We provide generalizations of the classical Wigner's theorem as well as Uhlhorn's version of Wigner's theorem by considering maps that send rank-$ 1 $ projections to rank-$ n $ projections. Namely, we describe the general form of maps $ \phi:P_{1}\left (H\right) \to P_{n}\left (K\right) $ multiplying $ n $ times the transition probability and maps $ \phi:P_{1}\left (H\right) \to P_{n}\left (K\right) $ sending each complete orthogonal system of rank-$ 1 $ projections to some complete orthogonal system of rank-$ n $ projections.
Citation: Yulong Tian, Jinli Xu. Generalizations of Wigner's theorem from rank-$ 1 $ projections to rank-$ n $ projections[J]. Electronic Research Archive, 2025, 33(5): 3201-3209. doi: 10.3934/era.2025140
We provide generalizations of the classical Wigner's theorem as well as Uhlhorn's version of Wigner's theorem by considering maps that send rank-$ 1 $ projections to rank-$ n $ projections. Namely, we describe the general form of maps $ \phi:P_{1}\left (H\right) \to P_{n}\left (K\right) $ multiplying $ n $ times the transition probability and maps $ \phi:P_{1}\left (H\right) \to P_{n}\left (K\right) $ sending each complete orthogonal system of rank-$ 1 $ projections to some complete orthogonal system of rank-$ n $ projections.
| [1] | E. P. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren, Frederik Vieweg und Sohn, Braunschweig, 1931. |
| [2] |
L. Molnár, Transformations on the set of all n-dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys., 217 (2001), 409–421. https://doi.org/10.1007/PL00005551 doi: 10.1007/PL00005551
|
| [3] |
G. P. Gehér, Wigner's theorem on Grassmann spaces, J. Funct. Anal., 273 (2017), 2994–3001. https://doi.org/10.1016/j.jfa.2017.06.011 doi: 10.1016/j.jfa.2017.06.011
|
| [4] |
P. Šemrl, Maps on Grassmann spaces preserving the minimal principal angle, Acta Sci. Math., 90 (2024), 109–122. https://doi.org/10.1007/s44146-023-00093-8 doi: 10.1007/s44146-023-00093-8
|
| [5] |
G. P. Gehér, An elementary proof for the non-bijective version of Wigner's theorem, Phys. Lett. A, 378 (2014), 2054–2057. https://doi.org/10.1016/j.physleta.2014.05.039 doi: 10.1016/j.physleta.2014.05.039
|
| [6] |
M. Pankov, L. Plevnik, A non-injective version of Wigner's theorem, Oper. Matrices, 17 (2023), 517–524. https://doi.org/10.7153/oam-2023-17-33 doi: 10.7153/oam-2023-17-33
|
| [7] |
P. Šemrl, Automorphisms of Hilbert space effect algebras, Phys. Lett. A, 48 (2015), 195301. https://doi.org/10.1088/1751-8113/48/19/195301 doi: 10.1088/1751-8113/48/19/195301
|
| [8] | L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Springer, Berlin, 2007. |
| [9] | U. Uhlhorn, Representation of symmetry transformations in quantum mechanics, Ark. Fysik., 23 (1963), 307–340. |
| [10] |
P. Šemrl, G. P. Gehér, Isometries of Grassmann spaces, J. Funct. Anal., 270 (2016), 1585–1601. https://doi.org/10.1016/j.jfa.2015.11.018 doi: 10.1016/j.jfa.2015.11.018
|
| [11] |
L. Molnár, J. Jamison, F. Botelho, Surjective isometries on Grassmann spaces, J. Funct. Anal., 265 (2013), 2226–2238. https://doi.org/10.1016/j.jfa.2013.07.017 doi: 10.1016/j.jfa.2013.07.017
|
| [12] |
M. Pankov, T. Vetterlein, A geometric approach to Wigner-type theorems, Bull. London. Math. Soc., 53 (2021), 1653–1662. https://doi.org/10.1112/blms.12517 doi: 10.1112/blms.12517
|
| [13] |
P. Šemrl, Wigner symmetries and Gleason's theorem, J. Phys. A, 54 (2021), 315301. https://doi.org/10.1088/1751-8121/ac0d35 doi: 10.1088/1751-8121/ac0d35
|
| [14] |
P. Šemrl, Orthogonality preserving transformations on the set of $ n $-dimensional subspaces of a Hilbert space, Illinois J. Math., 48 (2004), 567–573. https://doi.org/10.1215/ijm/1258138399 doi: 10.1215/ijm/1258138399
|
| [15] | E. R. Megginson, An Introduction to Banach Space Theory, Springer, New York, 2012. |
| [16] | R. V. Kadison, J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Volume Ⅱ: Advanced Theory, Academic press, New York, 1986. |
| [17] |
C. K. Li, M. C. Tsai, Y. S. Wang, N. C. Wang, Nonsurjective zero product preservers between matrix spaces over an arbitrary field, Linear Multilinear Algebra, 72 (2024), 2406–2425. https://doi.org/10.1080/03081087.2023.2263139 doi: 10.1080/03081087.2023.2263139
|
| [18] | M. A. Gleason, Measures on the closed subspaces of a Hilbert space, Indiana Univ. Math. J., 6 (1957), 885–893. |