Research article

Generalizations of Wigner's theorem from rank-$ 1 $ projections to rank-$ n $ projections

  • Published: 23 May 2025
  • We provide generalizations of the classical Wigner's theorem as well as Uhlhorn's version of Wigner's theorem by considering maps that send rank-$ 1 $ projections to rank-$ n $ projections. Namely, we describe the general form of maps $ \phi:P_{1}\left (H\right) \to P_{n}\left (K\right) $ multiplying $ n $ times the transition probability and maps $ \phi:P_{1}\left (H\right) \to P_{n}\left (K\right) $ sending each complete orthogonal system of rank-$ 1 $ projections to some complete orthogonal system of rank-$ n $ projections.

    Citation: Yulong Tian, Jinli Xu. Generalizations of Wigner's theorem from rank-$ 1 $ projections to rank-$ n $ projections[J]. Electronic Research Archive, 2025, 33(5): 3201-3209. doi: 10.3934/era.2025140

    Related Papers:

  • We provide generalizations of the classical Wigner's theorem as well as Uhlhorn's version of Wigner's theorem by considering maps that send rank-$ 1 $ projections to rank-$ n $ projections. Namely, we describe the general form of maps $ \phi:P_{1}\left (H\right) \to P_{n}\left (K\right) $ multiplying $ n $ times the transition probability and maps $ \phi:P_{1}\left (H\right) \to P_{n}\left (K\right) $ sending each complete orthogonal system of rank-$ 1 $ projections to some complete orthogonal system of rank-$ n $ projections.



    加载中


    [1] E. P. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren, Frederik Vieweg und Sohn, Braunschweig, 1931.
    [2] L. Molnár, Transformations on the set of all n-dimensional subspaces of a Hilbert space preserving principal angles, Commun. Math. Phys., 217 (2001), 409–421. https://doi.org/10.1007/PL00005551 doi: 10.1007/PL00005551
    [3] G. P. Gehér, Wigner's theorem on Grassmann spaces, J. Funct. Anal., 273 (2017), 2994–3001. https://doi.org/10.1016/j.jfa.2017.06.011 doi: 10.1016/j.jfa.2017.06.011
    [4] P. Šemrl, Maps on Grassmann spaces preserving the minimal principal angle, Acta Sci. Math., 90 (2024), 109–122. https://doi.org/10.1007/s44146-023-00093-8 doi: 10.1007/s44146-023-00093-8
    [5] G. P. Gehér, An elementary proof for the non-bijective version of Wigner's theorem, Phys. Lett. A, 378 (2014), 2054–2057. https://doi.org/10.1016/j.physleta.2014.05.039 doi: 10.1016/j.physleta.2014.05.039
    [6] M. Pankov, L. Plevnik, A non-injective version of Wigner's theorem, Oper. Matrices, 17 (2023), 517–524. https://doi.org/10.7153/oam-2023-17-33 doi: 10.7153/oam-2023-17-33
    [7] P. Šemrl, Automorphisms of Hilbert space effect algebras, Phys. Lett. A, 48 (2015), 195301. https://doi.org/10.1088/1751-8113/48/19/195301 doi: 10.1088/1751-8113/48/19/195301
    [8] L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Springer, Berlin, 2007.
    [9] U. Uhlhorn, Representation of symmetry transformations in quantum mechanics, Ark. Fysik., 23 (1963), 307–340.
    [10] P. Šemrl, G. P. Gehér, Isometries of Grassmann spaces, J. Funct. Anal., 270 (2016), 1585–1601. https://doi.org/10.1016/j.jfa.2015.11.018 doi: 10.1016/j.jfa.2015.11.018
    [11] L. Molnár, J. Jamison, F. Botelho, Surjective isometries on Grassmann spaces, J. Funct. Anal., 265 (2013), 2226–2238. https://doi.org/10.1016/j.jfa.2013.07.017 doi: 10.1016/j.jfa.2013.07.017
    [12] M. Pankov, T. Vetterlein, A geometric approach to Wigner-type theorems, Bull. London. Math. Soc., 53 (2021), 1653–1662. https://doi.org/10.1112/blms.12517 doi: 10.1112/blms.12517
    [13] P. Šemrl, Wigner symmetries and Gleason's theorem, J. Phys. A, 54 (2021), 315301. https://doi.org/10.1088/1751-8121/ac0d35 doi: 10.1088/1751-8121/ac0d35
    [14] P. Šemrl, Orthogonality preserving transformations on the set of $ n $-dimensional subspaces of a Hilbert space, Illinois J. Math., 48 (2004), 567–573. https://doi.org/10.1215/ijm/1258138399 doi: 10.1215/ijm/1258138399
    [15] E. R. Megginson, An Introduction to Banach Space Theory, Springer, New York, 2012.
    [16] R. V. Kadison, J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Volume Ⅱ: Advanced Theory, Academic press, New York, 1986.
    [17] C. K. Li, M. C. Tsai, Y. S. Wang, N. C. Wang, Nonsurjective zero product preservers between matrix spaces over an arbitrary field, Linear Multilinear Algebra, 72 (2024), 2406–2425. https://doi.org/10.1080/03081087.2023.2263139 doi: 10.1080/03081087.2023.2263139
    [18] M. A. Gleason, Measures on the closed subspaces of a Hilbert space, Indiana Univ. Math. J., 6 (1957), 885–893.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(633) PDF downloads(32) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog