. https://doi.org/10.1007/s11071-023-08594-5 doi: 10.1007/s11071-023-08594-5
    [6] D. Gao, W. Ma, X. Lü, Wronskian solution, Bäcklund transformation and Painlevé analysis to a (2+1)-dimensional Konopelchenko–Dubrovsky equation, Z. Naturforsch. A, 79 (2024), 887–895. https://doi.org/10.1515/zna-2024-0016 doi: 10.1515/zna-2024-0016
    [7] C. Li, X. Lü, J. Gong, Y. Lei, Extended SEIR model of COVID-19 spread focusing on compartmental flow in England, Nonlinear Dyn., 113 (2025), 971–988. https://doi.org/10.1007/s11071-024-09748-9 doi: 10.1007/s11071-024-09748-9
    [8] F. Cao, X. Lü, Y. Zhou, X. Cheng, Modified SEIAR infectious disease model for Omicron variants spread dynamics, Nonlinear Dyn., 111 (2023), 14597–14620. https://doi.org/10.1007/s11071-023-08595-4 doi: 10.1007/s11071-023-08595-4
    [9] M. Dehghan, J. Manafian, The solution of the variable coefficients fourth-order parabolic partial differential equations by the homotopy perturbation method, Z. Naturforsch. A, 64 (2009), 420–430. https://doi.org/10.1515/zna-2009-7-803 doi: 10.1515/zna-2009-7-803
    [10] R. Manohar, S. R. K. Iyengar, U. A. Krishnaiah, High order difference methods for linear variable coefficient parabolic equation, J. Comput. Phys., 77 (1988), 513–523. https://doi.org/10.1016/0021-9991(88)90181-7 doi: 10.1016/0021-9991(88)90181-7
    [11] Z. Sun, Numerical Solution of Partial Differential Equation, 3rd edition, Science Press, Beijing, (2022), 44–61.
    [12] V. V. Kravchenko, J. A. Otero, S. M. Torba, Analytic approximation of solutions of parabolic partial differential equations with variable coefficients, Adv. Math. Phys., 2017 (2017), Article ID 2947275. https://doi.org/10.1155/2017/2947275 doi: 10.1155/2017/2947275
    [13] X. X. Ma, X. L. Yan, R. D. Chen, A high-order ADI difference scheme for two-dimensional parabolic equations with variable coefficients, J. Tianjin Polytech. Univ., 33 (2014), 77–80+84. https://doi.org/10.3969/j.issn.1671-024X.2014.01.019 doi: 10.3969/j.issn.1671-024X.2014.01.019
    [14] X. He, T. Lin, Y. Lin, X. Zhang, Immersed finite element methods for parabolic equations with moving interface, Numer. Methods Partial Differ. Equations, 29 (2013), 619–646. https://doi.org/10.1002/num.21722 doi: 10.1002/num.21722
    [15] A. K. Pani, G. Fairweather, H$^1$-Galerkin mixed finite element methods for parabolic partial integro-differential equations, IMA J. Numer. Anal., 22 (2002), 231–252. https://doi.org/10.1093/imanum/22.2.231 doi: 10.1093/imanum/22.2.231
    [16] K. J. Marfurt, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations, Geophysics, 49 (1984), 533–549. https://doi.org/10.1190/1.1441689 doi: 10.1190/1.1441689
    [17] W. Wang, H. Zhang, Z. Zhou, X. Yang, A fast compact finite difference scheme for the fourth-order diffusion-wave equation, Int. J. Comput. Math., 101(2) (2024), 170–193. https://doi.org/10.1080/00207160.2024.2323985 doi: 10.1080/00207160.2024.2323985
    [18] J. Wang, X. Jiang, X. Yang, H. Zhang, A new robust compact difference scheme on graded meshes for the time-fractional nonlinear Kuramoto–Sivashinsky equation, Comput. Appl. Math., 43 (2024), 381. https://doi.org/10.1007/s40314-024-02883-4 doi: 10.1007/s40314-024-02883-4
    [19] Y. Shi, X. Yang, Pointwise error estimate of conservative difference scheme for supergeneralized viscous Burgers' equation, Electron. Res. Arch., 32 (2024), 1471–1497. https://doi.org/10.3934/era.2024068 doi: 10.3934/era.2024068
    [20] M. Liu, T. Guo, M. A. Zaky, A. S. Hendy, An accurate second-order ADI scheme for three-dimensional tempered evolution problems arising in heat conduction with memory, Appl. Numer. Math., 204 (2024), 111–129. https://doi.org/10.1016/j.apnum.2024.06.006 doi: 10.1016/j.apnum.2024.06.006
    [21] Y. Shi, X. Yang, The pointwise error estimate of a new energy-preserving nonlinear difference method for supergeneralized viscous Burgers' equation, Comput. Appl. Math., 44 (2025), 257. https://doi.org/10.1007/s40314-025-03222-x doi: 10.1007/s40314-025-03222-x
    [22] X. Li, Z. Sun, Compact alternating direction difference scheme for two-dimensional reaction-diffusion equations with variable coefficients, Numer. Math.: A J. Chinese Univ., 28 (2006), 83–95. https://doi.org/10.3969/j.issn.1000-081X.2006.01.012 doi: 10.3969/j.issn.1000-081X.2006.01.012
    [23] D. Ruan, X. Wang, A high-order Chebyshev-type method for solving nonlinear equations: local convergence and applications, Electron. Res. Arch., 33 (2025), 1398–1413. https://doi.org/10.3934/era.2025065 doi: 10.3934/era.2025065
    [24] W. Wang, H. Zhang, X. Jiang, X. Yang, A high-order and efficient numerical technique for the nonlocal neutron diffusion equation representing neutron transport in a nuclear reactor, Ann. Nucl. Energy, 195 (2024), 110163. https://doi.org/10.1016/j.anucene.2023.110163 doi: 10.1016/j.anucene.2023.110163
    [25] X. Yang, W. Wang, Z. Zhou, H. Zhang, An efficient compact difference method for the fourth-order nonlocal subdiffusion problem, Taiwan. J. Math., 29 (2025), 35–66. https://doi.org/10.11650/tjm/240906 doi: 10.11650/tjm/240906
    [26] D. Ruan, X. Wang, Y. Wang, Local convergence of seventh-order iterative method under weak conditions and its applications, Eng. Comput., 2025. https://doi.org/10.1108/EC-08-2024-0775
    [27] S. Mazumder, Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods, Academic Press, 2015.
    [28] X. Wang, N. Shang, Local convergence analysis of a novel derivative-free method with and without memory for solving nonlinear systems, Int. J. Comput. Math., 2025. https://doi.org/10.1080/00207160.2025.2464701 doi: 10.1080/00207160.2025.2464701
    [29] X. Wang, W. Li, Fractal behavior of King's optimal eighth-order iterative method and its numerical application, Math. Commun., 29 (2024), 217–236. https://hrcak.srce.hr/321249
    [30] J. Yu, Z. Wang, Research on numerical algorithms for a class of variable coefficient parabolic free boundary problems, J. Gansu Lianhe Univ., Nat. Sci. Ed., 21 (2007), 5–9. https://doi.org/10.3969/j.issn.1672-691X.2007.02.002 doi: 10.3969/j.issn.1672-691X.2007.02.002
    [31] L. Liu, C. Liu, C. Jiang, Pseudospectral solution for a class of nonlinear pseudo-parabolic equations, J. Comput. Math., 29 (2007), 99–112. https://doi.org/10.3321/j.issn:0254-7791.2007.01.010 doi: 10.3321/j.issn:0254-7791.2007.01.010
    [32] Y. Su, X. Lü, S. Li, L. Yang, Z. Gao, Self-adaptive equation embedded neural networks for traffic flow state estimation with sparse data, Phys. Fluids, 36 (2024), 104127. https://doi.org/10.1063/5.0230757 doi: 10.1063/5.0230757
    [33] C. Han, X. Lü, Novel patterns in the space variable fractional order Gray–Scott model, Nonlinear Dyn., 112 (2024), 16135–16151. https://doi.org/10.1007/s11071-024-09857-5 doi: 10.1007/s11071-024-09857-5
    [34] H. Liao, Z. Sun, Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations, Numer. Methods Partial Differ. Equations, 26 (2010), 37–60. https://doi.org/10.1002/num.20414 doi: 10.1002/num.20414
    [35] Z. Zhou, H. Zhang, X. Yang, A BDF2 ADI difference scheme for a three-dimensional nonlocal evolution equation with multi-memory kernels, Comput. Appl. Math., 43 (2024), 418. https://doi.org/10.1007/s40314-024-02931-z doi: 10.1007/s40314-024-02931-z
    [36] C. Li, H. Zhang, X. Yang, A new linearized ADI compact difference method on graded meshes for a nonlinear 2D and 3D PIDE with a WSK, Comput. Math. Appl., 176 (2024), 349–370. https://doi.org/10.1016/j.camwa.2024.11.006 doi: 10.1016/j.camwa.2024.11.006
    [37] K. Liu, Z. He, H. Zhang, X. Yang, A Crank-Nicolson ADI compact difference scheme for the three-dimensional nonlocal evolution problem with a weakly singular kernel, Comput. Appl. Math., 44 (2025), 164. https://doi.org/10.1007/s40314-025-03125-x doi: 10.1007/s40314-025-03125-x
    [38] T. Liu, H. Zhang, X. Yang, The ADI compact difference scheme for three-dimensional integro-partial differential equation with three weakly singular kernels, J. Appl. Math. Comput., (2025), 1–29. https://doi.org/10.1007/s12190-025-02386-3 doi: 10.1007/s12190-025-02386-3
    [39] Z. Zhou, H. Zhang, X. Yang, $H^1$-norm error analysis of a robust ADI method on graded mesh for three-dimensional subdiffusion problems, Numer. Algorithms, 96 (2024), 1533–1551. https://doi.org/10.1007/s11075-023-01676-w doi: 10.1007/s11075-023-01676-w
    [40] C. Li, H. Zhang, X. Yang, A fourth-order accurate extrapolation nonlinear difference method for fourth-order nonlinear PIDEs with a weakly singular kernel, Comput. Appl. Math., 43 (2024), 288. https://doi.org/10.1007/s40314-024-02812-5 doi: 10.1007/s40314-024-02812-5
    [41] Z. Wang, D. Cen, Y. Mo, Sharp error estimate of a compact L1-ADI scheme for the two-dimensional time-fractional integro-differential equation with singular kernels, Appl. Numer. Math., 159 (2021), 190–203. https://doi.org/10.1016/j.apnum.2020.09.011 doi: 10.1016/j.apnum.2020.09.011
    [42] Z. Wang, Y. Liang, Y. Mo, A novel high order compact ADI scheme for two dimensional fractional integro-differential equations, Appl. Numer. Math., 167 (2021), 257–272. https://doi.org/10.1016/j.apnum.2021.05.008 doi: 10.1016/j.apnum.2021.05.008
    [43] Y. Jiang, H. Chen, C. Huang, J. Wang, A fully discrete GL-ADI scheme for 2D time-fractional reaction-subdiffusion equation, Appl. Math. Comput., 488 (2025), 129147. https://doi.org/10.1016/j.amc.2024.129147 doi: 10.1016/j.amc.2024.129147
    [44] Y. Jiang, H. Chen, T. Sun, C. Huang, Efficient L1-ADI finite difference method for the two-dimensional nonlinear time-fractional diffusion equation, Appl. Math. Comput., 471 (2024), 128609. https://doi.org/10.1016/j.amc.2024.128609 doi: 10.1016/j.amc.2024.128609
    [45] W. Qiu, Y. Li, X. Zheng, Numerical analysis of nonlinear Volterra integrodifferential equations for viscoelastic rods and plates, Calcolo, 61 (2024), 50. https://doi.org/10.1007/s10092-024-00607-y doi: 10.1007/s10092-024-00607-y
    [46] W. Qiu, Optimal error estimate of an accurate second-order scheme for Volterra integrodifferential equations with tempered multi-term kernels, Adv. Comput. Math., 49 (2023), 43. https://doi.org/10.1007/s10444-023-10050-2 doi: 10.1007/s10444-023-10050-2
    [47] L. Qiao, J. Guo, W. Qiu, Fast BDF2 ADI methods for the multi-dimensional tempered fractional integrodifferential equation of parabolic type, Comput. Math. Appl., 123 (2022), 89–104. https://doi.org/10.1016/j.camwa.2022.08.014 doi: 10.1016/j.camwa.2022.08.014
    [48] L. Qiao, D. Xu, A fast ADI orthogonal spline collocation method with graded meshes for the two-dimensional fractional integro-differential equation, Adv. Comput. Math., 47 (2021), 64. https://doi.org/10.1007/s10444-021-09884-5 doi: 10.1007/s10444-021-09884-5
    [49] L. Qiao, W. Qiu, D. Xu, Error analysis of fast L1 ADI finite difference/compact difference schemes for the fractional telegraph equation in three dimensions, Math. Comput. Simul., 205 (2023), 205–231. https://doi.org/10.1016/j.matcom.2022.10.001 doi: 10.1016/j.matcom.2022.10.001
    [50] Z. Wang, S. Vong, A high-order exponential ADI scheme for two dimensional time fractional convection–diffusion equations, Comput. Math. Appl., 68 (2014), 185–196. https://doi.org/10.1016/j.camwa.2014.05.016 doi: 10.1016/j.camwa.2014.05.016
    [51] E. T. Rodriguez, K. Garbev, D. Merz, L. Black, I. G. Richardson, Thermal stability of C-S-H phases and applicability of Richardson and Groves' and Richardson C-(A)-S-H(I) models to synthetic C-S-H, Cem. Concr. Res., 93 (2017), 45–56. https://doi.org/10.1016/j.cemconres.2016.12.005 doi: 10.1016/j.cemconres.2016.12.005
    [52] P. J. Roache, P. M. Knupp, Completed Richardson extrapolation, Commun. Numer. Meth. Eng., 9 (1993), 365–374. https://doi.org/10.1002/cnm.1640090502 doi: 10.1002/cnm.1640090502
    [53] W. Shyy, M. Garbey, A. Appukuttan, J. Wu, Evaluation of Richardson extrapolation in computational fluid dynamics, Numer. Heat Transf. B, 41 (2002), 139–164. https://doi.org/10.1080/104077902317240058 doi: 10.1080/104077902317240058
    [54] Z. Chen, H. Zhang, H. Chen, ADI compact difference scheme for the two-dimensional integro-differential equation with two fractional Riemann–Liouville integral kernels, Fractals Fract., 8 (2024), 707. https://doi.org/10.3390/fractalfract8120707 doi: 10.3390/fractalfract8120707
    [55] X. Shen, X. Yang, H. Zhang, The high-order ADI difference method and extrapolation method for solving the two-dimensional nonlinear parabolic evolution equations, Mathematics, 12 (2024), 3469. https://doi.org/10.3390/math12223469 doi: 10.3390/math12223469
    [56] Y. Shi, X. Yang, A time two-grid difference method for nonlinear generalized viscous Burgers' equation, J. Math. Chem., 62 (2024), 1323–1356. https://doi.org/10.1007/s10910-024-01592-x doi: 10.1007/s10910-024-01592-x
    [57] J. Wang, X. Jiang, X. Yang, H. Zhang, A compact difference scheme for mixed-type time-fractional Black-Scholes equation in European option pricing, Math. Meth. Appl. Sci., 48 (2025), 6818–6829. https://doi.org/10.1002/mma.10717 doi: 10.1002/mma.10717
    [58] J. Wang, X. Jiang, H. Zhang, X. Yang, A new fourth-order nonlinear difference scheme for the nonlinear fourth-order generalized Burgers-type equation, J. Appl. Math. Comput., (2025), 1–31. https://doi.org/10.1007/s12190-025-02467-3 doi: 10.1007/s12190-025-02467-3
    [59] J. Wang, X. Jiang, H. Zhang, A BDF3 and new nonlinear fourth-order difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 151 (2024), 109002. https://doi.org/10.1016/j.aml.2023.109002 doi: 10.1016/j.aml.2023.109002
    [60] X. Jiang, J. Wang, W. Wang, H. Zhang, A predictor-corrector compact difference scheme for a nonlinear fractional differential equation, Fractal Fract., 7 (2023), 521. https://doi.org/10.3390/fractalfract7070521 doi: 10.3390/fractalfract7070521
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(850) PDF downloads(41) Cited by(9)

Article outline

Figures and Tables

Figures(2)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog