Research article Special Issues

The alternating direction implicit difference scheme and extrapolation method for a class of three dimensional hyperbolic equations with constant coefficients

  • This paper conducts a study on the alternating direction implicit (ADI) difference schemes for a class of three dimensional hyperbolic equations with constant coefficients. The central difference methods are employed in the temporal and spatial direction. The solvability, stability, and convergence of the proposed ADI schemes are proven. Moreover, the Richardson extrapolation method is established to enhance the accuracy of the algorithm. Numerical examples are presented for the errors and convergence orders of the established ADI schemes and extrapolation schemes. By comparing the results of numerical examples, it can be concluded that the proposed Richardson extrapolation method can effectively improve the accuracy of the numerical solutions and reduce the errors.

    Citation: Zhaoxiang Zhang, Xuehua Yang, Song Wang. The alternating direction implicit difference scheme and extrapolation method for a class of three dimensional hyperbolic equations with constant coefficients[J]. Electronic Research Archive, 2025, 33(5): 3348-3377. doi: 10.3934/era.2025148

    Related Papers:

    [1] Jinxiu Zhang, Xuehua Yang, Song Wang . The ADI difference and extrapolation scheme for high-dimensional variable coefficient evolution equations. Electronic Research Archive, 2025, 33(5): 3305-3327. doi: 10.3934/era.2025146
    [2] Cheng Wang . Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, 2021, 29(5): 2915-2944. doi: 10.3934/era.2021019
    [3] Guoliang Zhang, Shaoqin Zheng, Tao Xiong . A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29(1): 1819-1839. doi: 10.3934/era.2020093
    [4] Junseok Kim . Maximum principle preserving the unconditionally stable method for the Allen–Cahn equation with a high-order potential. Electronic Research Archive, 2025, 33(1): 433-446. doi: 10.3934/era.2025021
    [5] Shanpu Gao, Yubo Li, Anping Wu, Hao Jiang, Feng Liu, Xinlong Feng . An intelligent optimization method for accelerating physical quantity reconstruction in computational fluid dynamics. Electronic Research Archive, 2025, 33(5): 2881-2924. doi: 10.3934/era.2025127
    [6] Xuefei He, Kun Wang, Liwei Xu . Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28(4): 1503-1528. doi: 10.3934/era.2020079
    [7] Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour . On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, 2021, 29(5): 2841-2876. doi: 10.3934/era.2021017
    [8] Lot-Kei Chou, Siu-Long Lei . High dimensional Riesz space distributed-order advection-dispersion equations with ADI scheme in compression format. Electronic Research Archive, 2022, 30(4): 1463-1476. doi: 10.3934/era.2022077
    [9] Chang Hou, Hu Chen . Stability and pointwise-in-time convergence analysis of a finite difference scheme for a 2D nonlinear multi-term subdiffusion equation. Electronic Research Archive, 2025, 33(3): 1476-1489. doi: 10.3934/era.2025069
    [10] Shasha Bian, Yitong Pei, Boling Guo . Numerical simulation of a generalized nonlinear derivative Schrödinger equation. Electronic Research Archive, 2022, 30(8): 3130-3152. doi: 10.3934/era.2022159
  • This paper conducts a study on the alternating direction implicit (ADI) difference schemes for a class of three dimensional hyperbolic equations with constant coefficients. The central difference methods are employed in the temporal and spatial direction. The solvability, stability, and convergence of the proposed ADI schemes are proven. Moreover, the Richardson extrapolation method is established to enhance the accuracy of the algorithm. Numerical examples are presented for the errors and convergence orders of the established ADI schemes and extrapolation schemes. By comparing the results of numerical examples, it can be concluded that the proposed Richardson extrapolation method can effectively improve the accuracy of the numerical solutions and reduce the errors.



    The class of three-dimensional hyperbolic partial differential equations (PDEs) with constant coefficients studied in this paper is as follows:

    utta2uxxb2uyyc2uzz=f(x,y,z,t),(x,y,z)Ω,t[0,T], (1.1)
    u(x,y,z,0)=φ(x,y,z),ut(x,y,z,0)=ψ(x,y,z),(x,y,z)ˉΩ, (1.2)
    u(x,y,z,t)=α(x,y,z,t),(x,y,z)Γ,t[0,T], (1.3)

    where a, b, and c are constants, Ω=(0,L1)×(0,L2)×(0,L3), Γ is the boundary of Ω, and when (x,y,z)Γ, α(x,y,z,0)=φ(x,y,z), α(x,y,z,0)/t=ψ(x,y,z).

    The hyperbolic partial differential equations (1.1)–(1.3) hold substantial theoretical and practical significance, serving as a cornerstone for both the evaluation of numerical methods and the simulation of complex natural and physical phenomena. These models provide a rigorous framework for assessing the feasibility and performance of numerical approaches [1,2,3], as well as for modeling intricate dynamic processes observed in nature [4,5].

    The applications of hyperbolic models span a wide range of disciplines, extending far beyond mathematics. In biology, for instance, the hyperbolic equations are extensively employed to describe population dynamics and the propagation of neural signals [6,7,8,9]. The models play a pivotal role in the analysis of vibrational systems and the exploration of fundamental physical principles. For example, Fedotov et al. [10] utilized hyperbolic and pseudo-hyperbolic equations to investigate vibration theory, offering insights into the characterization and analysis of vibrational phenomena. Paul [11] examined the application of Huygens' principle to hyperbolic equations, while Alinhac [12] delved into the blowup behavior of nonlinear hyperbolic equations. The hyperbolic models find significant applications in engineering [13,14], where they are used to address a variety of practical problems.

    This problem (1.1)–(1.3) is formulated for a three-dimensional wave equation with boundary conditions of the first kind, which has been a subject of considerable research interest in the mixed problem for a hyperbolic equation [15,16]. Gordienko [17] studied the mixed problem for real wave equations satisfying uniform Lopatinskii conditions, systematically establishing all viable reduction methods to transform it into a mixed problem for symmetric hyperbolic systems with dissipative boundary conditions. Malyshev [18] researched initial-boundary value problems for second-order hyperbolic PDEs with complex first-order boundary conditions. These investigations collectively highlight the significance of this research topic in contemporary mathematical physics.

    The ADI method has long been recognized as a powerful and efficient numerical technique in scientific computing and engineering, particularly for solving PDEs [19,20,21,22]. Its unique ability to decompose high-dimensional problems into a series of one-dimensional problems has made it a preferred choice for tackling complex systems, especially those involving high dimension problems in space. The model in Eqs (1.1)–(1.3) has been widely investigated using ADI methods [23,24,25,26,27], demonstrating both theoretical significance and ADI unique advantages for high-dimensional simulations of the model. Nie and Cao [28] developed an improved ADI scheme based on a staggered grid to address transient heat conduction problems in mixed representations. Zhao [29] proposed a novel Douglas ADI method for solving two-dimensional heat equations with interfaces, further demonstrating the versatility of ADI techniques in handling complex boundary conditions.

    Over the years, the difference and ADI difference method has garnered significant attention from researchers due to its computational efficiency and stability, which are critical for solving large scale problems in various fields [30,31,32,33,34]. Zhou et al. [35] employed an efficient ADI approach to solve three-dimensional heat equations with irregular boundaries and interfaces. Shen et al. [36] provided the high-order ADI difference method and extrapolation method for 2D nonlinear parabolic evolution equations. Chen et al. [37] investigated numerical methods for two-dimensional integro-differential equations with two fractional Riemann-Liouville (R-L) integral kernels. Liu et al.[38] utilized the ADI method to transform three-dimensional problems into one-dimensional problems, enabling the efficient solution of three-dimensional integro-differential equations with weakly singular kernels. Moreover, the ADI method has found extensive use in solving nonlocal evolution equations [39,40,41,42,43], it demonstrates the wide adaptability of ADI across different models.

    The Richardson extrapolation scheme plays a significant role in refining numerical solutions and achieving higher-order accuracy, a widely applied technique in the numerical solution of linear differential equations [44,45,46,47] and nonlinear differential equations [48,49,50,51]. In the present study, we explore the ADI method and its Richardson extrapolation scheme for solving a class of three-dimensional constant-coefficient hyperbolic partial differential equations. By leveraging the ADI method within the framework of the original hyperbolic equation, we decompose the three-dimensional problem into a sequence of one-dimensional subproblems, solving them iteratively.

    The main contributions of this article are as follows.

    ● We prove strictly the solvability, stability and convergence of the proposed ADI difference schemes for the three-dimensional problem, which is the first time to provide a strict theoretical analysis of the three-dimensional problem with constant coefficients. Although there were some papers on the ADI method, but they did not provide strict theoretical analysis for three-dimensional problems.

    ● We construct the Richardson extrapolation for the original model, present the theoretical analysis, and compare the extrapolated results with the initial data, which fill the gap in the ADI extrapolation method for three-dimensional problems.

    The paper is organized as follows. Section 2 introduces notations and lemmas. Section 3 presents the discretization and finite difference scheme. Section 4 proves the solvability, stability and convergence. Section 5 discusses the Richardson extrapolation scheme. Section 6 provides numerical experiments to validate the method. Finally, Section 7 concludes with a summary.

    Take positive integers m1, m2, m3, and n. Denote h1=L1/m1, h2=L2/m2, h3=L3/m3, and τ=T/n. Define xi=ih1(0im1), yj=jh2(0jm2), zk=kh3(0km3), and tl=lτ(0ln). Define

    Ωh={(xi,yj,zk)0im1,0jm2,0km3},Ωτ={tl0ln},ω={(i,j,k)(xi,yj,zk)Ω},γ={(i,j,k)(xi,yj,zk)Γ},ˉω=ωγ,fl+12ijk=f(xi,yj,zk,tl+12),tl+12=12(tl+tl+1).

    Let u={ulijk0im1,0jm2,0km3,0ln}} be a grid function defined on Ωh×Ωτ, and we hereby introduce the following notations:

    vl+12ijk=12(vlijk+vl+1ijk),δtvl+12ijk=1τ(vl+1ijkvlijk),vˉlijk=12(vl1ijk+vl+1ijk),Δtvlijk=12τ(vl+1ijkvl1ijk),δ2xvnijk=1h21(vni1,j,k2vnijk+vni+1,j,k),δ2yvnijk=1h22(vni,j1,k2vnijk+vni,j+1,k),δ2zvnijk=1h23(vni,j,k12vnijk+vni,j,k+1),Δhvnijk=δ2xvnijk+δ2yvnijk+δ2zvnijk.

    Let vl={vlijk(i,j,k)ω} be a grid function on Ωh. Assume the spatial grid Vh={vv={vlijk(i,j,k)ˉv}Ωh, ˚Vh={vv={vijk(i,j,k)ˉω} and vijk=0 if (i,j,k)γ}.

    Let ι,μ˚Vh and introduce the following inner product and norm:

    (ι,μ)=h1h2h3m11i=1m21j=1m31k=1ιijkμijk,ι=(ι,ι),(δxι,δxμ)=h1h2h3m1i=1m21j=1m31k=1(δxιi12,j,k)(δxμi12,j,k),(δxδyι,δxδyμ)=h1h2h3m1i=1m2j=1m31k=1(δxδyιi12,j12,k)(δxδyμi12,j12,k),(δxδyδzι,δxδyδzμ)=h1h2h3m1i=1m2j=1m3k=1(δxδyδzιi12,j12,k12)(δxδyδzμi12,j12,k12),δxδyι2=(δxδyι,δxδyι),δyδzι2=(δyδzι,δyδzι),δxδzι2=(δxδzι,δxδzι),δxδyδzι2=(δxδyδzι,δxδyδzι),δxι2=(δxι,δxι),δyι2=(δyι,δyι),δzι2=(δzι,δzι),Δhι2=(Δhι,Δhι),|ι|1=δxι2+δyι2+δzι2,ι1=ι2+|ι|21,v=max0im1,0jm2,0km3|vijk|.

    Lemma 2.1. [52,53,54] For arbitrary ι,μ˚Vh, it always follows that

    (δ2xι,μ)=(δxι,δxμ),(δ2yι,μ)=(δyι,δyμ),(δ2zι,μ)=(δzι,δzμ),(δ2xδ2yι,μ)=(δxδyι,δxδyμ),(δ2xδ2zι,μ)=(δxδzι,δxδzμ),(δ2yδ2zι,μ)=(δyδzι,δyδzμ),(δ2xδ2yδ2zι,μ)=(δxδyδzι,δxδyδzμ).

    Lemma 2.2. [53] Suppose that gC(4)[tl,tl+τ]. Then, we have

    g(tl+τ)=2h[g(tl+τ)g(tl)hg(tl)+h23g(tl)]+512h2g(4)(tl+ξ0τ),ξ0(0,1).

    Lemma 2.3. [53] If the function gC4[tlτ,tl+τ], then

    g(tl)=1h2[g(tlτ)2g(tl)+g(tl+τ)]h212g(4)(ξ1),tlτ<ξ1<tl+τ,g(tl)=12[g(tlτ)+g(tl+τ)]h22g(ξ2),tlτ<ξ2<tl+τ.

    Lemma 2.4. [53] Assume v˚Vh. It follows that

    vC|v|1,

    wherein, C denotes a positive constant that may differ across various scenarios. It invariably hinges upon the solution and the prescribed data, while remaining independent of the time step τ and the grid spacing h.

    Lemma 2.5. [53] (Gronwall's inequality-E) Let {Fk}k=0 be a non-negative sequence, {gk}k=0 be non-negative and monotonically increasing (not necessarily strictly monotonically increasing), satisfying the condition that

    Fkcτk1l=0Fl+gk,k=0,1,2,....

    Then, we have

    Fkeckτgk,k=0,1,2,....

    Lemma 2.6. Assume that v˚Vh. Then, we conclude that

    v12L1L2L3L1L2+L1L3+L2L3|v|1.

    Proof. For 1im11,1jm21,and1km31, it holds that

    vijk=ii=1m21j=1m31k=1(vi,j,kvi1,j,k)=h1ii=1m21j=1m31k=1δxvi12,j,k,vijk=m1i=i+1m21j=1m31k=1(vi,j,kvi1,j,k)=h1m1i=i+1m21j=1m31k=1δxvi12,j,k.

    Square the above two equations respectively, and then apply the Cauchy-Schwarz inequality. We can obtain that

    v2ijk(h1ii=112)h1ii=1m21j=1m31k=1(δxvi12,j,k)2=xih1ii=1m21j=1m31k=1(δxvi12,j,k)2, (2.1)
    v2ijk(h1m1i=i+112)h1m1i=i+1m21j=1m31k=1(δxvi12,j,k)2=(L1xi)h1m1i=i+1m21j=1m31k=1(δxvi12,j,k)2. (2.2)

    Multiply (2.1) by L1xi, multiply (2.2) by xi, and then add the obtained results together to get

    L1v2ijkxi(L1xi)m1i=1m21j=1m31k=1(δxvi12,j,k)2=xi(L1xi)δxv2,1im11.

    By applying

    xi(L1xi)L214,

    it can be derived that

    L1v2ijkL214δxv2, (2.3)

    and, following the same argumentation, one arrives at the conclusion that

    L2v2ijkL224δyv2, (2.4)
    L3v2ijkL234δzv2. (2.5)

    From |v|1=δxv2+δyv2+δzv2 and the above three equations, we can obtain that

    (L1L2+L2L3+L1L3)|vijk|2L1L2L34|v|21.

    That is,

    |vijk|12L1L2L3L1L2+L2L3+L1L3|v|1.

    Moreover, because

    v0,j,k=vi,0,k=vi,j,0=vm1,j,k=vi,m2,k=vi,j,m3=0,

    then

    v12L1L2L3L1L2+L2L3+L1L3|v|1.

    Define

    M1=a2b2τ2δ2xδ2y2+b2c2τ2δ2yδ2z2+a2c2τ2δ2xδ2z2a2b2c2τ2δ2xδ2yδ2z4.

    Consider Eqs (1.1)–(1.3) on (xi,yj,zk,t1),

    utt(xi,yj,zk,t1)a2uxx(xi,yj,zk,t1)b2uyy(xi,yj,zk,t1)c2uzz(xi,yj,zk,t1)=f1ijk,(i,j,k)ω. (3.1)

    From the combination of (1.1) and (1.2), we get

    uttt(x,y,z,0)=a2ψxx(x,y,z)+b2ψyy(x,y,z)+c2ψzz(x,y,z)+ft(x,y,z,0)ρ(x,y,z).

    Based on Lemma 2.2, it follows that

    uttt(xi,yj,zk,t1)=2τ(δtU1ijkut(xi,yj,zk,t0)+τ23uttt(xi,yj,zk,t1))+5τ212utttt(xi,yj,zk,ζijkτ)=2τ(δtU1ijkψijk+τ23ρijk)+512τ2utttt(xi,yj,zk,ζijkτ),

    where ψijk=ψ(xi,yj,zk), ρijk=ρ(xi,yj,zk), ζijk(0,1).

    Using Lemma 2.3, we have

    uxx(xi,yj,zk,t1)=δ2xU1ijk112uxxxx(ηijk,yj,zk,t1),ηijk(xih1,xi+h1),uyy(xi,yj,zk,t1)=δ2yU1ijk112uyyyy(xi,ξijk,zk,t1),ξijk(yjh2,yj+h2),uzz(xi,yj,zk,t1)=δ2zU1ijk112uzzzz(xi,yj,λijk,t1),λijk(zkh3,zk+h3).

    Next, substitute the above four formulas into (3.1) and add M1U1ijk on both sides at the same time, so there is

    2τ(δtU1ijkψijk+τ23ρijk)a2δ2xU1ijkb2δ2yU1ijkc2δ2zU1ijk+M1U1ijk=f1ijk+(R1)0ijk,(i,j,k)ω, (3.2)

    where

    (R1)0ijk=5τ212utttt(xi,yj,zk,ζijkτ)a2h2112uxxxx(ηijk,yj,zk,t1)b2h2212uyyyy(xi,ξijk,zk,t1)c2h2312uzzzz(xi,yj,λijk,t1)M1U1ijk,(i,j,k)ω. (3.3)

    Then, there exists a constant c1 such that

    |(R1)0ijk|c1(τ2+h21+h22+h23),(i,j,k)ω.

    Consider Eqs (1.1)–(1.3) on (xi,yj,zk,tl)(1ln1),

    utt(xi,yj,zk,tl)a2uxx(xi,yj,zk,tl)b2uyy(xi,yj,zk,tl)c2uzz(xi,yj,zk,tl)=flijk,(i,j,k)ω. (3.4)

    From Lemma 2.3, it can be concluded that

    utt(xi,yj,zk,tl)=δ2tUlijkτ212utttt(xi,yj,zk,ˉζlijk),ˉζlijk(1,1),uxx(xi,yj,zk,tl)=12[uxx(xi,yj,zk,tl1)+uxx(xi,yj,zk,tl+1)]τ22uxxtt(xi,yj,zk,slijk)=12[δ2xUl1ijk+δ2xUl+1ijk]h2124[uxxxx(ˉηlijk,yj,zk,tl1)+uxxxx(ˉηlijk,yj,zk,tl+1)]τ22uxxtt(xi,yj,zk,slijk),slijk(tlτ,tl+τ),ˉηlijk(xih1,xi+h1).uyy(xi,yj,zk,tl)=12[uyy(xi,yj,zk,tl1)+uyy(xi,yj,zk,tl+1)]τ22uyytt(xi,yj,zk,slijk)=12[δ2xUl1ijk+δ2xUl+1ijk]h2124[uyyyy(xi,ˉξlijk,zk,tl1)+uyyyy(xi,ˉξlijk,zk,tl+1)]τ22uyytt(xi,yj,zk,slijk),slijk(tlτ,tl+τ),ˉξlijk(yjh2,yj+h2).uzz(xi,yj,zk,tl)=12[uzz(xi,yj,zk,tl1)+uzz(xi,yj,zk,tl+1)]τ22uzztt(xi,yj,zk,slijk)=12[δ2xUl1ijk+δ2xUl+1ijk]h2124[uzzzz(xi,yj,ˉλlijk,tl1)+uzzzz(xi,yj,ˉλlijk,tl+1)]τ22uzztt(xi,yj,zk,slijk),slijk(tlτ,tl+τ),ˉλlijk(zkh3,zk+h3).

    Then, substitute the above four formulas into (3.4), and add M1Uˉlijk

    δ2tUlijka2δ2xUˉlijkb2δ2yUˉlijkc2δ2zUˉlijk+M1Uˉlijk=flijk+(R1)lijk,(i,j,k)ω,1ln1, (3.5)

    where

    (R1)lijk=τ2[112utttt(xi,yj,zk,tl+ˉζτ)a22uxxtt(xi,yj,zk,slijk)b22uyytt(xi,yj,zk,slijk)c22uzztt(xi,yj,zk,slijk)]+M1Uˉlijkh21[a224uxxxx(ˉηlijk,yj,zk,tl1)+a224uxxxx(ˉηlijk,yj,zk,tl+1)]h22[b224uyyyy(xi,ˉξlijk,zk,tl1)+b224uyyyy(xi,ˉξlijk,zk,tl+1)]h23[c224uzzzz(xi,yj,ˉλlijk,tl1)+c224uzzzz(xi,yj,ˉλlijk,tl+1)],(i,j,k)ω,1ln1. (3.6)

    A constant c2 exists such that

    |(R1)lijk|c2(τ2+h21+h22+h23),(i,j,k)ω,1ln1,|Δt(R1)lijk|c2(τ2+h21+h22+h23),(i,j,k)ω,2ln2,

    and

    Δt(R1)lijk=12τ[(R1)l+1ijk(R1)l1ijk].

    Notice the initial boundary value condition (1.1)–(1.3):

    U0ijk=ϕ(xi,yj,zk),(i,j,k)ω,Ulijk=ψ(xi,yj,zk),(i,j,k)γ,0ln. (3.7)

    Ignoring the minimum terms (R1)0ijk and (R1)lijk, the following ADI difference scheme is established for the solution of problem (1.1)–(1.3):

    2τ(δtu1ijkψijk+τ23ρijk)a2δ2xu1ijkb2δ2yu1ijkc2δ2zu1ijk+M1u1ijk=f1ijk,(i,j,k)ω, (3.8)
    δ2tulijka2δ2xuˉlijkb2δ2yuˉlijkc2δ2zuˉlijk+M1uˉlijk=flijk,(i,j,k)ω,1ln1, (3.9)
    u0ijk=ψ(xi,yj,zk)(i,j,k)ω, (3.10)
    ulijk=α(xi,yj,zk,tl),(i,j,k)γ,1ln. (3.11)

    Equation (3.8) can be transformed into

    (Ia2τ22δ2x)(Ib2τ22δ2y)(Ic2τ22δ2z)u1ijk=u0ijk+τψijkτ33ρijk+τ22f1ijk,(i,j,k)ω.

    Letting

    ˉuijk=(Ib2τ22δ2y)uijk,uijk=(Ic2τ22δ2z)u1ijk,

    then

    (Ia2τ22δ2x)ˉuijk=u0ijk+τψijkτ33ρijk+τ22f1ijk, (3.12)
    (Ib2τ22δ2y)uijk=ˉuijk, (3.13)
    (Ic2τ22δ2z)u1ijk=uijk. (3.14)

    For any fixed j(1jm21) and k(1km31), take the boundary conditions

    ˉu0,j,k=(Ib2τ22δ2y)u0,j,k=(Ib2τ22δ2y)(Ic2τ22δ2z)u10,j,k, (3.15)
    ˉum1,j,k=(Ib2τ22δ2y)um1,j,k=(Ib2τ22δ2y)(Ic2τ22δ2z)u1m1,j,k. (3.16)

    Using (3.15) and (3.16), solve the equation

    (Ia2τ22δ2x)ˉuijk=u0ijk+τψijkτ33ρijk+τ22f1ijk,1im11,

    from which we obtain {ˉuijk1im11}.

    For arbitrary fixed i(1im11) and k(1km31), take the boundary conditions

    ui,0,k=(Ic2τ22δ2z)u1i,0,k, (3.17)
    ui,m2,k=(Ic2τ22δ2z)u1i,m2,k. (3.18)

    Using (3.17) and (3.18), we solve the equation

    (Ib2τ22δ2y)uijk=ˉuijk,1jm2,

    from which we obtain {uijk1jm2}.

    For fixed i(1im11) and j(1jm21), with the boundary conditions

    u1i,j,0,=α(xi,yj,z0,t1), (3.19)
    u1i,j,m3=α(xi,yj,zm3,t1), (3.20)

    we solve the equation

    (Ic2τ22δ2z)u1ijk=uijk,1km3,

    from which we obtain {u1ijk1km31}.

    Also, Eq (3.9) can be rewritten as

    (Ia2τ22δ2x)(Ib2τ22δ2y)(Ic2τ22δ2z)uˉlijk=ulijk+τ22flijk,(i,j,k)ω,1ln1.

    Letting

    ˆuijk=(Ib2τ22δ2y)ˆuijk,ˆuijk=(Ic2τ22δ2z)uˉlijk,

    then

    (Ia2τ22δ2x)ˆuijk=ulijk+τ22flijk, (3.21)
    (Ib2τ22δ2y)ˆuijk=ˆuijk, (3.22)
    (Ic2τ22δ2z)uˉlijk=ˆuijk (3.23)

    When the values of the l-th layer and the l1-th layer are known, for any fixed j(1jm21) and k(1km31), take the boundary conditions

    ˆu0,j,k=(Ib2τ22δ2y)ˆu0,j,k=(Ib2τ22δ2y)(Ic2τ22δ2z)ˆuˉl0,j,k, (3.24)
    ˆum1,j,k=(Ib2τ22δ2y)ˆum1,j,k=(Ib2τ22δ2y)(Ic2τ22δ2z)ˆuˉlm1,j,k. (3.25)

    Using (3.24) and (3.25), we solve the equation

    (Ia2τ22δ2x)ˆuijk=ulijk+τ22flijk,1im11,

    from which we obtain {ˆuijk1im11}.

    With i(1im11) and k(1km31) being any fixed values, take the boundary conditions

    ˆui,0,k=(Ic2τ22δ2z)uˉli,0,k, (3.26)
    ˆui,m2,k=(Ic2τ22δ2z)uˉli,m2,k. (3.27)

    Using (3.26) and (3.27), we solve the equation

    (Ib2τ22δ2y)ˆuijk=ˆuijk,1jm21,

    from which we obtain {ˆuijk1jm21}.

    For fixed i(1im11) and j(1jm21), with the boundary conditions

    uˉli,j,0=12[α(xi,yj,z0,tl+1)+α(xi,yj,z0,tl1)], (3.28)
    uˉli,j,m3=12[α(xi,yj,zm3,tl+1)+α(xi,yj,zm3,tl1)], (3.29)

    we solve the equation

    (Ic2τ22δ2z)uˉlijk=ˆuijk,1km31,

    from which we obtain {uˉlijk1km31}. Then, we utilize

    ul+1ijk=2uˉlijkul1ijk,(i,j,k)ω

    from which we obtain {ul+1ijk(i,j,k)ω}.

    Theorem 4.1. (Solvability) The solution of the ADI difference scheme (3.8)(3.11) exists and is unique.

    Proof. Note ul={ulijk(i,j,k)ω}. It is known from (3.10) and (3.11) that u0 has been given. The difference scheme regarding u1 is

    2τ(δtu1ijkψijk+τ23ρijk)a2δ2xu1ijkb2δ2yu1ijkc2δ2zu1ijk+Mlu1ijk=f1ijk+(R1)0ijk,(i,j,k)ω,ulijk=0,(i,j,k)γ.

    Consider its homogeneous system of equations

    2τ2ulijka2δ2xu1ijkb2δ2yu1ijkc2δ2zu1ijk+Mlu1ijk=0,(i,j,k)ω,ulijk=0,(i,j,k)γ. (4.1)

    Using u1 and (4.1) to calculate the inner product, we obtain

    2τ2u12a2(δ2xu1,u1)b2(δ2yu1,u1)c2(δ2zu1,u1)+a2c2τ22(δ2xδ2zu1,u1)+b2c2τ22(δ2yδ2zu1,u1)+a2b2τ22(δ2xδ2yu1,u1)a2b2c2τ22(δ2xδ2yδ2zu1,u1)=0,

    so

    2τ2u12+a2δxu12+b2δyu12+c2δzu12+a2c2τ22δxδzu12+b2c2τ22δyδzu12+a2b2τ22δxδyu12+a2b2c2τ22δxδyδzu12=0,

    and it is easy to get

    u1ijk=0,(i,j,k)ˉω.

    Now that ul1,ul(1ln1) have been determined, the difference scheme for ul+1 is

    δ2tulijka2δ2xuˉlijkb2δ2yuˉlijkc2δ2zuˉlijk+12M1ul+1ijk=0,(i,j,k)ω,ul+1ijk=0,(i,j,k)γ.

    Consider its homogeneous system of equations

    1τ2ul+1ijka22δ2xul+1ijkb22δ2yul+1ijkc22δ2zul+1ijk+12Mlul+1ijk=0,(i,j,k)ω,ul+1ijk=0,(i,j,k)γ.

    Using the equation with ul+1ijk and above for the inner product, we can obtain

    1τ2ul+1a22(δ2xul+1,ul+1)b22(δ2yul+1,ul+1)c22(δ2zul+1,ul+1)+a2c2τ24(δ2xδ2zul+1,ul+1)+b2c2τ24(δ2yδ2zul+1,ul+1)+a2b2τ24(δ2xδ2yul+1,ul+1)a2b2c2τ48(δ2xδ2yδ2zul+1,ul+1)=0.

    Thus,

    1τ2ul+1+a22δxul+12+b22δyul+12+c22δzul+12+a2c2τ24δxδzul+12+b2c2τ24δyδzul+12+a2b2τ24δxδyul+12+a2b2c2τ48δxδyδzul+12=0.

    It is easy to conclude

    ul+1ijk=0,(i,j,k)ˉω.

    Based on the induction principle, the system of difference equations (3.8)–(3.11) is uniquely solvable.

    The following is the analysis and proof process regarding stability.

    Theorem 4.2. (Stability) Let {ulijk|(i,j,k)ˉω} be the solution of the following system of difference equations:

    2τδtu12ijka2δ2xu1ijkb2δ2yu1ijkc2δ2zu1ijk+Mlu1ijk=g0ijk,(i,j,k)ω,δ2tulijka2δ2xuˉlijkb2δ2yuˉlijkc2δ2zuˉlijk+Mluˉlijk=gˉlijk,(i,j,k)ω,1ln1,u0ijk=ψijk,(i,j,k)ω,ulijk=0,(i,j,k)γ. (4.2)

    Then, there is

    12(|ul+1|21+|ul|21)1C23e2T[6C24|u0|2A1+3M2+2C2d(6g02+4max1mlgm2+τl1m=2Δtgm2)],1ln1,

    where

    |u|2A1=a2δxu2+b2δyu2+c2δzu2,M2=a2b2τ2δxδyu02+a2c2τ2δxδzu02+b2c2τ2δyδzu02+a2b2c2τ42δxδyδzu02,C3=min{a2,b2,c2},C4=max{a2,b2,c2},Cd=CC3.

    Proof. Taking the inner product of both sides of Eq (4.2) and δtu12, we obtain

    2τ(δtu12,δtu12)a2(δ2xu1,δtu12)b2(δ2yu1,δtu12)c2(δ2zu1,δtu12)+a2c2τ22(δ2xδ2zu1,δtu12)+b2c2τ22(δ2yδ2zu1,δtu12)+a2b2τ22(δ2xδ2yu1,δtu12)a2b2c2τ24(δ2xδ2yδ2zu1,δtu12)=(g0,δtu12).

    From the above equation, we obtain

    2τδtu122+a22τ(δxu12δxu02)+b22τ(δyu12δyu02)+c22τ(δzu12δzu02)+a2b24(δxδyu12δxδyu02)+a2c24(δxδzu12δxδzu02)+b2c24(δyδzu12δyδzu02)+a2b2c28(δxδyδzu12δxδyδzu02)=(g0,δtu12). (4.3)

    When uVh, we have

    |u|2A1=a2δxu2+b2δyu2+c2δzu2,

    because

    C23=min{a2,b2,c2},C24=max{a2,b2,c2}.

    Then,

    C23|u|21|u|2A1C24|u|21,

    thus |u|2A1 and |u|21 are equivalent. If C2d=C2C23 is set, then it can be inferred from Lemma 2.4 that

    u2C2d|u|2A1.

    After substituting |u|2A1 into (4.3) and simplifying both sides of the equation, we obtain

    2δxu122+14(|u1|2A1+|u0|2A1)+a2b2τ24(δxδyu12+δxδyu02)+a2c2τ24(δxδzu12+δxδzu02)+b2c2τ24(δyδzu12+δyδzu02)+a2b2c2τ48(δxδyδzu12+δxδyδzu02)|u0|2A1+a2b2τ22δxδyu02+a2c2τ22δxδzu02+b2c2τ22δyδzu02+b2c2τ24δxδyδzu02+2C2dg02,

    Then, let

    El=δxul+122+12(|ul+1|2A1+|ul|2A1)+a2b2τ22(δxδyul+12+δxδyul2)+a2c2τ22(δxδzul+12+δxδzul2)+b2c2τ22(δyδzul+12+δyδzul2)+a2b2c2τ44(δxδyδzul+12+δxδyδzul2),

    so

    E02|u0|2A1+a2b2τ2δxδyu02+a2c2τ2δxδzu02+b2c2τ2δyδzu02+a2b2c2τ42δxδyδzu02+4C2dg02. (4.4)

    Taking the inner product of both sides of Eq (4.2) with respect to Δtul, we have

    (δ2tul,Δtul)a2(δ2xuˉl,Δtul)b2(δ2yuˉl,Δtul)c2(δ2zuˉl,Δtul)+a2c2τ22(δ2xδ2zuˉl,Δtul)+a2b2τ22(δ2xδ2yuˉl,Δtul)+b2c2τ22(δ2yδ2zuˉl,Δtul)a2b2c2τ44(δ2xδyδ2zuˉl,Δtul)=(gl,Δtul),

    through calculation and simplification, we can obtain

    12τ(δtul+122δtul122)+12τ(|ul+1|2A1+|ul|2A12|ul|2A1+|ul1|2A12)+a2c2τ22τ(δxδzul+12+δxδzul22δxδzul2+δxδzul122)+a2b2τ22τ(δxδyul+12+δxδyul22δxδyul2+δxδyul122)+b2c2τ22τ(δyδzul+12+δyδzul22δyδzul2+δyδzul122)+a2b2c2τ44τ(δxδyδzul+12+δxδyδzul22δxδyδzul2+δxδyδzul122)=(gl,Δtul),

    thus, it follows that

    12τ(ElEl1)=(gl,Δtul), (4.5)

    and when l=1,

    E1=E02τ(gl,Δtul)=E0(gl,u2u0)E0+14(|u1|2A1+|v0|2A1)+2Cdgl2,

    so

    12(|u2|2A1+|u1|2A1)2E0+12(|u2|2A1+|u0|2A1)+4Cdgl2.

    When l2, replace m with l in (4.5), and sum m from 1 to l. Then, we obtain

    El=E02τlm=1(gm,Δtum)=E0lm=1(gm,um+1um1)=E0l+1m=2(gm1,um)+l1m=1=0(gm+1,um)=E0+l1m=2(Δtgm,um)(gl1,ul)(gl,ul+1)+(g1,u0)+(g2,u1),2ln1,

    observing that

    El12(|ul+1|2A1+|ul|2A1),

    we can obtain

    12(|ul+1|2A1+|ul|2A1)E0+l1m=2(Δtgm,vm)(gl1,ul)(gl,ul+1)+(g1,u0)+(g2,u1)E0+τl1m=2(C2xΔtgm2+|um|2A1)+C2d(gl12+gl2+g12+g22)+14(|ul|2A1+|ul+1|2A1+|u0|2A1+|u1|2A1),2ln1.

    Furthermore, we can obtain

    |ul+1|2A1+|ul|2A122E0+2C2d(gl12+gl2+g12+g22+τl1m=2Δtgm2)+|u0|2A1+|u1|2A12+2τl1m=2|um+1|2A1+|um|2A12,2ln1.

    According to Lemma 2.5, we can obtain

    |ul+1|2A1+|ul|2A12e2(l1)τ[3E0+2C2d(4max1mlgm2+τl1m=2Δtgm2)]e2T[3×(2|u0|2A1+M+4C2dg02)+2C2x(4max1mlgm2+τl1m=2Δtgm2)]e2T[6|u0|2A1+3M+2C2d(6g02+4max1mlgm2+τl1m=2Δtgm2)],1ln1,

    moreover, since

    C23|u|21|u|2A1C24|u|21,

    then

    12(|ul+1|21+|ul|21)1C23e2T[6C24|u0|2A1+3M2+2C2d(6g02+4max1mlgm2+τl1m=2Δtgm2)],1ln1.

    By noting the definition of E1 and (4.4), we can see that the above formula also holds for l=0. The proof of stability is completed.

    The rigorous proof of convergence is derived as follows.

    Theorem 4.3. (Convergence) Let {u(x,y,z,t)(x,y,z)ˉΩ,0tT} be the solution of the problem (1.1)–(1.3), and {ulijk(i,j,k)ˉω,0ln} be the solution of the difference scheme (3.8)(3.11). Denote

    elijk=u(xi,yj,zk,tl)ulijk,(i,j,k)ˉω,0ln.

    Then, we have

    elL1L2L3CdC3eT6c21+4c22+Tc22L2L3+L1L3+L1L2(τ2+h21+h22+h23),1ln.

    Proof. Subtracting (3.2), (3.5), and (3.7) from (3.8)(3.9), we can obtain the following error equation system:

    2τδte12ijka2δ2xe1ijkb2δ2ye1ijkc2δ2ze1ijk+M1e1ijk=(R1)0ijk,(i,j,k)ω, (4.6)
    δ2telijka2δ2xeˉlijkb2δ2yeˉlijkc2δ2zeˉlijk+M1eˉlijk=(R1ed)lijk,(i,j,k)ω,1ln1 (4.7)
    e0ijk=0,(i,j,k)ω, (4.8)
    elijk=0,(i,j,k)γ,1ln1. (4.9)

    From the conclusions in the proof of stability, along with (4.8) and (4.9), we can obtain

    12(|el+1|21+|el|21)1C23e2T[2C2d(6(R1)2+4max1ml(R1)2+τl1m=2Δt(R1)2)]2C2dC23e2T[6L1L2L3c21(τ2+h21+h22+h23)2+4L1L2L3c22(τ2+h21+h22+h23)2+4(l2)τc22(τ2+h21+h22+h23)2]2C2dC23L1L2L3e2T(6c21+4c22+Tc22)(τ2+h21+h22+h23)2,0ln1.

    Thus

    |el|214C2dC23L1L2L3e2T(6c21+4c22+Tc22)(τ2+h21+h22+h23)2,0ln,|el|12CdC3eTL1L2L3(6c21+4c22+Tc22)(τ2+h21+h22+h23),0ln.

    Then, according to Lemma 2.6, we can obtain

    e12L1L2L3L2L3+L1L2+L1L3|el|1L1L2L3CdC3eT6c21+4c22+Tc22L2L3+L1L2+L1L3(τ2+h21+h22+h23),1ln.

    The proof of convergence is completed.

    Theorem 5.1. Assume that the problems

    {2τδtq121ijka2δ2xq11ijkb2δ2yq11ijkc2δ2zq11ijk=p01ijk,(i,j,k)ω,δ2tql1ijka2δ2xqˉl1ijkb2δ2yqˉl1ijkc2δ2zqˉl1ijk=pl1ijk,(i,j,k)ω,1ln1,q01ijk=0,(i,j,k)ω,ql1ijk=0,(i,j,k)γ,1ln1. (5.1)
    {2τδtq122ijka2δ2xq12ijkb2δ2yq12ijkc2δ2zq12ijk=p02ijk,(i,j,k)ω,δ2tql2ijka2δ2xqˉl2ijkb2δ2yqˉl2ijkc2δ2zqˉl2ijk=pl2ijk,(i,j,k)ω,1ln1,q02ijk=0,(i,j,k)ω,ql2ijk=0,(i,j,k)γ,1ln1. (5.2)
    {2τδtq123ijka2δ2xq13ijkb2δ2yq13ijkc2δ2zq13ijk=p03ijk,(i,j,k)ω,δ2tql3ijka2δ2xqˉl3ijkb2δ2yqˉl3ijkc2δ2zqˉl3ijk=pl3ijk,(i,j,k)ω1ln1,q03ijk=0,(i,j,k)ω,ql3ijk=0,(i,j,k)γ,1ln1. (5.3)

    and

    {2τδtq124ijka2δ2xq14ijkb2δ2yq14ijkc2δ2zq14ijk=p04ijk,(i,j,k)ω,δ2tql4ijka2δ2xqˉl4ijkb2δ2yqˉl4ijkc2δ2zqˉl4ijk=pl4ijk,(i,j,k)ω,1ln1,q04ijk=0,(i,j,k)ω,ql4ijk=0,(i,j,k)γ,1ln1. (5.4)

    have smooth solutions, where

    p01ijk=512utttt(xi,yj,zk,t1),p02ijk=a212uxxxx(xi,yj,zk,t1),p03ijk=b212uyyyy(xi,yj,zk,t1),p04ijk=c212uzzzz(xi,yj,zk,t1),
    pl1ijk=112utttt(xi,yj,zk,tl)12uxxtt(xi,yj,zk,tl),12uyytt(xi,yj,zk,tl)12uzztt(xi,yj,zk,tl),pl2ijk=a224[uxxxx(xi,yj,zk,tl+1)+uxxxx(xi,yj,zk,tl1)],pl3ijk=b224[uyyyy(xi,yj,zk,tl+1)+uyyyy(xi,yj,zk,tl1)],pl4ijk=c224[uzzzz(xi,yj,zk,tl+1)+uzzzz(xi,yj,zk,tl1)].

    Then we have

    ulijk(h1,h2,h3,τ)=u(xi,yj,zk,tl)+τ2ql1ijk(xi,yj,zk,tl)+h21ql2ijk(xi,yj,zk,tl)+h22ql3ijk(xi,yj,zk,tl)+h23ql4ijk(xi,yj,zk,tl)+O(τ3+h41+h42+h43),
    max|u(xi,yj,zk,tl)[43u2l2i,2j,2k(h12,h22,h32,τ2)13ulijk(h1,h2,h3,τ)]|=O(τ3+h41+h42+h43).

    Proof. By subtracting M1e1ijk and M1elijk from both sides of the error equation system (4.6)–(4.9), we can obtain

    {2τδte12ijka2δ2xe1ijkb2δ2ye1ijkc2δ2ze1ijk=p01ijkτ2+p02ijkh21+p03ijkh22+p04ijkh23+O(τ3+h41+h42+h43),(i,j,k)ω,δ2telijka2δ2xeˉlijkb2δ2yeˉlijkc2δ2zeˉlijk=pl1ijkτ2+pl2ijkh21+pl3ijkh22+pl4ijkh23+O(τ4+h41+h42+h43),(i,j,k)ω,1ln1,e0ijk=0,(i,j,k)ω,elijk=0,(i,j,k)γ,1ln1. (5.5)

    where

    O(τ3+h41+h42+h43)=3τ320uttttt(xi,yj,zk,ˆζijkτ)a2h41360uxxxxxx(ˆηijk,yj,zk,t1)b2h42360uyyyyyy(xi,ˆξijk,zk,t1)c2h43360uzzzzzz(xi,yj,ˆλijk,t1),ˆζijk(0,1),ˆηijk(xih1,xi+h1),ˆξijk(yjh2,yj+h2),ˆλijk(zkh3,zk+h3),O(τ4+h41+h42+h43)=τ4[1360utttttt(xi,yj,zk,˙ζlijk)a224uxxtttt(xi,yj,zk,˙slijk)b224uyytttt(xi,yj,zk,˙slijk)c224uzztttt(xi,yj,zk,˙slijk)]h41[a2720uxxxxxx(˙ηlijk,yj,zk,tl+1)+a2720uxxxxxx(˙ηlijk,yj,zk,tl1)]h42[b2720uyyyyyy(xi,˙ξlijk,zk,tl+1)+b2720uyyyyyy(xi,˙ξlijk,zk,tl1)]h43[c2720uzzzzzz(xi,yj,˙λlijk,t1+1)+c2720uzzzzzz(xi,yj,˙λlijk,t11)],ˆζijk(tlτ,tl+τ),ˆηijk(xih1,xi+h1),ˆξijk(yjh2,yj+h2),ˆλijk(zkh3,zk+h3).

    Denote

    rlijk=elijk+τ2pl1ijk+h21pl2ijk+h22pl3ijk+h23pl4ijk,0im1,0jm2,0km3,0ln.

    Multiply (5.1) by τ2, (5.2) by h21, (5.3) by h22, and (5.4) by h23, respectively. Then, add the resultant expressions to (5.5), yielding

    2τδtr12ijka2δ2xr1ijkb2δ2yr1ijkc2δ2zr1ijk=O(τ3+h41+h42+h43),(i,j,k)ω,δ2trlijka2δ2xrˉlijkb2δ2yrˉlijkc2δ2zrˉlijk=O(τ4+h41+h42+h43),(i,j,k)ω,1ln1,r0ijk=0,(i,j,k)ω,rlijk=0,(i,j,k)γ,1ln1.

    As can be seen from the proof of stability in Subsection 4.2,

    rlijk=O(τ3+h41+h42+h43),(i,j,k)ω,1ln,

    that is

    By transposing the terms, we can obtain

    (5.6)

    By the same token, we have

    (5.7)

    Multiply both sides of (5.6) by and both sides of (5.7) by , respectively. Subsequently, subtract the expression obtained from the latter operation from that of the former. As a result, we arrive at

    The proof of the theorem is completed.

    In this section, we present two numerical examples to compute the errors and convergence orders using the ADI finite difference scheme. The overall convergence accuracy under extrapolation methods is also calculated, which validates the theoretical analysis.

    We take , and denote the maximum absolute error as

    The maximum absolute error of the Richardson extrapolation method is

    We consider

    (6.1)

    The exact solution of this problem is .

    Tables 1 and 2 show the maximum errors and convergence orders for different step sizes using the finite difference method and for Richardson extrapolation scheme.

    Table 1.  Maximum errors and convergence orders for Example 1.
    (h, )
    (, ) 1.4367e-04 *
    (, ) 3.9257e-05 1.8718
    (, ) 1.0036e-05 1.9678
    (, ) 2.5559e-06 1.9733

     | Show Table
    DownLoad: CSV
    Table 2.  Maximum errors and convergence orders for extrapolation scheme for Example 1.
    (h, )
    (, ) 1.7385e-05 *
    (, ) 2.0485e-06 3.0851
    (, ) 2.2440e-07 3.1904

     | Show Table
    DownLoad: CSV

    As is evident from the aforementioned table, with the progressive refinement of the mesh partitioning, the maximum error exhibits a gradual decline. The precision of the initial finite difference scheme is of the second order. In contrast, following the implementation of the Richardson extrapolation technique, the precision is elevated to the third order.

    Figures 14 presented herein are the numerical solutions corresponding to diverse step sizes, the exact solutions, and the error graphs derived from the numerical experiments of Example 1 with .

    Figure 1.  Numerical solution, exact solution, and error graph of the final layer () for Example 1.
    Figure 2.  Numerical solution, exact solution, and error graph of the final layer () for Example 1.
    Figure 3.  Numerical solution, exact solution, and error graph of the final layer () for Example 1.
    Figure 4.  Numerical solution, exact solution, and error graph of the final layer () for Example 1.

    We consider

    (6.2)

    The exact solution is .

    The following two tables shows the maximum error and convergence order of computational Example 2 under different step sizes, as well as the maximum error and convergence order for the extrapolation scheme.

    As is discernible from the aforementioned Tables 3 and 4, for Example 2, the errors and convergence orders corresponding to diverse meshing scenarios are elucidated. Evidently, within the context of the original finite difference scheme, the error ratio hovers approximately around order 2. Subsequent to the utilization of the Richardson extrapolation technique, the convergence order approximates order 3. In addition, paralleling the situation in Example 1, as the mesh refinement progresses, the maximum error consistently exhibits a decreasing trend.

    Table 3.  Maximum errors and convergence orders for Example 2.
    (h, )
    (, ) 6.4577e-04 *
    (, ) 1.7401e-04 1.8919
    (, ) 4.4204e-05 1.9769
    (, ) 1.1212e-05 1.9791

     | Show Table
    DownLoad: CSV
    Table 4.  Maximum errors and convergence orders for extrapolation scheme for Example 2.
    (h, )
    (, ) 9.3597e-05 *
    (, ) 9.7157e-06 3.2681
    (, ) 9.6377e-07 3.3337

     | Show Table
    DownLoad: CSV

    In Figures 58 the numerical solutions, exact solutions, and error graphs of Example 2 are presented under different step size ratios with .

    Figure 5.  Numerical solution, exact solution, and error graph of the final layer () for Example 2.
    Figure 6.  Numerical solution, exact solution, and error graph of the final layer () for Example 2.
    Figure 7.  Numerical solution, exact solution, and error graph of the final layer () for Example 2.
    Figure 8.  Numerical solution, exact solution, and error graph of the final layer () for Example 2.

    We investigate the ADI difference scheme and the Richardson extrapolation scheme for a class of three-dimensional hyperbolic equations. By employing Lemma 2 and the central difference method, we discretize the equation (1.1)–(1.3) and construct an ADI finite difference scheme. We prove solvability, stability, and convergence, and it is demonstrated that the convergence order is . By further studying the Richardson extrapolation scheme for the model, the accuracy is significantly enhanced, and the convergence order is improved.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors are grateful to the editor and the anonymous reviewers for their careful readingand many patient checking of the whole manuscript. The work was supported by National Natural Science Foundation of China Mathematics Tianyuan Foundation (12226337, 12226340), Scientific Research Fund of Hunan Provincial Education Department (24A0422), and Hunan Provincial Natural Science Foundation of China (2024JJ7146).

    The authors declare there is no conflicts of interest.



    [1] M. Dehghan, A. Ghesmati, Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation, Eng. Anal. Bound. Elem., 32 (2010), 324–336. https://doi.org/10.1016/j.enganabound.2009.10.010 doi: 10.1016/j.enganabound.2009.10.010
    [2] A. Saadatmandi, M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method, Numer. Methods Partial Differ. Equations, 26 (2010), 239–252. https://doi.org/10.1002/num.20442 doi: 10.1002/num.20442
    [3] R. Jiwari, S. Pandit, R. Mittal, A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions, Appl. Math. Comput., 218 (2012), 7279–7294. https://doi.org/10.1016/j.amc.2012.01.006 doi: 10.1016/j.amc.2012.01.006
    [4] K. Zhukovsky, Operational approach and solutions of hyperbolic heat conduction equations, Axioms, 5 (2016), 28. https://doi.org/10.3390/axioms5040028 doi: 10.3390/axioms5040028
    [5] M. S. Yudin, Inversion effects on wind and surface pressure in atmospheric front propagation simulation with a hyperbolic model, Carpath. J. Earth. Env., 96 (2017), e012002. https://doi.org/10.1088/1755-1315/96/1/012002 doi: 10.1088/1755-1315/96/1/012002
    [6] T. Hillen, K. Hadeler, Hyperbolic systems and transport equations in mathematical biology, Carpath. J. Earth. Env., (2005), 257–279. https://doi.org/10.1007/3-540-27907-5_11 doi: 10.1007/3-540-27907-5_11
    [7] W. Alt, Inversion effects on wind and surface pressure in atmospheric front propagation simulation with a hyperbolic model, Carpath. J. Earth. Env., (2003), 431–461. https://doi.org/10.1088/1755-1315/96/1/012002 doi: 10.1088/1755-1315/96/1/012002
    [8] K. K. Sharma, P. Singh, Hyperbolic partial differential-difference equation in the mathematical modeling of neuronal firing and its numerical solution, Carpath. J. Earth. Env., 201 (2008), 229–238. https://doi.org/10.1016/j.amc.2007.12.051 doi: 10.1016/j.amc.2007.12.051
    [9] K. Hadeler, K. Dietz, Nonlinear hyperbolic partial differential equations for the dynamics of parasite populations, Hyperbolic Part. Differ. Equations, (1983), 415–430. https://doi.org/10.1016/B978-0-08-030254-6.50016-1 doi: 10.1016/B978-0-08-030254-6.50016-1
    [10] I. Fedotov, M. Shatalov, J. Marais, Hyperbolic and pseudo-hyperbolic equations in the theory of vibration, Acta. Mech., 227 (2016), 3315–3324. https://doi.org/10.1007/s00707-015-1537-6 doi: 10.1007/s00707-015-1537-6
    [11] G. Paul, Huygens' Principle and Hyperbolic Equations, Academic Press, 2014.
    [12] S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Springer Science & Business Media, 2013.
    [13] M. Dehghan, A. Ghesmati, Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method, Eng. Anal. Bound. Elem., 34 (2010), 51–59. https://doi.org/10.1016/j.enganabound.2009.07.002 doi: 10.1016/j.enganabound.2009.07.002
    [14] A. Häck, Kinetic and Hyperbolic Equations with Applications to Engineering Processes, Ph.D thesis, Dissertation, RWTH Aachen University, 2017.
    [15] O. A. Ladyzhenskaya, The Mixed Problem for a Hyperbolic Equation, Gostekhizdat, MoscowX, 1953.
    [16] R. Sakamoto, Hyperbolic Boundary Value Problems, Cup Archive, 1982.
    [17] V. M. Gordienko, Dissipativity of boundary condition in a mixed problem for the three-dimensional wave equation, Sib. Electron. Math. Rep., 10 (2013), 311–323. https://www.mathnet.ru/eng/semr/v10/p311
    [18] A. N. Malyshev, A mixed problem for a second-order hyperbolic equation with a complex first-order boundary condition, Sibirskii Matematicheskii Zhurnal, 24 (1983), 102–121. https://doi.org/10.1007/BF00970317 doi: 10.1007/BF00970317
    [19] K. Liu, Z. He, H. Zhang, X. Yang, A Crank-Nicolson ADI compact difference scheme for the three-dimensional nonlocal evolution problem with a weakly singular kernel, Comput. Appl. Math., 44 (2025), 164. https://doi.org/10.1007/s40314-025-03125-x doi: 10.1007/s40314-025-03125-x
    [20] Y. Shi, X. Yang, The pointwise error estimate of a new energy-preserving nonlinear difference method for supergeneralized viscous Burgers' equation, Comput. Appl. Math., 44 (2025), 257. https://doi.org/10.1007/s40314-025-03222-x doi: 10.1007/s40314-025-03222-x
    [21] Y. Shi, X. Yang, A time two-grid difference method for nonlinear generalized viscous Burgers' equation. J. Math. Chem., 62 (2024), 1323–1356. https://doi.org/10.1007/s10910-024-01592-x doi: 10.1007/s10910-024-01592-x
    [22] C. Li, H. Zhang, X. Yang, A new linearized ADI compact difference method on graded meshes for a nonlinear 2D and 3D PIDE with a WSK, Comput. Math. Appl., 176 (2024), 349–370. https://doi.org/10.1016/j.camwa.2024.11.006 doi: 10.1016/j.camwa.2024.11.006
    [23] K. Li, W. Liao, Y. Lin, A compact high order alternating direction implicit method for three-dimensional acoustic wave equation with variable coefficient, J. Comput. Appl. Math., 361 (2019), 113–129. https://doi.org/10.1016/j.cam.2019.04.013 doi: 10.1016/j.cam.2019.04.013
    [24] W. Liao, On the dispersion, stability and accuracy of a compact higher-order finite difference scheme for 3D acoustic wave equation, J. Comput. Appl. Math., 270 (2014), 571–583. https://doi.org/10.1016/j.cam.2013.08.024 doi: 10.1016/j.cam.2013.08.024
    [25] W. Liao, P. Yong, H. Dastour, J. Huang, Efficient and accurate numerical simulation of acoustic wave propagation in a 2D heterogeneous media, Appl. Math. Comput., 321 (2018), 385–400. https://doi.org/10.1016/j.amc.2017.10.052 doi: 10.1016/j.amc.2017.10.052
    [26] D. Deng, D. Liang, The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations, Appl. Math. Comput., 329 (2018), 188–209. https://doi.org/10.1016/j.amc.2018.02.010 doi: 10.1016/j.amc.2018.02.010
    [27] S. Das, W. Liao, A. Gupta, An efficient fourth-order low dispersive finite difference scheme for a 2-D acoustic wave equation, J. Appl. Math. Comput., 258 (2014), 151–167. https://doi.org/10.1016/j.cam.2013.09.006 doi: 10.1016/j.cam.2013.09.006
    [28] B. D. Nie, B. Y. Cao, Three mathematical representations and an improved ADI method for hyperbolic heat conduction, Int. J. Heat Mass Transfer, 135 (2019), 974–984. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.026 doi: 10.1016/j.ijheatmasstransfer.2019.02.026
    [29] S. Zhao, A matched alternating direction implicit (ADI) method for solving the heat equation with interfaces, J. Sci. Comput., 63 (2015), 118–137. https://doi.org/10.1007/s10915-014-9887-0 doi: 10.1007/s10915-014-9887-0
    [30] W. Wang, H. Zhang, X. Jiang, X. Yang, A high-order and efficient numerical technique for the nonlocal neutron diffusion equation representing neutron transport in a nuclear reactor, Ann. Nucl. Energy, 195 (2024), 110163. https://doi.org/10.1016/j.anucene.2023.110163 doi: 10.1016/j.anucene.2023.110163
    [31] W. Wang, H. Zhang, Z. Zhou, X. Yang, A fast compact finite difference scheme for the fourth-order diffusion-wave equation, Int. J. Comput. Math., 101 (2024), 170–193. https://doi.org/110.1080/00207160.2024.2323985
    [32] J. Wang, X. Jiang, X. Yang, H. Zhang, A compact difference scheme for mixed-type time‐fractional Black‐Scholes equation in European option pricing, Math. Method Appl. Sci., 48 (2025), 6818–6829. https://doi.org/10.1002/mma.10717 doi: 10.1002/mma.10717
    [33] J. Wang, X. Jiang, H. Zhang, X. Yang, A new fourth-order nonlinear difference scheme for the nonlinear fourth-order generalized Burgers-type equation, J. Appl. Math. Comput., (2025), 1–31. https://doi.org/10.1007/s12190-025-02467-3 doi: 10.1007/s12190-025-02467-3
    [34] X. Jiang, J. Wang, W. Wang, H. Zhang, A predictor-corrector compact difference scheme for a nonlinear fractional differential equation, Fractal Fract., 7 (2023), 521. https://doi.org/10.3390/fractalfract7070521 doi: 10.3390/fractalfract7070521
    [35] H. Zhou, M. Huang, W. Ying, ADI schemes for heat equations with irregular boundaries and interfaces in 3D with applications, preprint, arXiv: 2309.00979. https://doi.org/10.48550/arXiv.2309.00979
    [36] X. Shen, X. Yang, H. Zhang, The high-order ADI difference method and extrapolation method for solving the two-dimensional nonlinear parabolic evolution equations, Mathematics, 12 (2024), 3469. https://doi.org/10.3390/math12223469 doi: 10.3390/math12223469
    [37] Z. Chen, H. Zhang, H. Chen, ADI compact difference scheme for the two-dimensional integro-differential equation with two fractional Riemann-Liouville integral kernels, Fractal Fract., 8 (2024), 707. https://doi.org/10.3390/fractalfract8120707 doi: 10.3390/fractalfract8120707
    [38] T. Liu, H. Zhang, X. Yang, The ADI compact difference scheme for three-dimensional integro-partial differential equation with three weakly singular kernels, J. Appl. Math. Comput., (2025), 1–29. https://doi.org/10.1007/s12190-025-02386-3 doi: 10.1007/s12190-025-02386-3
    [39] Z. Zhou, H. Zhang, X. Yang, A BDF2 ADI difference scheme for a three-dimensional nonlocal evolution equation with multi-memory kernels, Comput. Appl. Math., 43 (2024), 418. https://doi.org/10.1007/s40314-024-02931-z doi: 10.1007/s40314-024-02931-z
    [40] L. Qiao, W. Qiu, D. Xu, Crank-Nicolson ADI finite difference/compact difference schemes for the 3D tempered integrodifferential equation associated with Brownian motion, Numerical Algorithms, 93 (2023), 1083–1104. https://doi.org/10.1007/s11075-022-01454-0 doi: 10.1007/s11075-022-01454-0
    [41] W. Qiu, X. Zheng, K. Mustapha, Numerical approximations for a hyperbolic integrodifferential equation with a non-positive variable-sign kernel and nonlinear-nonlocal damping, Appl. Numer. Math., 213 (2025), 61–76. https://doi.org/10.1016/j.apnum.2025.02.018 doi: 10.1016/j.apnum.2025.02.018
    [42] W. Qiu, Y. Li, X. Zheng, Numerical analysis of nonlinear Volterra integrodifferential equations for viscoelastic rods and plates. Calcolo, 61 (2024), 50. https://doi.org/10.1007/s10092-024-00607-y doi: 10.1007/s10092-024-00607-y
    [43] L. Chen, Z. Wang, S. Vong, A second-order weighted ADI scheme with nonuniform time grids for the two-dimensional time-fractional telegraph equation. J. Appl. Math. Comput., 70 (2024), 5777–5794. https://doi.org/10.1007/s12190-024-02200-6 doi: 10.1007/s12190-024-02200-6
    [44] K. G. Tay, S. L. Kek, R. Abdul-Kahar, M. Azlan, M. Lee, A Richardson's Extrapolation spreadsheet calculator for Numerical Differentiation, Spreadsheets Educ., 6 (2013). http://epublications.bond.edu.au/ejsie/vol6/iss2/5
    [45] A. Alekseev, A. Bondarev, A comparison of the Richardson extrapolation and the approximation error estimation on the ensemble of numerical solutions, in International Conference on Computational Science, (2021), 554–566. https://doi.org/10.1007/978-3-030-77980-1_42
    [46] J. Wang, X. Jiang, H. Zhang, A BDF3 and new nonlinear fourth-order difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 151 (2024), 109002. https://doi.org/10.1016/j.aml.2024.109002 doi: 10.1016/j.aml.2024.109002
    [47] X. Yang, W. Wang, Z. Zhou, H. Zhang, An efficient compact difference method for the fourth-order nonlocal subdiffusion problem, Taiwan. J. Math., 29 (2025), 35–66. https://doi.org/10.11650/tjm/240906 doi: 10.11650/tjm/240906
    [48] D. Ruan, X. Wang, A high-order Chebyshev-type method for solving nonlinear equations: local convergence and applications, Electron. Res. Arch., 33 (2025), 1398–1413. https://doi.org/10.3934/era.2025065 doi: 10.3934/era.2025065
    [49] X. Wang, N. Shang, Local convergence analysis of a novel derivative-free method with and without memory for solving nonlinear systems, Int. J. Comput. Math., 2025. https://doi.org/10.1080/00207160.2025.2464701 doi: 10.1080/00207160.2025.2464701
    [50] D. Ruan, X. Wang, Y. Wang, Local convergence of seventh-order iterative method under weak conditions and its applications, Eng. Comput., 2025. https://doi.org/10.1108/EC-08-2024-0775 doi: 10.1108/EC-08-2024-0775
    [51] X. Wang, W. Li, Fractal behavior of King's optimal eighth-order iterative method and its numerical application, Math. Commun., 29 (2024), 217–236. https://hrcak.srce.hr/321249
    [52] J. C. Lopez-Marcos, A difference scheme for a nonlinear partial integrodifferential equation, SIAM J. Numer. Anal., 27 (1990), 20–31. https://doi.org/10.1137/0727002 doi: 10.1137/0727002
    [53] Z. Sun, Numerical Methods for Partial Differential Equations, Science Press, 2005.
    [54] Z. Sun, The Method of Order Reduction and its Application to the Numerical Solutions of Partial Differential Equations, Science Press, 2009.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(137) PDF downloads(19) Cited by(0)

Figures and Tables

Figures(8)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog