(h, ) | ||
(, ) | 1.4367e-04 | * |
(, ) | 3.9257e-05 | 1.8718 |
(, ) | 1.0036e-05 | 1.9678 |
(, ) | 2.5559e-06 | 1.9733 |
This paper conducts a study on the alternating direction implicit (ADI) difference schemes for a class of three dimensional hyperbolic equations with constant coefficients. The central difference methods are employed in the temporal and spatial direction. The solvability, stability, and convergence of the proposed ADI schemes are proven. Moreover, the Richardson extrapolation method is established to enhance the accuracy of the algorithm. Numerical examples are presented for the errors and convergence orders of the established ADI schemes and extrapolation schemes. By comparing the results of numerical examples, it can be concluded that the proposed Richardson extrapolation method can effectively improve the accuracy of the numerical solutions and reduce the errors.
Citation: Zhaoxiang Zhang, Xuehua Yang, Song Wang. The alternating direction implicit difference scheme and extrapolation method for a class of three dimensional hyperbolic equations with constant coefficients[J]. Electronic Research Archive, 2025, 33(5): 3348-3377. doi: 10.3934/era.2025148
[1] | Jinxiu Zhang, Xuehua Yang, Song Wang . The ADI difference and extrapolation scheme for high-dimensional variable coefficient evolution equations. Electronic Research Archive, 2025, 33(5): 3305-3327. doi: 10.3934/era.2025146 |
[2] | Cheng Wang . Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, 2021, 29(5): 2915-2944. doi: 10.3934/era.2021019 |
[3] | Guoliang Zhang, Shaoqin Zheng, Tao Xiong . A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29(1): 1819-1839. doi: 10.3934/era.2020093 |
[4] | Junseok Kim . Maximum principle preserving the unconditionally stable method for the Allen–Cahn equation with a high-order potential. Electronic Research Archive, 2025, 33(1): 433-446. doi: 10.3934/era.2025021 |
[5] | Shanpu Gao, Yubo Li, Anping Wu, Hao Jiang, Feng Liu, Xinlong Feng . An intelligent optimization method for accelerating physical quantity reconstruction in computational fluid dynamics. Electronic Research Archive, 2025, 33(5): 2881-2924. doi: 10.3934/era.2025127 |
[6] | Xuefei He, Kun Wang, Liwei Xu . Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28(4): 1503-1528. doi: 10.3934/era.2020079 |
[7] | Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour . On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, 2021, 29(5): 2841-2876. doi: 10.3934/era.2021017 |
[8] | Lot-Kei Chou, Siu-Long Lei . High dimensional Riesz space distributed-order advection-dispersion equations with ADI scheme in compression format. Electronic Research Archive, 2022, 30(4): 1463-1476. doi: 10.3934/era.2022077 |
[9] | Chang Hou, Hu Chen . Stability and pointwise-in-time convergence analysis of a finite difference scheme for a 2D nonlinear multi-term subdiffusion equation. Electronic Research Archive, 2025, 33(3): 1476-1489. doi: 10.3934/era.2025069 |
[10] | Shasha Bian, Yitong Pei, Boling Guo . Numerical simulation of a generalized nonlinear derivative Schrödinger equation. Electronic Research Archive, 2022, 30(8): 3130-3152. doi: 10.3934/era.2022159 |
This paper conducts a study on the alternating direction implicit (ADI) difference schemes for a class of three dimensional hyperbolic equations with constant coefficients. The central difference methods are employed in the temporal and spatial direction. The solvability, stability, and convergence of the proposed ADI schemes are proven. Moreover, the Richardson extrapolation method is established to enhance the accuracy of the algorithm. Numerical examples are presented for the errors and convergence orders of the established ADI schemes and extrapolation schemes. By comparing the results of numerical examples, it can be concluded that the proposed Richardson extrapolation method can effectively improve the accuracy of the numerical solutions and reduce the errors.
The class of three-dimensional hyperbolic partial differential equations (PDEs) with constant coefficients studied in this paper is as follows:
utt−a2uxx−b2uyy−c2uzz=f(x,y,z,t),(x,y,z)∈Ω,t∈[0,T], | (1.1) |
u(x,y,z,0)=φ(x,y,z),ut(x,y,z,0)=ψ(x,y,z),(x,y,z)∈ˉΩ, | (1.2) |
u(x,y,z,t)=α(x,y,z,t),(x,y,z)∈Γ,t∈[0,T], | (1.3) |
where a, b, and c are constants, Ω=(0,L1)×(0,L2)×(0,L3), Γ is the boundary of Ω, and when (x,y,z)∈Γ, α(x,y,z,0)=φ(x,y,z), ∂α(x,y,z,0)/∂t=ψ(x,y,z).
The hyperbolic partial differential equations (1.1)–(1.3) hold substantial theoretical and practical significance, serving as a cornerstone for both the evaluation of numerical methods and the simulation of complex natural and physical phenomena. These models provide a rigorous framework for assessing the feasibility and performance of numerical approaches [1,2,3], as well as for modeling intricate dynamic processes observed in nature [4,5].
The applications of hyperbolic models span a wide range of disciplines, extending far beyond mathematics. In biology, for instance, the hyperbolic equations are extensively employed to describe population dynamics and the propagation of neural signals [6,7,8,9]. The models play a pivotal role in the analysis of vibrational systems and the exploration of fundamental physical principles. For example, Fedotov et al. [10] utilized hyperbolic and pseudo-hyperbolic equations to investigate vibration theory, offering insights into the characterization and analysis of vibrational phenomena. Paul [11] examined the application of Huygens' principle to hyperbolic equations, while Alinhac [12] delved into the blowup behavior of nonlinear hyperbolic equations. The hyperbolic models find significant applications in engineering [13,14], where they are used to address a variety of practical problems.
This problem (1.1)–(1.3) is formulated for a three-dimensional wave equation with boundary conditions of the first kind, which has been a subject of considerable research interest in the mixed problem for a hyperbolic equation [15,16]. Gordienko [17] studied the mixed problem for real wave equations satisfying uniform Lopatinskii conditions, systematically establishing all viable reduction methods to transform it into a mixed problem for symmetric hyperbolic systems with dissipative boundary conditions. Malyshev [18] researched initial-boundary value problems for second-order hyperbolic PDEs with complex first-order boundary conditions. These investigations collectively highlight the significance of this research topic in contemporary mathematical physics.
The ADI method has long been recognized as a powerful and efficient numerical technique in scientific computing and engineering, particularly for solving PDEs [19,20,21,22]. Its unique ability to decompose high-dimensional problems into a series of one-dimensional problems has made it a preferred choice for tackling complex systems, especially those involving high dimension problems in space. The model in Eqs (1.1)–(1.3) has been widely investigated using ADI methods [23,24,25,26,27], demonstrating both theoretical significance and ADI unique advantages for high-dimensional simulations of the model. Nie and Cao [28] developed an improved ADI scheme based on a staggered grid to address transient heat conduction problems in mixed representations. Zhao [29] proposed a novel Douglas ADI method for solving two-dimensional heat equations with interfaces, further demonstrating the versatility of ADI techniques in handling complex boundary conditions.
Over the years, the difference and ADI difference method has garnered significant attention from researchers due to its computational efficiency and stability, which are critical for solving large scale problems in various fields [30,31,32,33,34]. Zhou et al. [35] employed an efficient ADI approach to solve three-dimensional heat equations with irregular boundaries and interfaces. Shen et al. [36] provided the high-order ADI difference method and extrapolation method for 2D nonlinear parabolic evolution equations. Chen et al. [37] investigated numerical methods for two-dimensional integro-differential equations with two fractional Riemann-Liouville (R-L) integral kernels. Liu et al.[38] utilized the ADI method to transform three-dimensional problems into one-dimensional problems, enabling the efficient solution of three-dimensional integro-differential equations with weakly singular kernels. Moreover, the ADI method has found extensive use in solving nonlocal evolution equations [39,40,41,42,43], it demonstrates the wide adaptability of ADI across different models.
The Richardson extrapolation scheme plays a significant role in refining numerical solutions and achieving higher-order accuracy, a widely applied technique in the numerical solution of linear differential equations [44,45,46,47] and nonlinear differential equations [48,49,50,51]. In the present study, we explore the ADI method and its Richardson extrapolation scheme for solving a class of three-dimensional constant-coefficient hyperbolic partial differential equations. By leveraging the ADI method within the framework of the original hyperbolic equation, we decompose the three-dimensional problem into a sequence of one-dimensional subproblems, solving them iteratively.
The main contributions of this article are as follows.
● We prove strictly the solvability, stability and convergence of the proposed ADI difference schemes for the three-dimensional problem, which is the first time to provide a strict theoretical analysis of the three-dimensional problem with constant coefficients. Although there were some papers on the ADI method, but they did not provide strict theoretical analysis for three-dimensional problems.
● We construct the Richardson extrapolation for the original model, present the theoretical analysis, and compare the extrapolated results with the initial data, which fill the gap in the ADI extrapolation method for three-dimensional problems.
The paper is organized as follows. Section 2 introduces notations and lemmas. Section 3 presents the discretization and finite difference scheme. Section 4 proves the solvability, stability and convergence. Section 5 discusses the Richardson extrapolation scheme. Section 6 provides numerical experiments to validate the method. Finally, Section 7 concludes with a summary.
Take positive integers m1, m2, m3, and n. Denote h1=L1/m1, h2=L2/m2, h3=L3/m3, and τ=T/n. Define xi=ih1(0≤i≤m1), yj=jh2(0≤j≤m2), zk=kh3(0≤k≤m3), and tl=lτ(0≤l≤n). Define
Ωh={(xi,yj,zk)∣0≤i≤m1,0≤j≤m2,0≤k≤m3},Ωτ={tl∣0≤l≤n},ω={(i,j,k)∣(xi,yj,zk)∈Ω},γ={(i,j,k)∣(xi,yj,zk)∈Γ},ˉω=ω∪γ,fl+12ijk=f(xi,yj,zk,tl+12),tl+12=12(tl+tl+1). |
Let u={ulijk∣0≤i≤m1,0≤j≤m2,0≤k≤m3,0≤l≤n}} be a grid function defined on Ωh×Ωτ, and we hereby introduce the following notations:
vl+12ijk=12(vlijk+vl+1ijk),δtvl+12ijk=1τ(vl+1ijk−vlijk),vˉlijk=12(vl−1ijk+vl+1ijk),Δtvlijk=12τ(vl+1ijk−vl−1ijk),δ2xvnijk=1h21(vni−1,j,k−2vnijk+vni+1,j,k),δ2yvnijk=1h22(vni,j−1,k−2vnijk+vni,j+1,k),δ2zvnijk=1h23(vni,j,k−1−2vnijk+vni,j,k+1),Δhvnijk=δ2xvnijk+δ2yvnijk+δ2zvnijk. |
Let vl={vlijk∣(i,j,k)∈ω} be a grid function on Ωh. Assume the spatial grid Vh={v∣v={vlijk∣(i,j,k)∈ˉv}∈Ωh, ˚Vh={v∣v={vijk∣(i,j,k)∈ˉω} and vijk=0 if (i,j,k)∈γ}.
Let ι,μ∈˚Vh and introduce the following inner product and norm:
(ι,μ)=h1h2h3m1−1∑i=1m2−1∑j=1m3−1∑k=1ιijkμijk,‖ι‖=√(ι,ι),(δxι,δxμ)=h1h2h3m1∑i=1m2−1∑j=1m3−1∑k=1(δxιi−12,j,k)(δxμi−12,j,k),(δxδyι,δxδyμ)=h1h2h3m1∑i=1m2∑j=1m3−1∑k=1(δxδyιi−12,j−12,k)(δxδyμi−12,j−12,k),(δxδyδzι,δxδyδzμ)=h1h2h3m1∑i=1m2∑j=1m3∑k=1(δxδyδzιi−12,j−12,k−12)(δxδyδzμi−12,j−12,k−12),‖δxδyι‖2=√(δxδyι,δxδyι),‖δyδzι‖2=√(δyδzι,δyδzι),‖δxδzι‖2=√(δxδzι,δxδzι),‖δxδyδzι‖2=√(δxδyδzι,δxδyδzι),‖δxι‖2=√(δxι,δxι),‖δyι‖2=√(δyι,δyι),‖δzι‖2=√(δzι,δzι),‖Δhι‖2=√(Δhι,Δhι),|ι|1=√‖δxι‖2+‖δyι‖2+‖δzι‖2,‖ι‖1=√‖ι‖2+|ι|21,‖v‖∞=max0≤i≤m1,0≤j≤m2,0≤k≤m3|vijk|. |
Lemma 2.1. [52,53,54] For arbitrary ι,μ∈˚Vh, it always follows that
(δ2xι,μ)=−(δxι,δxμ),(δ2yι,μ)=−(δyι,δyμ),(δ2zι,μ)=−(δzι,δzμ),(δ2xδ2yι,μ)=(δxδyι,δxδyμ),(δ2xδ2zι,μ)=(δxδzι,δxδzμ),(δ2yδ2zι,μ)=(δyδzι,δyδzμ),(δ2xδ2yδ2zι,μ)=−(δxδyδzι,δxδyδzμ). |
Lemma 2.2. [53] Suppose that g∈C(4)[tl,tl+τ]. Then, we have
g′′(tl+τ)=2h[g(tl+τ)−g(tl)h−g′(tl)+h23g′′′(tl)]+512h2g(4)(tl+ξ0τ),ξ0∈(0,1). |
Lemma 2.3. [53] If the function g∈C4[tl−τ,tl+τ], then
g′′(tl)=1h2[g(tl−τ)−2g(tl)+g(tl+τ)]−h212g(4)(ξ1),tl−τ<ξ1<tl+τ,g(tl)=12[g(tl−τ)+g(tl+τ)]−h22g′′(ξ2),tl−τ<ξ2<tl+τ. |
Lemma 2.4. [53] Assume v∈˚Vh. It follows that
‖v‖≤C|v|1, |
wherein, C denotes a positive constant that may differ across various scenarios. It invariably hinges upon the solution and the prescribed data, while remaining independent of the time step τ and the grid spacing h.
Lemma 2.5. [53] (Gronwall's inequality-E) Let {Fk}∞k=0 be a non-negative sequence, {gk}∞k=0 be non-negative and monotonically increasing (not necessarily strictly monotonically increasing), satisfying the condition that
Fk≤cτk−1∑l=0Fl+gk,k=0,1,2,.... |
Then, we have
Fk≤eckτgk,k=0,1,2,.... |
Lemma 2.6. Assume that v∈˚Vh. Then, we conclude that
‖v‖∞≤12√L1L2L3L1L2+L1L3+L2L3|v|1. |
Proof. For 1≤i≤m1−1,1≤j≤m2−1,and1≤k≤m3−1, it holds that
vijk=i∑i′=1m2−1∑j=1m3−1∑k=1(vi′,j,k−vi′−1,j,k)=h1i∑i′=1m2−1∑j=1m3−1∑k=1δxvi′−12,j,k,vijk=−m1∑i′=i+1m2−1∑j=1m3−1∑k=1(vi′,j,k−vi′−1,j,k)=−h1m1∑i′=i+1m2−1∑j=1m3−1∑k=1δxvi′−12,j,k. |
Square the above two equations respectively, and then apply the Cauchy-Schwarz inequality. We can obtain that
v2ijk≤(h1i∑i′=112)h1i∑i′=1m2−1∑j=1m3−1∑k=1(δxvi′−12,j,k)2=xih1i∑i′=1m2−1∑j=1m3−1∑k=1(δxvi′−12,j,k)2, | (2.1) |
v2ijk≤(h1m1∑i′=i+112)h1m1∑i′=i+1m2−1∑j=1m3−1∑k=1(δxvi′−12,j,k)2=(L1−xi)h1m1∑i′=i+1m2−1∑j=1m3−1∑k=1(δxvi′−12,j,k)2. | (2.2) |
Multiply (2.1) by L1−xi, multiply (2.2) by xi, and then add the obtained results together to get
L1v2ijk≤xi(L1−xi)m1∑i′=1m2−1∑j=1m3−1∑k=1(δxvi′−12,j,k)2=xi(L1−xi)‖δxv‖2,1≤i≤m1−1. |
By applying
xi(L1−xi)≤L214, |
it can be derived that
L1v2ijk≤L214‖δxv‖2, | (2.3) |
and, following the same argumentation, one arrives at the conclusion that
L2v2ijk≤L224‖δyv‖2, | (2.4) |
L3v2ijk≤L234‖δzv‖2. | (2.5) |
From |v|1=√‖δxv‖2+‖δyv‖2+‖δzv‖2 and the above three equations, we can obtain that
(L1L2+L2L3+L1L3)|vijk|2≤L1L2L34|v|21. |
That is,
|vijk|≤12√L1L2L3L1L2+L2L3+L1L3|v|1. |
Moreover, because
v0,j,k=vi,0,k=vi,j,0=vm1,j,k=vi,m2,k=vi,j,m3=0, |
then
‖v‖∞≤12√L1L2L3L1L2+L2L3+L1L3|v|1. |
Define
M1=a2b2τ2δ2xδ2y2+b2c2τ2δ2yδ2z2+a2c2τ2δ2xδ2z2−a2b2c2τ2δ2xδ2yδ2z4. |
Consider Eqs (1.1)–(1.3) on (xi,yj,zk,t1),
utt(xi,yj,zk,t1)−a2uxx(xi,yj,zk,t1)−b2uyy(xi,yj,zk,t1)−c2uzz(xi,yj,zk,t1)=f1ijk,(i,j,k)∈ω. | (3.1) |
From the combination of (1.1) and (1.2), we get
uttt(x,y,z,0)=a2ψxx(x,y,z)+b2ψyy(x,y,z)+c2ψzz(x,y,z)+ft(x,y,z,0)≡ρ(x,y,z). |
Based on Lemma 2.2, it follows that
uttt(xi,yj,zk,t1)=2τ(δtU1ijk−ut(xi,yj,zk,t0)+τ23uttt(xi,yj,zk,t1))+5τ212utttt(xi,yj,zk,ζijkτ)=2τ(δtU1ijk−ψijk+τ23ρijk)+512τ2utttt(xi,yj,zk,ζijkτ), |
where ψijk=ψ(xi,yj,zk), ρijk=ρ(xi,yj,zk), ζijk∈(0,1).
Using Lemma 2.3, we have
uxx(xi,yj,zk,t1)=δ2xU1ijk−112uxxxx(ηijk,yj,zk,t1),ηijk∈(xi−h1,xi+h1),uyy(xi,yj,zk,t1)=δ2yU1ijk−112uyyyy(xi,ξijk,zk,t1),ξijk∈(yj−h2,yj+h2),uzz(xi,yj,zk,t1)=δ2zU1ijk−112uzzzz(xi,yj,λijk,t1),λijk∈(zk−h3,zk+h3). |
Next, substitute the above four formulas into (3.1) and add M1U1ijk on both sides at the same time, so there is
2τ(δtU1ijk−ψijk+τ23ρijk)−a2δ2xU1ijk−b2δ2yU1ijk−c2δ2zU1ijk+M1U1ijk=f1ijk+(R1)0ijk,(i,j,k)∈ω, | (3.2) |
where
(R1)0ijk=5τ212utttt(xi,yj,zk,ζijkτ)−a2h2112uxxxx(ηijk,yj,zk,t1)−b2h2212uyyyy(xi,ξijk,zk,t1)−c2h2312uzzzz(xi,yj,λijk,t1)−M1U1ijk,(i,j,k)∈ω. | (3.3) |
Then, there exists a constant c1 such that
|(R1)0ijk|≤c1(τ2+h21+h22+h23),(i,j,k)∈ω. |
Consider Eqs (1.1)–(1.3) on (xi,yj,zk,tl)(1≤l≤n−1),
utt(xi,yj,zk,tl)−a2uxx(xi,yj,zk,tl)−b2uyy(xi,yj,zk,tl)−c2uzz(xi,yj,zk,tl)=flijk,(i,j,k)∈ω. | (3.4) |
From Lemma 2.3, it can be concluded that
utt(xi,yj,zk,tl)=δ2tUlijk−τ212utttt(xi,yj,zk,ˉζlijk),ˉζlijk∈(−1,1),uxx(xi,yj,zk,tl)=12[uxx(xi,yj,zk,tl−1)+uxx(xi,yj,zk,tl+1)]−τ22uxxtt(xi,yj,zk,slijk)=12[δ2xUl−1ijk+δ2xUl+1ijk]−h2124[uxxxx(ˉηlijk,yj,zk,tl−1)+uxxxx(ˉηlijk,yj,zk,tl+1)]−τ22uxxtt(xi,yj,zk,slijk),slijk∈(tl−τ,tl+τ),ˉηlijk∈(xi−h1,xi+h1).uyy(xi,yj,zk,tl)=12[uyy(xi,yj,zk,tl−1)+uyy(xi,yj,zk,tl+1)]−τ22uyytt(xi,yj,zk,slijk)=12[δ2xUl−1ijk+δ2xUl+1ijk]−h2124[uyyyy(xi,ˉξlijk,zk,tl−1)+uyyyy(xi,ˉξlijk,zk,tl+1)]−τ22uyytt(xi,yj,zk,slijk),slijk∈(tl−τ,tl+τ),ˉξlijk∈(yj−h2,yj+h2).uzz(xi,yj,zk,tl)=12[uzz(xi,yj,zk,tl−1)+uzz(xi,yj,zk,tl+1)]−τ22uzztt(xi,yj,zk,slijk)=12[δ2xUl−1ijk+δ2xUl+1ijk]−h2124[uzzzz(xi,yj,ˉλlijk,tl−1)+uzzzz(xi,yj,ˉλlijk,tl+1)]−τ22uzztt(xi,yj,zk,slijk),slijk∈(tl−τ,tl+τ),ˉλlijk∈(zk−h3,zk+h3). |
Then, substitute the above four formulas into (3.4), and add M1Uˉlijk
δ2tUlijk−a2δ2xUˉlijk−b2δ2yUˉlijk−c2δ2zUˉlijk+M1Uˉlijk=flijk+(R1)lijk,(i,j,k)∈ω,1≤l≤n−1, | (3.5) |
where
(R1)lijk=τ2[112utttt(xi,yj,zk,tl+ˉζτ)−a22uxxtt(xi,yj,zk,slijk)−b22uyytt(xi,yj,zk,slijk)−c22uzztt(xi,yj,zk,slijk)]+M1Uˉlijk−h21[a224uxxxx(ˉηlijk,yj,zk,tl−1)+a224uxxxx(ˉηlijk,yj,zk,tl+1)]−h22[b224uyyyy(xi,ˉξlijk,zk,tl−1)+b224uyyyy(xi,ˉξlijk,zk,tl+1)]−h23[c224uzzzz(xi,yj,ˉλlijk,tl−1)+c224uzzzz(xi,yj,ˉλlijk,tl+1)],(i,j,k)∈ω,1≤l≤n−1. | (3.6) |
A constant c2 exists such that
|(R1)lijk|≤c2(τ2+h21+h22+h23),(i,j,k)∈ω,1≤l≤n−1,|Δt(R1)lijk|≤c2(τ2+h21+h22+h23),(i,j,k)∈ω,2≤l≤n−2, |
and
Δt(R1)lijk=12τ[(R1)l+1ijk−(R1)l−1ijk]. |
Notice the initial boundary value condition (1.1)–(1.3):
U0ijk=ϕ(xi,yj,zk),(i,j,k)∈ω,Ulijk=ψ(xi,yj,zk),(i,j,k)∈γ,0≤l≤n. | (3.7) |
Ignoring the minimum terms (R1)0ijk and (R1)lijk, the following ADI difference scheme is established for the solution of problem (1.1)–(1.3):
2τ(δtu1ijk−ψijk+τ23ρijk)−a2δ2xu1ijk−b2δ2yu1ijk−c2δ2zu1ijk+M1u1ijk=f1ijk,(i,j,k)∈ω, | (3.8) |
δ2tulijk−a2δ2xuˉlijk−b2δ2yuˉlijk−c2δ2zuˉlijk+M1uˉlijk=flijk,(i,j,k)∈ω,1≤l≤n−1, | (3.9) |
u0ijk=ψ(xi,yj,zk)(i,j,k)∈ω, | (3.10) |
ulijk=α(xi,yj,zk,tl),(i,j,k)∈γ,1≤l≤n. | (3.11) |
Equation (3.8) can be transformed into
(I−a2τ22δ2x)(I−b2τ22δ2y)(I−c2τ22δ2z)u1ijk=u0ijk+τψijk−τ33ρijk+τ22f1ijk,(i,j,k)∈ω. |
Letting
ˉuijk=(I−b2τ22δ2y)u∗ijk,u∗ijk=(I−c2τ22δ2z)u1ijk, |
then
(I−a2τ22δ2x)ˉuijk=u0ijk+τψijk−τ33ρijk+τ22f1ijk, | (3.12) |
(I−b2τ22δ2y)u∗ijk=ˉuijk, | (3.13) |
(I−c2τ22δ2z)u1ijk=u∗ijk. | (3.14) |
For any fixed j(1≤j≤m2−1) and k(1≤k≤m3−1), take the boundary conditions
ˉu0,j,k=(I−b2τ22δ2y)u∗0,j,k=(I−b2τ22δ2y)(I−c2τ22δ2z)u10,j,k, | (3.15) |
ˉum1,j,k=(I−b2τ22δ2y)u∗m1,j,k=(I−b2τ22δ2y)(I−c2τ22δ2z)u1m1,j,k. | (3.16) |
Using (3.15) and (3.16), solve the equation
(I−a2τ22δ2x)ˉuijk=u0ijk+τψijk−τ33ρijk+τ22f1ijk,1≤i≤m1−1, |
from which we obtain {ˉuijk∣1≤i≤m1−1}.
For arbitrary fixed i(1≤i≤m1−1) and k(1≤k≤m3−1), take the boundary conditions
u∗i,0,k=(I−c2τ22δ2z)u1i,0,k, | (3.17) |
u∗i,m2,k=(I−c2τ22δ2z)u1i,m2,k. | (3.18) |
Using (3.17) and (3.18), we solve the equation
(I−b2τ22δ2y)u∗ijk=ˉuijk,1≤j≤m2, |
from which we obtain {u∗ijk∣1≤j≤m2}.
For fixed i(1≤i≤m1−1) and j(1≤j≤m2−1), with the boundary conditions
u1i,j,0,=α(xi,yj,z0,t1), | (3.19) |
u1i,j,m3=α(xi,yj,zm3,t1), | (3.20) |
we solve the equation
(I−c2τ22δ2z)u1ijk=u∗ijk,1≤k≤m3, |
from which we obtain {u1ijk∣1≤k≤m3−1}.
Also, Eq (3.9) can be rewritten as
(I−a2τ22δ2x)(I−b2τ22δ2y)(I−c2τ22δ2z)uˉlijk=ulijk+τ22flijk,(i,j,k)∈ω,1≤l≤n−1. |
Letting
ˆuijk=(I−b2τ22δ2y)ˆu∗ijk,ˆu∗ijk=(I−c2τ22δ2z)uˉlijk, |
then
(I−a2τ22δ2x)ˆuijk=ulijk+τ22flijk, | (3.21) |
(I−b2τ22δ2y)ˆu∗ijk=ˆuijk, | (3.22) |
(I−c2τ22δ2z)uˉlijk=ˆu∗ijk | (3.23) |
When the values of the l-th layer and the l−1-th layer are known, for any fixed j(1≤j≤m2−1) and k(1≤k≤m3−1), take the boundary conditions
ˆu0,j,k=(I−b2τ22δ2y)ˆu∗0,j,k=(I−b2τ22δ2y)(I−c2τ22δ2z)ˆuˉl0,j,k, | (3.24) |
ˆum1,j,k=(I−b2τ22δ2y)ˆu∗m1,j,k=(I−b2τ22δ2y)(I−c2τ22δ2z)ˆuˉlm1,j,k. | (3.25) |
Using (3.24) and (3.25), we solve the equation
(I−a2τ22δ2x)ˆuijk=ulijk+τ22flijk,1≤i≤m1−1, |
from which we obtain {ˆuijk∣1≤i≤m1−1}.
With i(1≤i≤m1−1) and k(1≤k≤m3−1) being any fixed values, take the boundary conditions
ˆu∗i,0,k=(I−c2τ22δ2z)uˉli,0,k, | (3.26) |
ˆu∗i,m2,k=(I−c2τ22δ2z)uˉli,m2,k. | (3.27) |
Using (3.26) and (3.27), we solve the equation
(I−b2τ22δ2y)ˆu∗ijk=ˆuijk,1≤j≤m2−1, |
from which we obtain {ˆu∗ijk∣1≤j≤m2−1}.
For fixed i(1≤i≤m1−1) and j(1≤j≤m2−1), with the boundary conditions
uˉli,j,0=12[α(xi,yj,z0,tl+1)+α(xi,yj,z0,tl−1)], | (3.28) |
uˉli,j,m3=12[α(xi,yj,zm3,tl+1)+α(xi,yj,zm3,tl−1)], | (3.29) |
we solve the equation
(I−c2τ22δ2z)uˉlijk=ˆu∗ijk,1≤k≤m3−1, |
from which we obtain {uˉlijk∣1≤k≤m3−1}. Then, we utilize
ul+1ijk=2uˉlijk−ul−1ijk,(i,j,k)∈ω |
from which we obtain {ul+1ijk∣(i,j,k)∈ω}.
Theorem 4.1. (Solvability) The solution of the ADI difference scheme (3.8)–(3.11) exists and is unique.
Proof. Note ul={ulijk∣(i,j,k)∈ω}. It is known from (3.10) and (3.11) that u0 has been given. The difference scheme regarding u1 is
2τ(δtu1ijk−ψijk+τ23ρijk)−a2δ2xu1ijk−b2δ2yu1ijk−c2δ2zu1ijk+Mlu1ijk=f1ijk+(R1)0ijk,(i,j,k)∈ω,ulijk=0,(i,j,k)∈γ. |
Consider its homogeneous system of equations
2τ2ulijk−a2δ2xu1ijk−b2δ2yu1ijk−c2δ2zu1ijk+Mlu1ijk=0,(i,j,k)∈ω,ulijk=0,(i,j,k)∈γ. | (4.1) |
Using u1 and (4.1) to calculate the inner product, we obtain
2τ2‖u1‖2−a2(δ2xu1,u1)−b2(δ2yu1,u1)−c2(δ2zu1,u1)+a2c2τ22(δ2xδ2zu1,u1)+b2c2τ22(δ2yδ2zu1,u1)+a2b2τ22(δ2xδ2yu1,u1)−a2b2c2τ22(δ2xδ2yδ2zu1,u1)=0, |
so
2τ2‖u1‖2+a2‖δxu1‖2+b2‖δyu1‖2+c2‖δzu1‖2+a2c2τ22‖δxδzu1‖2+b2c2τ22‖δyδzu1‖2+a2b2τ22‖δxδyu1‖2+a2b2c2τ22‖δxδyδzu1‖2=0, |
and it is easy to get
u1ijk=0,(i,j,k)∈ˉω. |
Now that ul−1,ul(1≤l≤n−1) have been determined, the difference scheme for ul+1 is
δ2tulijk−a2δ2xuˉlijk−b2δ2yuˉlijk−c2δ2zuˉlijk+12M1ul+1ijk=0,(i,j,k)∈ω,ul+1ijk=0,(i,j,k)∈γ. |
Consider its homogeneous system of equations
1τ2ul+1ijk−a22δ2xul+1ijk−b22δ2yul+1ijk−c22δ2zul+1ijk+12Mlul+1ijk=0,(i,j,k)∈ω,ul+1ijk=0,(i,j,k)∈γ. |
Using the equation with ul+1ijk and above for the inner product, we can obtain
1τ2‖ul+1‖−a22(δ2xul+1,ul+1)−b22(δ2yul+1,ul+1)−c22(δ2zul+1,ul+1)+a2c2τ24(δ2xδ2zul+1,ul+1)+b2c2τ24(δ2yδ2zul+1,ul+1)+a2b2τ24(δ2xδ2yul+1,ul+1)−a2b2c2τ48(δ2xδ2yδ2zul+1,ul+1)=0. |
Thus,
1τ2‖ul+1‖+a22‖δxul+1‖2+b22‖δyul+1‖2+c22‖δzul+1‖2+a2c2τ24‖δxδzul+1‖2+b2c2τ24‖δyδzul+1‖2+a2b2τ24‖δxδyul+1‖2+a2b2c2τ48‖δxδyδzul+1‖2=0. |
It is easy to conclude
ul+1ijk=0,(i,j,k)∈ˉω. |
Based on the induction principle, the system of difference equations (3.8)–(3.11) is uniquely solvable.
The following is the analysis and proof process regarding stability.
Theorem 4.2. (Stability) Let {ulijk|(i,j,k)∈ˉω} be the solution of the following system of difference equations:
2τ⋅δtu12ijk−a2δ2xu1ijk−b2δ2yu1ijk−c2δ2zu1ijk+Mlu1ijk=g0ijk,(i,j,k)∈ω,δ2tulijk−a2δ2xuˉlijk−b2δ2yuˉlijk−c2δ2zuˉlijk+Mluˉlijk=gˉlijk,(i,j,k)∈ω,1≤l≤n−1,u0ijk=ψijk,(i,j,k)∈ω,ulijk=0,(i,j,k)∈γ. | (4.2) |
Then, there is
12(|ul+1|21+|ul|21)≤1C23e2T[6C24|u0|2A1+3M2+2C2d(6‖g0‖2+4max1≤m≤l‖gm‖2+τl−1∑m=2‖Δtgm‖2)],1≤l≤n−1, |
where
|u|2A1=a2‖δxu‖2+b2‖δyu‖2+c2‖δzu‖2,M2=a2b2τ2‖δxδyu0‖2+a2c2τ2‖δxδzu0‖2+b2c2τ2‖δyδzu0‖2+a2b2c2τ42‖δxδyδzu0‖2,C3=√min{a2,b2,c2},C4=√max{a2,b2,c2},Cd=CC3. |
Proof. Taking the inner product of both sides of Eq (4.2) and δtu12, we obtain
2τ(δtu12,δtu12)−a2(δ2xu1,δtu12)−b2(δ2yu1,δtu12)−c2(δ2zu1,δtu12)+a2c2τ22(δ2xδ2zu1,δtu12)+b2c2τ22(δ2yδ2zu1,δtu12)+a2b2τ22(δ2xδ2yu1,δtu12)−a2b2c2τ24(δ2xδ2yδ2zu1,δtu12)=(g0,δtu12). |
From the above equation, we obtain
2τ‖δtu12‖2+a22τ(‖δxu1‖2−‖δxu0‖2)+b22τ(‖δyu1‖2−‖δyu0‖2)+c22τ(‖δzu1‖2−‖δzu0‖2)+a2b24(‖δxδyu1‖2−‖δxδyu0‖2)+a2c24(‖δxδzu1‖2−‖δxδzu0‖2)+b2c24(‖δyδzu1‖2−‖δyδzu0‖2)+a2b2c28(‖δxδyδzu1‖2−‖δxδyδzu0‖2)=(g0,δtu12). | (4.3) |
When u∈Vh, we have
|u|2A1=a2‖δxu‖2+b2‖δyu‖2+c2‖δzu‖2, |
because
C23=min{a2,b2,c2},C24=max{a2,b2,c2}. |
Then,
C23|u|21≤|u|2A1≤C24|u|21, |
thus |u|2A1 and |u|21 are equivalent. If C2d=C2C23 is set, then it can be inferred from Lemma 2.4 that
‖u‖2≤C2d|u|2A1. |
After substituting |u|2A1 into (4.3) and simplifying both sides of the equation, we obtain
2‖δxu12‖2+14(|u1|2A1+|u0|2A1)+a2b2τ24(‖δxδyu1‖2+‖δxδyu0‖2)+a2c2τ24(‖δxδzu1‖2+‖δxδzu0‖2)+b2c2τ24(‖δyδzu1‖2+‖δyδzu0‖2)+a2b2c2τ48(‖δxδyδzu1‖2+‖δxδyδzu0‖2)≤|u0|2A1+a2b2τ22‖δxδyu0‖2+a2c2τ22‖δxδzu0‖2+b2c2τ22‖δyδzu0‖2+b2c2τ24‖δxδyδzu0‖2+2C2d‖g0‖2, |
Then, let
El=‖δxul+12‖2+12(|ul+1|2A1+|ul|2A1)+a2b2τ22(‖δxδyul+1‖2+‖δxδyul‖2)+a2c2τ22(‖δxδzul+1‖2+‖δxδzul‖2)+b2c2τ22(‖δyδzul+1‖2+‖δyδzul‖2)+a2b2c2τ44(‖δxδyδzul+1‖2+‖δxδyδzul‖2), |
so
E0≤2|u0|2A1+a2b2τ2‖δxδyu0‖2+a2c2τ2‖δxδzu0‖2+b2c2τ2‖δyδzu0‖2+a2b2c2τ42‖δxδyδzu0‖2+4C2d‖g0‖2. | (4.4) |
Taking the inner product of both sides of Eq (4.2) with respect to Δtul, we have
(δ2tul,Δtul)−a2(δ2xuˉl,Δtul)−b2(δ2yuˉl,Δtul)−c2(δ2zuˉl,Δtul)+a2c2τ22(δ2xδ2zuˉl,Δtul)+a2b2τ22(δ2xδ2yuˉl,Δtul)+b2c2τ22(δ2yδ2zuˉl,Δtul)−a2b2c2τ44(δ2xδyδ2zuˉl,Δtul)=(gl,Δtul), |
through calculation and simplification, we can obtain
12τ(‖δtul+12‖2−‖δtul−12‖2)+12τ(|ul+1|2A1+|ul|2A12−|ul|2A1+|ul−1|2A12)+a2c2τ22τ(‖δxδzul+1‖2+‖δxδzul‖22−‖δxδzul‖2+‖δxδzul−1‖22)+a2b2τ22τ(‖δxδyul+1‖2+‖δxδyul‖22−‖δxδyul‖2+‖δxδyul−1‖22)+b2c2τ22τ(‖δyδzul+1‖2+‖δyδzul‖22−‖δyδzul‖2+‖δyδzul−1‖22)+a2b2c2τ44τ(‖δxδyδzul+1‖2+‖δxδyδzul‖22−‖δxδyδzul‖2+‖δxδyδzul−1‖22)=(gl,Δtul), |
thus, it follows that
12τ(El−El−1)=(gl,Δtul), | (4.5) |
and when l=1,
E1=E0−2τ(gl,Δtul)=E0−(gl,u2−u0)≤E0+14(|u1|2A1+|v0|2A1)+2Cd‖gl‖2, |
so
12(|u2|2A1+|u1|2A1)≤2E0+12(|u2|2A1+|u0|2A1)+4Cd‖gl‖2. |
When l≥2, replace m with l in (4.5), and sum m from 1 to l. Then, we obtain
El=E0−2τl∑m=1(gm,Δtum)=E0−l∑m=1(gm,um+1−um−1)=E0−l+1∑m=2(gm−1,um)+l−1∑m=1=0(gm+1,um)=E0+l−1∑m=2(Δtgm,um)−(gl−1,ul)−(gl,ul+1)+(g1,u0)+(g2,u1),2≤l≤n−1, |
observing that
El≥12(|ul+1|2A1+|ul|2A1), |
we can obtain
12(|ul+1|2A1+|ul|2A1)≤E0+l−1∑m=2(Δtgm,vm)−(gl−1,ul)−(gl,ul+1)+(g1,u0)+(g2,u1)≤E0+τl−1∑m=2(C2x‖Δtgm‖2+|um|2A1)+C2d(‖gl−1‖2+‖gl‖2+‖g1‖2+‖g2‖2)+14(|ul|2A1+|ul+1|2A1+|u0|2A1+|u1|2A1),2≤l≤n−1. |
Furthermore, we can obtain
|ul+1|2A1+|ul|2A12≤2E0+2C2d(‖gl−1‖2+‖gl‖2+‖g1‖2+‖g2‖2+τl−1∑m=2‖Δtgm‖2)+|u0|2A1+|u1|2A12+2τl−1∑m=2|um+1|2A1+|um|2A12,2≤l≤n−1. |
According to Lemma 2.5, we can obtain
|ul+1|2A1+|ul|2A12≤e2(l−1)τ[3E0+2C2d(4max1≤m≤l‖gm‖2+τl−1∑m=2‖Δtgm‖2)]≤e2T[3×(2|u0|2A1+M+4C2d‖g0‖2)+2C2x(4max1≤m≤l‖gm‖2+τl−1∑m=2‖Δtgm‖2)]≤e2T[6|u0|2A1+3M+2C2d(6‖g0‖2+4max1≤m≤l‖gm‖2+τl−1∑m=2‖Δtgm‖2)],1≤l≤n−1, |
moreover, since
C23|u|21≤|u|2A1≤C24|u|21, |
then
12(|ul+1|21+|ul|21)≤1C23e2T[6C24|u0|2A1+3M2+2C2d(6‖g0‖2+4max1≤m≤l‖gm‖2+τl−1∑m=2‖Δtgm‖2)],1≤l≤n−1. |
By noting the definition of E1 and (4.4), we can see that the above formula also holds for l=0. The proof of stability is completed.
The rigorous proof of convergence is derived as follows.
Theorem 4.3. (Convergence) Let {u(x,y,z,t)∣(x,y,z)∈ˉΩ,0≤t≤T} be the solution of the problem (1.1)–(1.3), and {ulijk∣(i,j,k)∈ˉω,0≤l≤n} be the solution of the difference scheme (3.8)–(3.11). Denote
elijk=u(xi,yj,zk,tl)−ulijk,(i,j,k)∈ˉω,0≤l≤n. |
Then, we have
‖el‖∞≤L1L2L3CdC3eT√6c21+4c22+Tc22L2L3+L1L3+L1L2(τ2+h21+h22+h23),1≤l≤n. |
Proof. Subtracting (3.2), (3.5), and (3.7) from (3.8)–(3.9), we can obtain the following error equation system:
2τδte12ijk−a2δ2xe1ijk−b2δ2ye1ijk−c2δ2ze1ijk+M1e1ijk=(R1)0ijk,(i,j,k)∈ω, | (4.6) |
δ2telijk−a2δ2xeˉlijk−b2δ2yeˉlijk−c2δ2zeˉlijk+M1eˉlijk=(R1ed)lijk,(i,j,k)∈ω,1≤l≤n−1 | (4.7) |
e0ijk=0,(i,j,k)∈ω, | (4.8) |
elijk=0,(i,j,k)∈γ,1≤l≤n−1. | (4.9) |
From the conclusions in the proof of stability, along with (4.8) and (4.9), we can obtain
12(|el+1|21+|el|21)≤1C23e2T[2C2d(6‖(R1)‖2+4max1≤m≤l‖(R1)‖2+τl−1∑m=2‖Δt(R1)‖2)]≤2C2dC23e2T[6L1L2L3c21(τ2+h21+h22+h23)2+4L1L2L3c22(τ2+h21+h22+h23)2+4(l−2)τc22(τ2+h21+h22+h23)2]≤2C2dC23L1L2L3e2T(6c21+4c22+Tc22)(τ2+h21+h22+h23)2,0≤l≤n−1. |
Thus
|el|21≤4C2dC23L1L2L3e2T(6c21+4c22+Tc22)(τ2+h21+h22+h23)2,0≤l≤n,|el|1≤2CdC3eT√L1L2L3(6c21+4c22+Tc22)(τ2+h21+h22+h23),0≤l≤n. |
Then, according to Lemma 2.6, we can obtain
‖e‖∞≤12√L1L2L3L2L3+L1L2+L1L3|el|1≤L1L2L3CdC3eT√6c21+4c22+Tc22L2L3+L1L2+L1L3(τ2+h21+h22+h23),1≤l≤n. |
The proof of convergence is completed.
Theorem 5.1. Assume that the problems
{2τδtq121ijk−a2δ2xq11ijk−b2δ2yq11ijk−c2δ2zq11ijk=−p01ijk,(i,j,k)∈ω,δ2tql1ijk−a2δ2xqˉl1ijk−b2δ2yqˉl1ijk−c2δ2zqˉl1ijk=−pl1ijk,(i,j,k)∈ω,1≤l≤n−1,q01ijk=0,(i,j,k)∈ω,ql1ijk=0,(i,j,k)∈γ,1≤l≤n−1. | (5.1) |
{2τδtq122ijk−a2δ2xq12ijk−b2δ2yq12ijk−c2δ2zq12ijk=−p02ijk,(i,j,k)∈ω,δ2tql2ijk−a2δ2xqˉl2ijk−b2δ2yqˉl2ijk−c2δ2zqˉl2ijk=−pl2ijk,(i,j,k)∈ω,1≤l≤n−1,q02ijk=0,(i,j,k)∈ω,ql2ijk=0,(i,j,k)∈γ,1≤l≤n−1. | (5.2) |
{2τδtq123ijk−a2δ2xq13ijk−b2δ2yq13ijk−c2δ2zq13ijk=−p03ijk,(i,j,k)∈ω,δ2tql3ijk−a2δ2xqˉl3ijk−b2δ2yqˉl3ijk−c2δ2zqˉl3ijk=−pl3ijk,(i,j,k)∈ω1≤l≤n−1,q03ijk=0,(i,j,k)∈ω,ql3ijk=0,(i,j,k)∈γ,1≤l≤n−1. | (5.3) |
and
{2τδtq124ijk−a2δ2xq14ijk−b2δ2yq14ijk−c2δ2zq14ijk=−p04ijk,(i,j,k)∈ω,δ2tql4ijk−a2δ2xqˉl4ijk−b2δ2yqˉl4ijk−c2δ2zqˉl4ijk=−pl4ijk,(i,j,k)∈ω,1≤l≤n−1,q04ijk=0,(i,j,k)∈ω,ql4ijk=0,(i,j,k)∈γ,1≤l≤n−1. | (5.4) |
have smooth solutions, where
p01ijk=512utttt(xi,yj,zk,t1),p02ijk=−a212uxxxx(xi,yj,zk,t1),p03ijk=−b212uyyyy(xi,yj,zk,t1),p04ijk=−c212uzzzz(xi,yj,zk,t1), |
pl1ijk=112utttt(xi,yj,zk,tl)−12uxxtt(xi,yj,zk,tl),−12uyytt(xi,yj,zk,tl)−12uzztt(xi,yj,zk,tl),pl2ijk=−a224[uxxxx(xi,yj,zk,tl+1)+uxxxx(xi,yj,zk,tl−1)],pl3ijk=−b224[uyyyy(xi,yj,zk,tl+1)+uyyyy(xi,yj,zk,tl−1)],pl4ijk=−c224[uzzzz(xi,yj,zk,tl+1)+uzzzz(xi,yj,zk,tl−1)]. |
Then we have
ulijk(h1,h2,h3,τ)=u(xi,yj,zk,tl)+τ2ql1ijk(xi,yj,zk,tl)+h21ql2ijk(xi,yj,zk,tl)+h22ql3ijk(xi,yj,zk,tl)+h23ql4ijk(xi,yj,zk,tl)+O(τ3+h41+h42+h43), |
max|u(xi,yj,zk,tl)−[43u2l2i,2j,2k(h12,h22,h32,τ2)−13ulijk(h1,h2,h3,τ)]|=O(τ3+h41+h42+h43). |
Proof. By subtracting M1e1ijk and M1elijk from both sides of the error equation system (4.6)–(4.9), we can obtain
{2τδte12ijk−a2δ2xe1ijk−b2δ2ye1ijk−c2δ2ze1ijk=p01ijkτ2+p02ijkh21+p03ijkh22+p04ijkh23+O(τ3+h41+h42+h43),(i,j,k)∈ω,δ2telijk−a2δ2xeˉlijk−b2δ2yeˉlijk−c2δ2zeˉlijk=pl1ijkτ2+pl2ijkh21+pl3ijkh22+pl4ijkh23+O(τ4+h41+h42+h43),(i,j,k)∈ω,1≤l≤n−1,e0ijk=0,(i,j,k)∈ω,elijk=0,(i,j,k)∈γ,1≤l≤n−1. | (5.5) |
where
O(τ3+h41+h42+h43)=3τ320uttttt(xi,yj,zk,ˆζijkτ)−a2h41360uxxxxxx(ˆηijk,yj,zk,t1)−b2h42360uyyyyyy(xi,ˆξijk,zk,t1)−c2h43360uzzzzzz(xi,yj,ˆλijk,t1),ˆζijk∈(0,1),ˆηijk∈(xi−h1,xi+h1),ˆξijk∈(yj−h2,yj+h2),ˆλijk∈(zk−h3,zk+h3),O(τ4+h41+h42+h43)=τ4[1360utttttt(xi,yj,zk,˙ζlijk)−a224uxxtttt(xi,yj,zk,˙slijk)−b224uyytttt(xi,yj,zk,˙slijk)−c224uzztttt(xi,yj,zk,˙slijk)]−h41[a2720uxxxxxx(˙ηlijk,yj,zk,tl+1)+a2720uxxxxxx(˙ηlijk,yj,zk,tl−1)]−h42[b2720uyyyyyy(xi,˙ξlijk,zk,tl+1)+b2720uyyyyyy(xi,˙ξlijk,zk,tl−1)]−h43[c2720uzzzzzz(xi,yj,˙λlijk,t1+1)+c2720uzzzzzz(xi,yj,˙λlijk,t1−1)],ˆζijk∈(tl−τ,tl+τ),ˆηijk∈(xi−h1,xi+h1),ˆξijk∈(yj−h2,yj+h2),ˆλijk∈(zk−h3,zk+h3). |
Denote
rlijk=elijk+τ2pl1ijk+h21pl2ijk+h22pl3ijk+h23pl4ijk,0≤i≤m1,0≤j≤m2,0≤k≤m3,0≤l≤n. |
Multiply (5.1) by τ2, (5.2) by h21, (5.3) by h22, and (5.4) by h23, respectively. Then, add the resultant expressions to (5.5), yielding
2τδtr12ijk−a2δ2xr1ijk−b2δ2yr1ijk−c2δ2zr1ijk=O(τ3+h41+h42+h43),(i,j,k)∈ω,δ2trlijk−a2δ2xrˉlijk−b2δ2yrˉlijk−c2δ2zrˉlijk=O(τ4+h41+h42+h43),(i,j,k)∈ω,1≤l≤n−1,r0ijk=0,(i,j,k)∈ω,rlijk=0,(i,j,k)∈γ,1≤l≤n−1. |
As can be seen from the proof of stability in Subsection 4.2,
rlijk=O(τ3+h41+h42+h43),(i,j,k)∈ω,1≤l≤n, |
that is
By transposing the terms, we can obtain
(5.6) |
By the same token, we have
(5.7) |
Multiply both sides of (5.6) by and both sides of (5.7) by , respectively. Subsequently, subtract the expression obtained from the latter operation from that of the former. As a result, we arrive at
The proof of the theorem is completed.
In this section, we present two numerical examples to compute the errors and convergence orders using the ADI finite difference scheme. The overall convergence accuracy under extrapolation methods is also calculated, which validates the theoretical analysis.
We take , and denote the maximum absolute error as
The maximum absolute error of the Richardson extrapolation method is
We consider
(6.1) |
The exact solution of this problem is .
Tables 1 and 2 show the maximum errors and convergence orders for different step sizes using the finite difference method and for Richardson extrapolation scheme.
(h, ) | ||
(, ) | 1.4367e-04 | * |
(, ) | 3.9257e-05 | 1.8718 |
(, ) | 1.0036e-05 | 1.9678 |
(, ) | 2.5559e-06 | 1.9733 |
(h, ) | ||
(, ) | 1.7385e-05 | * |
(, ) | 2.0485e-06 | 3.0851 |
(, ) | 2.2440e-07 | 3.1904 |
As is evident from the aforementioned table, with the progressive refinement of the mesh partitioning, the maximum error exhibits a gradual decline. The precision of the initial finite difference scheme is of the second order. In contrast, following the implementation of the Richardson extrapolation technique, the precision is elevated to the third order.
Figures 1–4 presented herein are the numerical solutions corresponding to diverse step sizes, the exact solutions, and the error graphs derived from the numerical experiments of Example 1 with .
We consider
(6.2) |
The exact solution is .
The following two tables shows the maximum error and convergence order of computational Example 2 under different step sizes, as well as the maximum error and convergence order for the extrapolation scheme.
As is discernible from the aforementioned Tables 3 and 4, for Example 2, the errors and convergence orders corresponding to diverse meshing scenarios are elucidated. Evidently, within the context of the original finite difference scheme, the error ratio hovers approximately around order 2. Subsequent to the utilization of the Richardson extrapolation technique, the convergence order approximates order 3. In addition, paralleling the situation in Example 1, as the mesh refinement progresses, the maximum error consistently exhibits a decreasing trend.
(h, ) | ||
(, ) | 6.4577e-04 | * |
(, ) | 1.7401e-04 | 1.8919 |
(, ) | 4.4204e-05 | 1.9769 |
(, ) | 1.1212e-05 | 1.9791 |
(h, ) | ||
(, ) | 9.3597e-05 | * |
(, ) | 9.7157e-06 | 3.2681 |
(, ) | 9.6377e-07 | 3.3337 |
In Figures 5–8 the numerical solutions, exact solutions, and error graphs of Example 2 are presented under different step size ratios with .
We investigate the ADI difference scheme and the Richardson extrapolation scheme for a class of three-dimensional hyperbolic equations. By employing Lemma 2 and the central difference method, we discretize the equation (1.1)–(1.3) and construct an ADI finite difference scheme. We prove solvability, stability, and convergence, and it is demonstrated that the convergence order is . By further studying the Richardson extrapolation scheme for the model, the accuracy is significantly enhanced, and the convergence order is improved.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors are grateful to the editor and the anonymous reviewers for their careful readingand many patient checking of the whole manuscript. The work was supported by National Natural Science Foundation of China Mathematics Tianyuan Foundation (12226337, 12226340), Scientific Research Fund of Hunan Provincial Education Department (24A0422), and Hunan Provincial Natural Science Foundation of China (2024JJ7146).
The authors declare there is no conflicts of interest.
[1] |
M. Dehghan, A. Ghesmati, Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation, Eng. Anal. Bound. Elem., 32 (2010), 324–336. https://doi.org/10.1016/j.enganabound.2009.10.010 doi: 10.1016/j.enganabound.2009.10.010
![]() |
[2] |
A. Saadatmandi, M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method, Numer. Methods Partial Differ. Equations, 26 (2010), 239–252. https://doi.org/10.1002/num.20442 doi: 10.1002/num.20442
![]() |
[3] |
R. Jiwari, S. Pandit, R. Mittal, A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions, Appl. Math. Comput., 218 (2012), 7279–7294. https://doi.org/10.1016/j.amc.2012.01.006 doi: 10.1016/j.amc.2012.01.006
![]() |
[4] |
K. Zhukovsky, Operational approach and solutions of hyperbolic heat conduction equations, Axioms, 5 (2016), 28. https://doi.org/10.3390/axioms5040028 doi: 10.3390/axioms5040028
![]() |
[5] |
M. S. Yudin, Inversion effects on wind and surface pressure in atmospheric front propagation simulation with a hyperbolic model, Carpath. J. Earth. Env., 96 (2017), e012002. https://doi.org/10.1088/1755-1315/96/1/012002 doi: 10.1088/1755-1315/96/1/012002
![]() |
[6] |
T. Hillen, K. Hadeler, Hyperbolic systems and transport equations in mathematical biology, Carpath. J. Earth. Env., (2005), 257–279. https://doi.org/10.1007/3-540-27907-5_11 doi: 10.1007/3-540-27907-5_11
![]() |
[7] |
W. Alt, Inversion effects on wind and surface pressure in atmospheric front propagation simulation with a hyperbolic model, Carpath. J. Earth. Env., (2003), 431–461. https://doi.org/10.1088/1755-1315/96/1/012002 doi: 10.1088/1755-1315/96/1/012002
![]() |
[8] |
K. K. Sharma, P. Singh, Hyperbolic partial differential-difference equation in the mathematical modeling of neuronal firing and its numerical solution, Carpath. J. Earth. Env., 201 (2008), 229–238. https://doi.org/10.1016/j.amc.2007.12.051 doi: 10.1016/j.amc.2007.12.051
![]() |
[9] |
K. Hadeler, K. Dietz, Nonlinear hyperbolic partial differential equations for the dynamics of parasite populations, Hyperbolic Part. Differ. Equations, (1983), 415–430. https://doi.org/10.1016/B978-0-08-030254-6.50016-1 doi: 10.1016/B978-0-08-030254-6.50016-1
![]() |
[10] |
I. Fedotov, M. Shatalov, J. Marais, Hyperbolic and pseudo-hyperbolic equations in the theory of vibration, Acta. Mech., 227 (2016), 3315–3324. https://doi.org/10.1007/s00707-015-1537-6 doi: 10.1007/s00707-015-1537-6
![]() |
[11] | G. Paul, Huygens' Principle and Hyperbolic Equations, Academic Press, 2014. |
[12] | S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Springer Science & Business Media, 2013. |
[13] |
M. Dehghan, A. Ghesmati, Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method, Eng. Anal. Bound. Elem., 34 (2010), 51–59. https://doi.org/10.1016/j.enganabound.2009.07.002 doi: 10.1016/j.enganabound.2009.07.002
![]() |
[14] | A. Häck, Kinetic and Hyperbolic Equations with Applications to Engineering Processes, Ph.D thesis, Dissertation, RWTH Aachen University, 2017. |
[15] | O. A. Ladyzhenskaya, The Mixed Problem for a Hyperbolic Equation, Gostekhizdat, MoscowX, 1953. |
[16] | R. Sakamoto, Hyperbolic Boundary Value Problems, Cup Archive, 1982. |
[17] | V. M. Gordienko, Dissipativity of boundary condition in a mixed problem for the three-dimensional wave equation, Sib. Electron. Math. Rep., 10 (2013), 311–323. https://www.mathnet.ru/eng/semr/v10/p311 |
[18] |
A. N. Malyshev, A mixed problem for a second-order hyperbolic equation with a complex first-order boundary condition, Sibirskii Matematicheskii Zhurnal, 24 (1983), 102–121. https://doi.org/10.1007/BF00970317 doi: 10.1007/BF00970317
![]() |
[19] |
K. Liu, Z. He, H. Zhang, X. Yang, A Crank-Nicolson ADI compact difference scheme for the three-dimensional nonlocal evolution problem with a weakly singular kernel, Comput. Appl. Math., 44 (2025), 164. https://doi.org/10.1007/s40314-025-03125-x doi: 10.1007/s40314-025-03125-x
![]() |
[20] |
Y. Shi, X. Yang, The pointwise error estimate of a new energy-preserving nonlinear difference method for supergeneralized viscous Burgers' equation, Comput. Appl. Math., 44 (2025), 257. https://doi.org/10.1007/s40314-025-03222-x doi: 10.1007/s40314-025-03222-x
![]() |
[21] |
Y. Shi, X. Yang, A time two-grid difference method for nonlinear generalized viscous Burgers' equation. J. Math. Chem., 62 (2024), 1323–1356. https://doi.org/10.1007/s10910-024-01592-x doi: 10.1007/s10910-024-01592-x
![]() |
[22] |
C. Li, H. Zhang, X. Yang, A new linearized ADI compact difference method on graded meshes for a nonlinear 2D and 3D PIDE with a WSK, Comput. Math. Appl., 176 (2024), 349–370. https://doi.org/10.1016/j.camwa.2024.11.006 doi: 10.1016/j.camwa.2024.11.006
![]() |
[23] |
K. Li, W. Liao, Y. Lin, A compact high order alternating direction implicit method for three-dimensional acoustic wave equation with variable coefficient, J. Comput. Appl. Math., 361 (2019), 113–129. https://doi.org/10.1016/j.cam.2019.04.013 doi: 10.1016/j.cam.2019.04.013
![]() |
[24] |
W. Liao, On the dispersion, stability and accuracy of a compact higher-order finite difference scheme for 3D acoustic wave equation, J. Comput. Appl. Math., 270 (2014), 571–583. https://doi.org/10.1016/j.cam.2013.08.024 doi: 10.1016/j.cam.2013.08.024
![]() |
[25] |
W. Liao, P. Yong, H. Dastour, J. Huang, Efficient and accurate numerical simulation of acoustic wave propagation in a 2D heterogeneous media, Appl. Math. Comput., 321 (2018), 385–400. https://doi.org/10.1016/j.amc.2017.10.052 doi: 10.1016/j.amc.2017.10.052
![]() |
[26] |
D. Deng, D. Liang, The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations, Appl. Math. Comput., 329 (2018), 188–209. https://doi.org/10.1016/j.amc.2018.02.010 doi: 10.1016/j.amc.2018.02.010
![]() |
[27] |
S. Das, W. Liao, A. Gupta, An efficient fourth-order low dispersive finite difference scheme for a 2-D acoustic wave equation, J. Appl. Math. Comput., 258 (2014), 151–167. https://doi.org/10.1016/j.cam.2013.09.006 doi: 10.1016/j.cam.2013.09.006
![]() |
[28] |
B. D. Nie, B. Y. Cao, Three mathematical representations and an improved ADI method for hyperbolic heat conduction, Int. J. Heat Mass Transfer, 135 (2019), 974–984. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.026 doi: 10.1016/j.ijheatmasstransfer.2019.02.026
![]() |
[29] |
S. Zhao, A matched alternating direction implicit (ADI) method for solving the heat equation with interfaces, J. Sci. Comput., 63 (2015), 118–137. https://doi.org/10.1007/s10915-014-9887-0 doi: 10.1007/s10915-014-9887-0
![]() |
[30] |
W. Wang, H. Zhang, X. Jiang, X. Yang, A high-order and efficient numerical technique for the nonlocal neutron diffusion equation representing neutron transport in a nuclear reactor, Ann. Nucl. Energy, 195 (2024), 110163. https://doi.org/10.1016/j.anucene.2023.110163 doi: 10.1016/j.anucene.2023.110163
![]() |
[31] | W. Wang, H. Zhang, Z. Zhou, X. Yang, A fast compact finite difference scheme for the fourth-order diffusion-wave equation, Int. J. Comput. Math., 101 (2024), 170–193. https://doi.org/110.1080/00207160.2024.2323985 |
[32] |
J. Wang, X. Jiang, X. Yang, H. Zhang, A compact difference scheme for mixed-type time‐fractional Black‐Scholes equation in European option pricing, Math. Method Appl. Sci., 48 (2025), 6818–6829. https://doi.org/10.1002/mma.10717 doi: 10.1002/mma.10717
![]() |
[33] |
J. Wang, X. Jiang, H. Zhang, X. Yang, A new fourth-order nonlinear difference scheme for the nonlinear fourth-order generalized Burgers-type equation, J. Appl. Math. Comput., (2025), 1–31. https://doi.org/10.1007/s12190-025-02467-3 doi: 10.1007/s12190-025-02467-3
![]() |
[34] |
X. Jiang, J. Wang, W. Wang, H. Zhang, A predictor-corrector compact difference scheme for a nonlinear fractional differential equation, Fractal Fract., 7 (2023), 521. https://doi.org/10.3390/fractalfract7070521 doi: 10.3390/fractalfract7070521
![]() |
[35] | H. Zhou, M. Huang, W. Ying, ADI schemes for heat equations with irregular boundaries and interfaces in 3D with applications, preprint, arXiv: 2309.00979. https://doi.org/10.48550/arXiv.2309.00979 |
[36] |
X. Shen, X. Yang, H. Zhang, The high-order ADI difference method and extrapolation method for solving the two-dimensional nonlinear parabolic evolution equations, Mathematics, 12 (2024), 3469. https://doi.org/10.3390/math12223469 doi: 10.3390/math12223469
![]() |
[37] |
Z. Chen, H. Zhang, H. Chen, ADI compact difference scheme for the two-dimensional integro-differential equation with two fractional Riemann-Liouville integral kernels, Fractal Fract., 8 (2024), 707. https://doi.org/10.3390/fractalfract8120707 doi: 10.3390/fractalfract8120707
![]() |
[38] |
T. Liu, H. Zhang, X. Yang, The ADI compact difference scheme for three-dimensional integro-partial differential equation with three weakly singular kernels, J. Appl. Math. Comput., (2025), 1–29. https://doi.org/10.1007/s12190-025-02386-3 doi: 10.1007/s12190-025-02386-3
![]() |
[39] |
Z. Zhou, H. Zhang, X. Yang, A BDF2 ADI difference scheme for a three-dimensional nonlocal evolution equation with multi-memory kernels, Comput. Appl. Math., 43 (2024), 418. https://doi.org/10.1007/s40314-024-02931-z doi: 10.1007/s40314-024-02931-z
![]() |
[40] |
L. Qiao, W. Qiu, D. Xu, Crank-Nicolson ADI finite difference/compact difference schemes for the 3D tempered integrodifferential equation associated with Brownian motion, Numerical Algorithms, 93 (2023), 1083–1104. https://doi.org/10.1007/s11075-022-01454-0 doi: 10.1007/s11075-022-01454-0
![]() |
[41] |
W. Qiu, X. Zheng, K. Mustapha, Numerical approximations for a hyperbolic integrodifferential equation with a non-positive variable-sign kernel and nonlinear-nonlocal damping, Appl. Numer. Math., 213 (2025), 61–76. https://doi.org/10.1016/j.apnum.2025.02.018 doi: 10.1016/j.apnum.2025.02.018
![]() |
[42] |
W. Qiu, Y. Li, X. Zheng, Numerical analysis of nonlinear Volterra integrodifferential equations for viscoelastic rods and plates. Calcolo, 61 (2024), 50. https://doi.org/10.1007/s10092-024-00607-y doi: 10.1007/s10092-024-00607-y
![]() |
[43] |
L. Chen, Z. Wang, S. Vong, A second-order weighted ADI scheme with nonuniform time grids for the two-dimensional time-fractional telegraph equation. J. Appl. Math. Comput., 70 (2024), 5777–5794. https://doi.org/10.1007/s12190-024-02200-6 doi: 10.1007/s12190-024-02200-6
![]() |
[44] | K. G. Tay, S. L. Kek, R. Abdul-Kahar, M. Azlan, M. Lee, A Richardson's Extrapolation spreadsheet calculator for Numerical Differentiation, Spreadsheets Educ., 6 (2013). http://epublications.bond.edu.au/ejsie/vol6/iss2/5 |
[45] | A. Alekseev, A. Bondarev, A comparison of the Richardson extrapolation and the approximation error estimation on the ensemble of numerical solutions, in International Conference on Computational Science, (2021), 554–566. https://doi.org/10.1007/978-3-030-77980-1_42 |
[46] |
J. Wang, X. Jiang, H. Zhang, A BDF3 and new nonlinear fourth-order difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 151 (2024), 109002. https://doi.org/10.1016/j.aml.2024.109002 doi: 10.1016/j.aml.2024.109002
![]() |
[47] |
X. Yang, W. Wang, Z. Zhou, H. Zhang, An efficient compact difference method for the fourth-order nonlocal subdiffusion problem, Taiwan. J. Math., 29 (2025), 35–66. https://doi.org/10.11650/tjm/240906 doi: 10.11650/tjm/240906
![]() |
[48] |
D. Ruan, X. Wang, A high-order Chebyshev-type method for solving nonlinear equations: local convergence and applications, Electron. Res. Arch., 33 (2025), 1398–1413. https://doi.org/10.3934/era.2025065 doi: 10.3934/era.2025065
![]() |
[49] |
X. Wang, N. Shang, Local convergence analysis of a novel derivative-free method with and without memory for solving nonlinear systems, Int. J. Comput. Math., 2025. https://doi.org/10.1080/00207160.2025.2464701 doi: 10.1080/00207160.2025.2464701
![]() |
[50] |
D. Ruan, X. Wang, Y. Wang, Local convergence of seventh-order iterative method under weak conditions and its applications, Eng. Comput., 2025. https://doi.org/10.1108/EC-08-2024-0775 doi: 10.1108/EC-08-2024-0775
![]() |
[51] | X. Wang, W. Li, Fractal behavior of King's optimal eighth-order iterative method and its numerical application, Math. Commun., 29 (2024), 217–236. https://hrcak.srce.hr/321249 |
[52] |
J. C. Lopez-Marcos, A difference scheme for a nonlinear partial integrodifferential equation, SIAM J. Numer. Anal., 27 (1990), 20–31. https://doi.org/10.1137/0727002 doi: 10.1137/0727002
![]() |
[53] | Z. Sun, Numerical Methods for Partial Differential Equations, Science Press, 2005. |
[54] | Z. Sun, The Method of Order Reduction and its Application to the Numerical Solutions of Partial Differential Equations, Science Press, 2009. |
(h, ) | ||
(, ) | 1.4367e-04 | * |
(, ) | 3.9257e-05 | 1.8718 |
(, ) | 1.0036e-05 | 1.9678 |
(, ) | 2.5559e-06 | 1.9733 |
(h, ) | ||
(, ) | 1.7385e-05 | * |
(, ) | 2.0485e-06 | 3.0851 |
(, ) | 2.2440e-07 | 3.1904 |
(h, ) | ||
(, ) | 6.4577e-04 | * |
(, ) | 1.7401e-04 | 1.8919 |
(, ) | 4.4204e-05 | 1.9769 |
(, ) | 1.1212e-05 | 1.9791 |
(h, ) | ||
(, ) | 9.3597e-05 | * |
(, ) | 9.7157e-06 | 3.2681 |
(, ) | 9.6377e-07 | 3.3337 |
(h, ) | ||
(, ) | 1.4367e-04 | * |
(, ) | 3.9257e-05 | 1.8718 |
(, ) | 1.0036e-05 | 1.9678 |
(, ) | 2.5559e-06 | 1.9733 |
(h, ) | ||
(, ) | 1.7385e-05 | * |
(, ) | 2.0485e-06 | 3.0851 |
(, ) | 2.2440e-07 | 3.1904 |
(h, ) | ||
(, ) | 6.4577e-04 | * |
(, ) | 1.7401e-04 | 1.8919 |
(, ) | 4.4204e-05 | 1.9769 |
(, ) | 1.1212e-05 | 1.9791 |
(h, ) | ||
(, ) | 9.3597e-05 | * |
(, ) | 9.7157e-06 | 3.2681 |
(, ) | 9.6377e-07 | 3.3337 |