In physics, the semiclassical limit principle asserts that as Planck's constant ℏ→0, quantum states reduce to classical configurations. We extend this framework to the noncommutative residue by applying the semiclassical limit to the spectral geometry. By introducing the coefficient ε, we establish a proof of the Kastler–Kalau–Walze-type theorem for the perturbations of the Dirac operator on four-dimensional compact manifolds with (without) boundary. As ε→0, we demonstrate the emergence of a semiclassical limit, thereby providing the classical formulation of the theorem. This result elucidates the interplay between quantum corrections and classical geometric invariants in the presence of boundary conditions.
Citation: Tong Wu, Yong Wang. The semiclassical limit of the Kastler–Kalau–Walze-type theorem[J]. Electronic Research Archive, 2025, 33(4): 2452-2474. doi: 10.3934/era.2025109
[1] | Mustafa Aydin, Nazim I. Mahmudov, Hüseyin Aktuğlu, Erdem Baytunç, Mehmet S. Atamert . On a study of the representation of solutions of a $ \Psi $-Caputo fractional differential equations with a single delay. Electronic Research Archive, 2022, 30(3): 1016-1034. doi: 10.3934/era.2022053 |
[2] | Humberto Rafeiro, Joel E. Restrepo . Revisiting Taibleson's theorem. Electronic Research Archive, 2022, 30(2): 565-573. doi: 10.3934/era.2022029 |
[3] | Maurıicio F. S. Lima, Jaume Llibre . Hopf bifurcation for a class of predator-prey system with small immigration. Electronic Research Archive, 2024, 32(7): 4604-4613. doi: 10.3934/era.2024209 |
[4] | Junsheng Gong, Jiancheng Liu . A Liouville-type theorem of a weighted semilinear parabolic equation on weighted manifolds with boundary. Electronic Research Archive, 2025, 33(4): 2312-2324. doi: 10.3934/era.2025102 |
[5] | Mufit San, Seyma Ramazan . A study for a higher order Riemann-Liouville fractional differential equation with weakly singularity. Electronic Research Archive, 2024, 32(5): 3092-3112. doi: 10.3934/era.2024141 |
[6] | Xiaoming An, Shuangjie Peng . Multi-peak semiclassical bound states for Fractional Schrödinger Equations with fast decaying potentials. Electronic Research Archive, 2022, 30(2): 585-614. doi: 10.3934/era.2022031 |
[7] | Min Li . Long-wavelength limit for the Green–Naghdi equations. Electronic Research Archive, 2022, 30(7): 2700-2718. doi: 10.3934/era.2022138 |
[8] | Fei-fan Li, Ji-jun Ao . A dissipative third-order boundary value problem with distributional potentials and eigenparameter-dependent boundary conditions. Electronic Research Archive, 2025, 33(5): 3378-3393. doi: 10.3934/era.2025149 |
[9] | Meng Wang, Naiwei Liu . Qualitative analysis and traveling wave solutions of a predator-prey model with time delay and stage structure. Electronic Research Archive, 2024, 32(4): 2665-2698. doi: 10.3934/era.2024121 |
[10] | Yue Ma, Zhongfei Li . Robust portfolio choice with limited attention. Electronic Research Archive, 2023, 31(7): 3666-3687. doi: 10.3934/era.2023186 |
In physics, the semiclassical limit principle asserts that as Planck's constant ℏ→0, quantum states reduce to classical configurations. We extend this framework to the noncommutative residue by applying the semiclassical limit to the spectral geometry. By introducing the coefficient ε, we establish a proof of the Kastler–Kalau–Walze-type theorem for the perturbations of the Dirac operator on four-dimensional compact manifolds with (without) boundary. As ε→0, we demonstrate the emergence of a semiclassical limit, thereby providing the classical formulation of the theorem. This result elucidates the interplay between quantum corrections and classical geometric invariants in the presence of boundary conditions.
The noncommutative residue, also known as great important study subject in noncommutative geometry, has been extensively studied in [1,2]. In [3], Connes employed the noncommutative residue to derive a four-dimensional conformal Polyakov action analogue and demonstrated that the noncommutative residue on a compact manifold M coincides with the Dixmier's trace for pseudodifferential operators of order−dimM in [4]. Moreover, Connes claimed the noncommutative residue of the square of the inverse of the Dirac operator was proportional to the Einstein–Hilbert action. Kastler, Kalau, and Walze proved this conclusion respectively in [5,6], which is called the Kastler–Kalau–Walze theorem. Afterwards, Ackermann proved that the noncommutative residue of the square of the inverse of the Dirac operator Wres(D−2) in turn is essentially the second coefficient of the heat kernel expansion of D2 in [7], which enriches the results on noncommutative residues on manifolds without boundary.
Furthermore, Wang uses ~Wres[(π+D−1)2] instead of Wres(D−2) to generalize the results from manifolds without boundary to manifolds with boundary in [8,9], and proved the Kastler–Kalau–Walze-type theorem for the Dirac operator and the signature operator on lower-dimensional manifolds with boundary [10]. Here ~Wres denotes the noncommutative residue for manifolds with boundary, and π+D−1 is an element in Boutet de Monvel's algebra (see (3.1) in Section 3.1). In [10,11], Wang computed ~Wres[π+D−1∘π+D−1] and ~Wres[π+D−2∘π+D−2] for symmetric operators, where the boundary term vanished in these cases. However, when computing ~Wres[π+D−1∘π+D−3], a nonvanishing boundary term emerged [12], leading Wang to provide a theoretical interpretation of gravitational action on the boundary. In other words, this work effectively established a framework for investigating the Kastler–Kalau–Walze-type theorem on manifolds with boundary.
Subsequent studies [13,14,15,16,17,18] explored various perturbations of the Dirac operator by zero-order differential operators. In [15], Wang extended the Kastler–Kalau–Walze-type theorem for perturbations of Dirac operators on compact manifolds (with or without boundary) and proposed two distinct operator-theoretic interpretations of boundary gravitational action. Further developments by Wang, Wang, and Yang [17] ocused on 4-dimensional compact manifolds with boundary, where they derived two operator-theoretic explanations for gravitational action and proved a Kastler–Kalau–Walze-type theorem for nonminimal operators on complex manifolds. Additionally, in [16], Wang, Wang, and Wu introduced novel spectral functionals, which extended traditional spectral functionals to noncommutative realm with torsion and connected them to the noncommutative residue for manifolds with boundary.
The semiclassical limit not only connects quantum and classical physics theoretically but also provides important research tools and application value in the field of mathematics. In physics, the semiclassical limit refers to the transitional regime between quantum mechanics and classical mechanics. When the characteristic action ˉS of a system is much larger than Planck's constant ℏ, quantum effects gradually diminish, and the system's behavior approaches that of classical mechanics. In mathematics, this is often achieved by taking the limit where Planck's constant ℏ→0.
There are many studies on the semiclassical limit of the spectral geometry. B¨ar and Pf¨affle studied semiclassical approximations for the heat kernel of a general self-adjoint Laplace-type operator within a geometric framework in [19]. Later, Ludewig [20] examined the semiclassical asymptotic expansion of the heat kernel arising from Witten's perturbation of the de Rham complex by a given function. By employing the stationary phase method, Ludewig derived a time-dependent integral formula, ultimately leading to a proof of the Poincarˊe-Hopf theorem. Meanwhile, Savale [21] analyzed the remainder term in the semiclassical limit formula (introduced in [22]) for the eta invariant on a metric contact manifold. Specifically, Savale demonstrated that this remainder term is governed by the volumes of recurrence sets of the Reeb flow. Obviously, the noncommutative residues as a part of the spectral geometry; thus, in order to extend the study of the semiclassical limit of the spectral geometry, motivated by [19,20,21] and Theorem 3.12 in [23], we introduce the semiclassical limit into the noncommutative residue. Based on the research of [24], we prove the semiclassical limit of the Kastler–Kalau–Walze-type theorem for the perturbations of the Dirac operator on 4-dimensional compact oriented spin manifolds with (without) boundary by taking the limit ε→0. For a fixed ε>0, we may consider the Kastler–Kalau–Walze-type theorem as a theorem in the quantum state. And when ε→0, we give the classical state of the Kastler–Kalau–Walze-type theorem.
This paper is organized as follows: By using Wres(P):=∫S∗Mtr(σP−n)(x,ξ), Section 2 gives semiclassical limits of the noncommutative residues of three cases for the perturbations of the Dirac operator on 4-dimensional manifolds without boundary. Moreover, we give the semiclassical limit of the Kastler–Kalau–Walze-type theorem about the perturbation of the Dirac operator on 4-dimensional manifolds with boundary in Section 3.
In this section, we study the semiclassical limits of the noncommutative residues on 4-dimensional manifolds without boundary in three different cases.
Firstly, we recall the main facts regarding the Dirac operator D. Let M be a 4-dimensional compact oriented spin manifold with Riemannian metric g, and let ∇ denote the Levi–Civita connection associated with g. Then the Dirac operator D can be expressed locally in terms of an orthonormal frame ei (with corresponding dual coframe θk) of the frame bundle of M [5]:
D=iγi˜∇i=iγi(ei+σi);σi(x)=14γij,k(x)γiγk=18γij,k(x)[γjγk−γkγj],γij,k=−γik,j=12[cij,k+cki,j+ckj,i],i,j,k=1,⋅⋅⋅,4;ckij=θk([ei.ej]), |
where the γij,k represents the Levi–Civita connection ∇ with spin connection ˜∇, the γi denote constant self-adjoint Dirac matrices, which satisfy γiγj+γjγi=−2δij.
Using local coordinates xμ that induce the alternative vierbein ∂μ=Siμ(x)ei (with dual vierbein dxμ), γiei=γμ∂μ is obtained, where the γμ are now x-dependent Dirac matrices, which satisfy γμγν+γνγμ=−2gμν (we use Latin sub-(super-) scripts for the basic ei and Greek sub-(super-) scripts for the basis ∂μ, the type of sub-(super-) scripts specifying the type of Dirac matrices). Then the Dirac operator in the Greek basis is expressed by
D=iγμ˜∇μ=iγμ(eμ+σμ);σμ(x)=Siμ(x)σi. |
Consider a pseudodifferential operator P that acts on sections of a vector bundle over a compact Riemannian manifold M. In [5], the noncommutative residues of P is defined by
Wres(P):=∫M∫‖ξ‖=1tr[σ−n(P)](x,ξ)σ(ξ)dx, | (2.1) |
where ξ∈Sn−1and tr denotes shorthand for trace.
Next, by (2.1), to obtain the semiclassical limit of the noncommutative residues on manifolds without boundary, we consider the following three different cases. From the point of view of the following three different cases, we give the classical state of the noncommutative residue on manifolds without boundary.
(1)limε→0ε3Wres(εD2+λ1D+λ2)−1;(2)limε→0ε3Wres(εD2+λ1c(X)D+λ2)−1;(3)limε→0ε3Wres(εD2+λ1∇S(TM)X+λ2)−1, |
where λ1,λ2 are C∞(M) functions.
In this subsection, we want to compute limε→0ε3Wres(εD2+λ1D+λ2)−1, by ε3Wres(εD2+λ1D+λ2)−1=ε2Wres(D2+λ1εD+λ2ε)−1, we need to compute Wres(D2+λ1εD+λ2ε)−1.
Set A=D2+λ1εD+λ2ε, we utilize the composition of pseudodifferential operators to express the symbol of the operator. Simplify the abbreviation of the principal symbol: ξ=∑jξjdxj, ∂αξ=∂α/∂ξα,∂xα=∂α/∂xα, then the following identity holds:
σPQ(x,ξ)=∑α(−i)αα!∂αξσP(x,ξ)⋅∂xασQ(x,ξ). | (2.2) |
Firstly, we compute the total symbol σ(x,ξ) of A, which is given by the sum of terms Ak of order k(k=0,1,2):
A=A2+A1+A0. |
Then, we have
σA2(x,ξ)=|ξ|2;σA1(x,ξ)=i(Γμ−2σμ)ξμ+iλ1εc(ξ);σA0(x,ξ)=−(∂xσμ+σμσμ−Γμσμ)+14s+iλ1εγμσμ+λ2ε. | (2.3) |
Next, we compute A−1 from order -4 to order -2 using the above results; that is, σA−1−k,k=2,3,4. The full symbol σ of A is expressed in terms of decreasing order:
σA−1=σA−1−2+σA−1−3+σA−1−4+termsoforder≤−5. |
Using (2.2), the negative order of the symbol of A−1 yields:
σA−1−2=(σA2)−1;σA−1−3=−σA−1−2[σA1σA−1−2−i∂μξσA2∂xμσA−1−2];σA−1−4=−σA−1−2[σA1σA−1−3+σA0σA−1−2−i∂μξσA1∂xμσA−1−2−i∂μξσA2∂xμσA−1−3]. |
Moreover, by (2.3), the following result is obtained.
σA−1−2=|ξ|−2;σA−1−3=−|ξ|−2[(i(Γμ−2σμ)ξμ+iλ1εc(ξ))|ξ|−2−i∂μξ(|ξ|2)∂xμ(|ξ|−2)];σA−1−4=−|ξ|−6ξμξν(Γμ−2σμ)(Γν−2σν)−2|ξ|−8ξμξαξβ(Γν−2σν)∂xμgαβ+|ξ|−4(∂xμσμ+σμσμ−Γμσμ)−14|ξ|−4s−2i|ξ|−2ξμ⋅∂xμσA−1−3+|ξ|−6ξαξβ(Γμ−2σμ)∂xμgαβ−|ξ|−6ξαξβgμν∂xμνgαβ+2|ξ|−8ξαξβξγξδgμν∂xμgαβ∂xνgγδ−|ξ|−6λ1εc(ξ)(Γμ−2σμ)ξμ−|ξ|−6(Γμ−2σμ)ξμλ1εc(ξ)−|ξ|−41ε(iλ1γμσμ+λ2)+2|ξ|−8λ1εc(ξ)ξμξαξβ∂xμgαβ+|ξ|−4λ21ε2−|ξ|−4∂μξ[λ1εc(ξ)]ξαξβ∂xμgαβ. |
Regrouping the terms and inserting
∂xμσA−1−3=2i|ξ|−6ξνξαξβ(Γν−2σν)∂xμgαβ−i|ξ|−4ξν∂xμ(Γν−2σν)+6i|ξ|−8ξνξαξβξγξδ∂xμgαβ∂xνgγδ−2i|ξ|−6ξαξγξδ∂xμgνα∂xνgγδ−2i|ξ|−6ξνξγξδ∂xμνgγδ−i∂xμ[|ξ|−4λ1εc(ξ)]. |
We obtain for σA−1−4 the sum of terms:
N1=−|ξ|−6ξμξνΓμΓν+|ξ|−4[gμν−|ξ|−4ξμν][σμσν−Γνσν];N2=|ξ|−4∂xμσμ−14|ξ|−4s;N3=−6|ξ|−8ξμξνξαξβ(Γν−2σν)∂xμgαβ;N4=2|ξ|−6ξμξν∂xμ(Γν−2σν);N5=−12|ξ|−10ξμξνξαξβξγξδ∂xμgαβ∂xνgγδ;N6=4|ξ|−8ξμξαξγξδ∂xμgνα∂xνgγδ;N7=|ξ|−6ξαξβ(Γμ−2σμ)∂xμgαβ;N8=4|ξ|−8ξμξνξγξδ∂xμνgγδ;N9=−|ξ|−6ξαξβgμν∂xμνgαβ;N10=2|ξ|−8ξαξβξγξδgμν∂xμgαβ∂xνgγδ, |
and
M1=−|ξ|−6λ1εc(ξ)(Γμ−2σν)ξμ;M2=−|ξ|−6(Γμ−2σν)ξμλ1εc(ξ);M3=2|ξ|−8λ1εc(ξ)ξμξαξβ∂xμgαβ;M4=|ξ|−4λ21ε2;M5=−|ξ|−41ε(λ1iγμσμ+λ2);M6=−|ξ|−4λ1ε∂μξ[c(ξ)]ξαξβ∂xμgαβ;M7=−2|ξ|−2ξμ∂μx[|ξ|−4λ1εc(ξ)]. |
Let s denote the scalar curvature, from [5], we obtain
∫|ξ|=1tr[10∑i=1Ni]σ(ξ)=−s12tr[id]. | (2.4) |
The next step involves computing ∫|ξ|=1tr[∑7i=1Mi]σ(ξ).
(1):
In normal coordinates, using the facts: Γμαβ(x0)=σμ(x0)=0, ∂xμgαβ(x0)=0, the results of the terms M1, M2, M3, and M6 disappear.
(2):
∫|ξ|=1tr(M4)(x0)σ(ξ)=λ21ε2VolS3tr[id]=2λ21ε2π2tr[id], |
and
∫|ξ|=1tr(M5)(x0)σ(ξ)=−λ2εVolS3tr[id]=−2λ2επ2tr[id]. |
(3):
By ∂xμ[|ξ|−4c(ξ)]=−2|ξ|−6∂xμ(|ξ|2)c(ξ)+|ξ|−4∂xμ[c(ξ)], ∂xμ(|ξ|2)(x0)=0 and ∂xμ[c(ξ)]=0, we have
∫|ξ|=1tr(M7)(x0)σ(ξ)=0. |
Therefore, when n=4, trS(TM)[id]=4 and by (2.1), this implies
Wres(D2+λ1εD+λ2ε)−1=4∫M(2λ21ε2π2−2λ2επ2+112s)dVolM. |
Further, we obtain the semiclassical limit of the above result. That is the following theorem.
Theorem 2.1. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we derive the semiclassical limit of the noncommutative residue about εD2+λ1D+λ2
limε→0ε3Wres(εD2+λ1D+λ2)−1=8∫Mλ21π2dVolM. |
Corollary 2.2. If M is a 4-dimensional compact oriented spin manifolds without boundary, then when λ1=√ε, we obtain the following equality:
limε→0ε2Wres(εD2+√εD+λ2)−1=8∫M(1−λ2)π2dVolM. |
Let c(X) denote a Clifford action on M, where X=∑nα=1aαeα=∑nj=1Xj∂j is a vector field. Then we can set B=D2+λ1εc(X)D+λ2ε, the next step is to compute the total symbol σ(x,ξ) of B; the sum of terms Bk of order k(k=0,1,2) is given by:
B=B2+B1+B0. |
By (2.2), we have
σB2(x,ξ)=|ξ|2;σB1(x,ξ)=i(Γμ−2σμ)ξμ+iλ1εc(X)c(ξ);σB0(x,ξ)=−(∂xσμ+σμσμ−Γμσμ)+14s+iλ1εc(X)γμσμ+λ2ε. | (2.5) |
Next, we compute B−1 from order -4 to order -2 using the above results; that is, we compute σB−1−k,k=2,3,4. the full symbol σ of B is expressed into terms of decreasing order:
σB−1=σB−1−2+σB−1−3+σB−1−4+termsoforder≤−5. |
Using (2.2), the negative order of the symbol of B−1 yields:
σB−1−2=(σB2)−1;σB−1−3=−σB−1−2[σB1σB−1−2−i∂μξσB2∂xμσB−1−2];σB−1−4=−σB−1−2[σB1σB−1−3+σB0σB−1−2−i∂μξσB1∂xμσB−1−2−i∂μξσB2∂xμσB−1−3]. |
Then by (2.5), it follows that
σB−1−2=|ξ|−2;σB−1−3=−|ξ|−2[(i(Γμ−2σμ)ξμ+iλ1εc(X)c(ξ))|ξ|−2−i∂μξ(|ξ|2)∂xμ(|ξ|−2)];σB−1−4=−|ξ|−6ξμξν(Γμ−2σμ)(Γν−2σν)−2|ξ|−8ξμξαξβ(Γν−2σν)∂xμgαβ+|ξ|−4(∂xμσμ+σμσμ−Γμσμ)−14|ξ|−4s−2i|ξ|−2ξμ⋅∂xμσ−3+|ξ|−6ξαξβ(Γμ−2σμ)∂xμgαβ−|ξ|−6ξαξβgμν∂xμνgαβ+2|ξ|−8ξαξβξγξδgμν∂xμgαβ∂xνgγδ−|ξ|−6λ1εc(X)c(ξ)(Γμ−2σμ)ξμ−|ξ|−6(Γμ−2σμ)ξμλ1εc(X)c(ξ)−|ξ|−41ε(iλ1c(X)γμσμ+λ2)+2|ξ|−8λ1εc(X)c(ξ)ξμξαξβ∂xμgαβ−|ξ|−6λ21ε2[c(X)c(ξ)]2−|ξ|−4∂μξ[λ1εc(X)c(ξ)]ξαξβ∂xμgαβ. |
Regrouping the terms and inserting
∂xμσB−1−3=2i|ξ|−6ξνξαξβ(Γν−2σν)∂xμgαβ−i|ξ|−4ξν∂xμ(Γν−2σν)+6i|ξ|−8ξνξαξβξγξδ∂xμgαβ∂xνgγδ−2i|ξ|−6ξαξγξδ∂xμgνα∂xνgγδ−2i|ξ|−6ξνξγξδ∂xμνgγδ−i∂xμ[|ξ|−4λ1εc(X)c(ξ)]. |
Then σB−1−4 includes the sum of terms: N1−N10 and R1−R7:
R1=−|ξ|−6λ1εc(X)c(ξ)(Γμ−2σν)ξμ;R2=−|ξ|−6(Γμ−2σν)ξμλ1εc(X)c(ξ);R3=2|ξ|−8λ1εc(X)c(ξ)ξμξαξβ∂xμgαβ;R4=−|ξ|−6λ21ε2c(X)c(ξ)c(X)c(ξ);R5=−|ξ|−41ε(λ1ic(X)γμσμ+λ2);R6=−|ξ|−4λ1ε∂μξ[c(X)c(ξ)]ξαξβ∂xμgαβ;R7=−2|ξ|−2ξμ∂μx[|ξ|−4λ1εc(X)c(ξ)]. |
Then, similarly, we compute ∫|ξ|=1tr[∑7i=1Ri]σ(ξ).
(1):
In normal coordinates, using the facts, we have: Γμαβ(x0)=σμ(x0)=0, ∂xμgαβ(x0)=0, the results of the terms R1, R2, R3, and R6 disappear.
(2):
tr[c(X)c(ξ)c(X)c(ξ)]|ξ|=1=−2ξ(X)tr[c(X)c(ξ)]|ξ|=1−|X|2tr[id], |
and
−2ξ(X)tr[c(X)c(ξ)]|ξ|=1=4ξ(X)2tr[id]+2ξ(X)tr[c(ξ)c(X)]|ξ|=1. | (2.6) |
Then by ∫|ξ|=1ξ(X)2σ(ξ)=−12|X|2π2tr[id], we have
∫|ξ|=1tr(R4)(x0)σ(ξ)=λ21ε2|X|2π2tr[id]. |
(3):
∫|ξ|=1tr(R5)(x0)σ(ξ)=−2λ2επ2tr[id]. |
(4):
By ∂μx[c(X)c(ξ)](x0)=c(X)∂μx[c(ξ)]+∂μx[c(X)]c(ξ)=∑nj=1∂μx(Xj)c(ej)c(ξ)(x0), we have
tr(R7)(x0)=2ξμξkλ1εn−1∑k∂μx(Xk)tr[id]. | (2.7) |
Then
∫|ξ|=1tr(R7)(x0)σ(ξ)=λ12ε∑k∂xk(Xk)VolS3tr[id]=λ12εdivM(X)VolS3tr[id]=λ1εdivM(X)π2tr[id], |
where divM denotes divergence of M.
Thus by (2.1), we obtain the following result:
Wres(D2+λ1εc(X)D+λ2ε)−1=4∫M(λ21ε2|X|2π2−2λ2επ2+λ1εdivM(X)π2+112s)dVolM. |
Further, we obtain the following theorem.
Theorem 2.3. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we derive the semiclassical limit of the noncommutative residue about εD2+λ1c(X)D+λ2
limε→0ε3Wres(εD2+λ1c(X)D+λ2)−1=4∫Mλ21|X|2π2dVolM. |
Corollary 2.4. If M is a 4-dimensional compact oriented spin manifolds without boundary, then when λ1=√ε, the following equality holds:
limε→0ε2Wres(εD2+√εc(X)D+λ2)−1=4∫M(|X|2−2λ2)π2dVolM. |
Define ∇S(TM)X:=X+14∑ij⟨∇LXei,ej⟩c(ei)c(ej), which is a spin connection. And let gij=g(dxi,dxj) and ∇L∂i∂j=∑kΓkij∂k, we denote that
σi=−14∑s,tωs,t(ei)c(ei)c(es)c(et);ξj=gijξi;Γk=gijΓkij;σj=gijσi. |
Set C=D2+λ1ε∇S(TM)X+λ2ε, E(X)=14∑ij⟨∇LXei,ej⟩c(ei)c(ej). The next step is to compute the total symbol σ(x,ξ) of C−1 from order -4 to order -2, with C the following sum of terms Ck of order k:
C=C2+C1+C0. |
Then, we have
σC2(x,ξ)=|ξ|2;σC1(x,ξ)=i(Γμ−2σμ)ξμ+iλ1εn∑j=1Xjξj;σC0(x,ξ)=−(∂xσμ+σμσμ−Γμσμ)+14s+iλ1εE(X)+λ2ε. |
Further, by (2.2), we obtain
σC−1−2=|ξ|−2;σC−1−3=−|ξ|−2[(i(Γμ−2σμ)ξμ+iλ1εn∑j=1Xjξj)|ξ|−2−i∂μξ(|ξ|2)∂xμ(|ξ|−2)];σC−1−4=−|ξ|−6ξμξν(Γμ−2σμ)(Γν−2σν)−2|ξ|−8ξμξαξβ(Γν−2σν)∂xμgαβ+|ξ|−4(∂xμσμ+σμσμ−Γμσμ)−14|ξ|−4s−2i|ξ|−2ξμ⋅∂xμσ−3+|ξ|−6ξαξβ(Γμ−2σμ)∂xμgαβ−|ξ|−6ξαξβgμν∂xμνgαβ+2|ξ|−8ξαξβξγξδgμν∂xμgαβ∂xνgγδ−|ξ|−6λ1εn∑j=1Xjξj(Γμ−2σμ)ξμ−|ξ|−6(Γμ−2σμ)ξμλ1εn∑j=1Xjξj−|ξ|−41ε(iλ1E(X)+λ2)+2|ξ|−8λ1εn∑j=1Xjξjξμξαξβ∂xμgαβ−|ξ|−6λ21ε2n∑j=1Xjξjn∑k=1Xkξk−|ξ|−4∂μξ[λ1εn∑j=1Xjξj]ξαξβ∂xμgαβ. |
Regrouping the terms and inserting
∂xμσC−1−3=2i|ξ|−6ξνξαξβ(Γν−2σν)∂xμgαβ−i|ξ|−4ξν∂xμ(Γν−2σν)+6i|ξ|−8ξνξαξβξγξδ∂xμgαβ∂xνgγδ−2i|ξ|−6ξαξγξδ∂xμgνα∂xνgγδ−2i|ξ|−6ξνξγξδ∂xμνgγδ−i∂xμ[|ξ|−4λ1εn∑j=1Xjξj]. |
We obtain for σC−1−4 the sum of terms: N1−N10 and T1−T7:
T1=−|ξ|−6λ1εn∑j=1Xjξj(Γμ−2σν)ξμ;T2=−|ξ|−6(Γμ−2σν)ξμλ1εn∑j=1Xjξj;T3=2|ξ|−8λ1εn∑j=1Xjξjξμξαξβ∂xμgαβ;T4=−|ξ|−6λ21ε2n∑j=1Xjξjn∑k=1Xkξk;T5=−|ξ|−41ε(λ1c(X)E(X)+λ2);T6=−|ξ|−4λ1ε∂μξ[n∑j=1Xjξj]ξαξβ∂xμgαβ;T7=−2|ξ|−2ξμ∂μξ[|ξ|−4λ1εn∑j=1Xjξj]. |
Then, we proceed to compute ∫|ξ|=1tr[∑7i=1Ti]σ(ξ).
(1):
In normal coordinates, using the facts: Γμαβ(x0)=σμ(x0)=0, ∂xμgαβ(x0)=0, the results of the terms T1, T2, T3, and T6 disappear.
(2):
By ∫|ξ|=1ξjξkσ(ξ)=14VolS3δjk=12π2δjk, we have
∫|ξ|=1tr(T4)(x0)σ(ξ)=−λ212ε2|X|2π2tr[id]. |
(3):
∫|ξ|=1tr(T5)(x0)σ(ξ)=−2λ2επ2tr[id]. |
(4):
Similar to (2.7), we have
∫|ξ|=1tr(T7)(x0)σ(ξ)=−λ1εdivM(X)π2tr[id]. |
Thus, we obtain the following result:
Wres(D2+λ1ε∇S(TM)X+λ2ε)−1=4∫M(−λ212ε2|X|2π2−2λ2επ2−λ1εdivM(X)π2+112s)dVolM. |
Building on these preliminaries, we obtain:
Theorem 2.5. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we obtain the semiclassical limit of the noncommutative residue about εD2+λ1∇S(TM)X+λ2
limε→0ε3Wres(εD2+λ1∇S(TM)X+λ2)−1=4∫M−λ212|X|2π2dVolM. |
Corollary 2.6. If M is a 4-dimensional compact oriented spin manifolds without boundary, then when λ1=√ε, we obtain the following equality:
limε→0ε2Wres(εD2+√ε∇S(TM)X+λ2)−1=4∫M(−12|X|2−2λ2)π2dVolM. |
In this section, we study the semiclassical limit of the Kastler–Kalau–Walze-type theorem for the perturbation of the Dirac operator on 4-dimensional manifolds with boundary, that is, to compute limε→0ε4~Wres[π+(εD+c(X))−1∘π+(εD+c(Z))−1].
In this subsection, we recall some fundamental concepts and key formulas about Boutet de Monvel's calculus, along with the definition of the noncommutative residue for manifolds with boundary. These preliminaries will be essential for our subsequent analysis. For a more comprehensive treatment of these topics, we refer readers to Section 2 in [10].
Denote by π+ (resp. π−) the projection on H+ (resp. H−). Let ˜H={rational functions having no poles on the real axis}. Then for h∈˜H,
π+h(ξ0)=12πilimu→0−∫Γ+h(ξ)ξ0+iu−ξdξ, | (3.1) |
where Γ+ is a Jordan closed curve included in Im(ξ)>0 surrounding all the singularities of h in the upper half-plane and ξ0∈R. Similarly, we define π′ on ˜H,
π′h=12π∫Γ+h(ξ)dξ. | (3.2) |
So π′(H−)=0.
For h∈H⋂L1(R),
π′h=12π∫Rh(v)dv, |
and for h∈H+⋂L1(R), π′h=0.
Let G, T be, respectively, the singular Green operator and the trace operator of order m and type d. Let K be a potential operator and S be a classical pseudodifferential operator of order m along the boundary. An operator of order m∈Z and type d is a matrix
˜A=(π+P+GKTS): C∞(M,E1) ⨁ C∞(∂M,F1)⟶ C∞(M,E2) ⨁ C∞(∂M,F2), |
where M is a manifold with boundary ∂M and E1,E2 (resp. F1,F2) are vector bundles over M (resp. ∂M). Here, P:C∞0(Ω,¯E1)→C∞(Ω,¯E2) is a classical pseudodifferential operator of order m on Ω, where Ω is a collar neighborhood of M and ¯Ei|M=Ei(i=1,2). P has an extension: E′(Ω,¯E1)→D′(Ω,¯E2), where E′(Ω,¯E1)(D′(Ω,¯E2)) is the dual space of C∞(Ω,¯E1)(C∞0(Ω,¯E2)). Let e+:C∞(M,E1)→E′(Ω,¯E1) denotes extension by zero from M to Ω, and r+:D′(Ω,¯E2)→D′(Ω,E2) denotes the restriction from Ω to X; then define
π+P=r+Pe+:C∞(M,E1)→D′(Ω,E2). |
In addition, P is supposed to have the transmission property; this means that, for all j,k,α, the homogeneous component pj of order j in the asymptotic expansion of the symbol p of P in local coordinates near the boundary satisfies
∂kxn∂αξ′pj(x′,0,0,+1)=(−1)j−|α|∂kxn∂αξ′pj(x′,0,0,−1), |
then π+P:C∞(M,E1)→C∞(M,E2) by Theorem 4 in [25] page 139.
Denote by B the Boutet de Monvel's algebra. We recall that the main theorem is in [10,26].
Theorem 3.1. [26] (Fedosov-Golse-Leichtnam-Schrohe) Let M and ∂M be connected, dimM=n≥3, and let S (resp. S′) be the unit sphere about ξ (resp. ξ′) and σ(ξ) (resp. σ(ξ′)) be the corresponding canonical n−1 (resp. (n−2)) volume form. Set ˜A=(π+P+GKTS) ∈B, and denote by p, b and s the local symbols of P,G, and S, respectively. Define:
~Wres(˜A)=∫X∫StrE[p−n(x,ξ)]σ(ξ)dx+2π∫∂X∫S′{trE[(trb−n)(x′,ξ′)]+trF[s1−n(x′,ξ′)]}σ(ξ′)dx′, |
where ~Wres denotes the noncommutative residue of an operator in the Boutet de Monvel's algebra, and
S={(ξ1,ξ2,⋅⋅⋅,ξn)∈Rn|n∑i,j=1gijξiξj=1}, |
in the normal coordinate,
S(x0)={(ξ1,ξ2,⋅⋅⋅,ξn)∈Rn|n∑i=1ξ2i=1}. |
Then a) ~Wres([˜A,B])=0, for any ˜A,B∈B; b) It is the unique continuous trace on B/B−∞.
Definition 3.2. [10] Lower-dimensional volumes of spin manifolds with boundary are defined by
Vol(p1,p2)nM:=~Wres[π+D−p1∘π+D−p2], |
and
~Wres[π+D−p1∘π+D−p2]=∫M∫|ξ|=1tr∧∗T∗M⨂C[σ−n(D−p1−p2)]σ(ξ)dx+∫∂MΦ, | (3.3) |
where
Φ=∫|ξ′|=1∫+∞−∞∞∑j,k=0∑(−i)|α|+j+k+1α!(j+k+1)!×tr∧∗T∗M⨂C[∂jxn∂αξ′∂kξnσ+r(D−p1)(x′,0,ξ′,ξn)×∂αx′∂j+1ξn∂kxnσl(D−p2)(x′,0,ξ′,ξn)]dξnσ(ξ′)dx′, | (3.4) |
and the sum is taken over r+l−k−|α|−j−1=−n,r≤−p1,l≤−p2.
By ε4~Wres[π+(εD+c(X))−1∘π+(εD+c(Z))−1]=ε2~Wres[π+(D+c(X)ε)−1∘π+(D+c(Z)ε)−1] and (3.3), we first compute
~Wres[π+(D+c(X)ε)−1∘π+(D+c(Z)ε)−1]=∫M∫|ξ|=1trS(TM)⨂C[σ−4(D2+c(Z)Dε+Dc(X)ε+c(Z)c(X)ε2)−1]σ(ξ)dx+∫∂MΦ, | (3.5) |
where
Φ=∫|ξ′|=1∫+∞−∞∞∑j,k=0∑(−i)|α|+j+k+1α!(j+k+1)!×trS(TM)⨂C[∂jxn∂αξ′∂kξnσ+r(D+c(X)ε)−1(x′,0,ξ′,ξn)×∂αx′∂j+1ξn∂kxnσl(D+c(Z)ε)−1(x′,0,ξ′,ξn)]dξnσ(ξ′)dx′, | (3.6) |
and the sum is taken over r+l−k−j−|α|=−3,r≤−1,l≤−1.
Since [σ−n(D−p1−p2)]|M has the same expression as σ−n(D−p1−p2) in the case of manifolds without boundary, so locally we can compute the interior term by [5,6,10,27].
Set V=D2+c(Z)Dε+Dc(X)ε+c(Z)c(X)ε2, where Z=∑nα=1aαeα=∑nj=1Zj∂j is a vector field. The next step is to compute the total symbol σ(x,ξ) of V−1 from order -4 to order -2, with V the following sum of terms Vk of order k:
σV2(x,ξ)=|ξ|2;σV1(x,ξ)=i(Γμ−2σμ)ξμ+iεc(Z)c(ξ)+iεc(ξ)c(X);σV0(x,ξ)=−(∂xσμ+σμσμ−Γμσμ)+14s+iεc(Z)γμσμ+iεγμσμc(X)+c(Z)c(X)ε2. |
By (2.2) and the composition formula of pseudodifferential operators, σV−1−4 is obtained, which include the sum of terms N1−N10 and F1−F7:
F1=−|ξ|−61ε[c(Z)c(ξ)+c(ξ)c(X)](Γμ−2σν)ξμ;F2=−|ξ|−6(Γμ−2σν)ξμ1ε[c(Z)c(ξ)+c(ξ)c(X)];F3=2|ξ|−81ε[c(Z)c(ξ)+c(ξ)c(X)]ξμξαξβ∂xμgαβ;F4=−|ξ|−6f1ε2[c(Z)c(ξ)+c(ξ)c(X)]2;F5=−|ξ|−4[iεc(Z)γμσμ+iεγμσμc(X)+c(Z)c(X)ε2];F6=−|ξ|−41ε∂μξ[c(Z)c(ξ)+c(ξ)c(X)]ξαξβ∂xμgαβ;F7=2|ξ|−2ξμ∂μξ[|ξ|−41ε[c(Z)c(ξ)+c(ξ)c(X)]]. |
Next, we proceed to compute ∫|ξ|=1tr[∑7i=1Fi]σ(ξ).
(1):
In normal coordinates, using the facts: Γμαβ(x0)=σμ(x0)=0, ∂xμgαβ(x0)=0, the terms F1, F2, F3, and F6 disappear.
(2):
tr[c(Z)c(ξ)+c(ξ)c(X)]2|ξ|=1=tr[c(Z)c(ξ)c(Z)c(ξ)]+tr[c(Z)c(ξ)c(ξ)c(X)]+tr[c(ξ)c(X)c(Z)c(ξ)]+tr[c(ξ)c(X)c(ξ)c(X)]. |
By (2.6), we have
∫|ξ|=1=tr[c(Z)c(ξ)c(Z)c(ξ)]σ(ξ)=|Z|2π2tr[id], |
∫|ξ|=1=tr[c(ξ)c(X)c(ξ)c(X)]σ(ξ)=|X|2π2tr[id], |
∫|ξ|=1(tr[c(Z)c(ξ)c(ξ)c(X)]+tr[c(ξ)c(X)c(Z)c(ξ)])σ(ξ)=4g(X,Z)π2tr[id]. |
Then
∫|ξ|=1tr(F4)(x0)σ(ξ)=1ε2(|Z|2+|X|2+4g(X,Z))π2tr[id]. |
(3):
∫|ξ|=1tr(F5)(x0)σ(ξ)=2ε2g(X,Z)π2tr[id]. |
(4):
By (2.7), we have
∫|ξ|=1tr(F7)(x0)σ(ξ)=−1ε[divM(X)+divM(Z)]π2tr[id]. |
Therefore, we obtain the following result
Wres(D2+c(Z)Dε+Dc(X)ε+c(Z)c(X)ε2)−1=4∫M(1ε2|X|2π2+1ε2|Z|2π2+6ε2g(X,Z)π2−1εdivM(X)π2−1εdivM(Z)π2+112s)dVolM. |
Further, above observations yields the following theorem
Theorem 3.3. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we derive the following equality:
limε→0ε4Wres[π+(εD+c(X))−1∘π+(εD+c(Z))−1]=4∫M(|X|2+|Z|2+6g(X,Z))π2dVolM. |
In this subsection, we proceed to calculate the boundary term: ∫∂MΦ. From [10], some symbols associated with these operators can be expressed.
Lemma 3.4. The positive order symbol of D+c(Z)ε holds:
σ1(D+c(Z)ε)=σ1(D+c(X)ε)=σ1(D)=ic(ξ);σ0(D+c(Z)ε)=σ0(D)+c(Z)ε=−14∑i,s,tωs,t(ei)c(ei)c(es)c(et)+c(Z)ε;σ0(D+c(X)ε)=σ0(D)+c(X)ε=−14∑i,s,tωs,t(ei)c(ei)c(es)c(et)+c(X)ε. |
Then, utilizing the composition formula of pseudodifferential operators, we arrive at the following lemma.
Lemma 3.5. The negative order symbol of (D+c(Z)ε)−1 holds:
σ−1(D+c(Z)ε)−1=σ−1(D+c(X)ε)−1=ic(ξ)|ξ|2;σ−2(D+c(Z)ε)−1=c(ξ)σ0(D+c(Z)ε)c(ξ)|ξ|4+c(ξ)|ξ|6∑jc(dxj)[∂xj(c(ξ))|ξ|2−c(ξ)∂xj(|ξ|2)];σ−2(D+c(X)ε)−1=c(ξ)σ0(D+c(X)ε)c(ξ)|ξ|4+c(ξ)|ξ|6∑jc(dxj)[∂xj(c(ξ))|ξ|2−c(ξ)∂xj(|ξ|2)]. |
By computations, we obtain the semiclassical limit of the Kastler–Kalau–Walze-type theorem.
Theorem 3.6. Let M be a 4-dimensional oriented compact manifold with boundary ∂M, then
limε→0ε4~Wres[π+(εD+c(X))−1∘π+(εD+c(Z))−1]=4∫M(|X|2+|Z|2+6g(X,Z))π2dVolM. |
In particular, as the semiclassical limit is taken, the boundary term goes to zero.
Proof. For n=4, the summation condition r+l−k−j−|α|=−3,r≤−1,l≤−1, it leads to the following five cases:
case a) When r=−1,l=−1,k=j=0,|α|=1.
By (3.6), we obtain
Φ1=−∫|ξ′|=1∫+∞−∞∑|α|=1tr[∂αξ′π+ξnσ−1(D+c(X)ε)−1×∂αx′∂ξnσ−1(D+c(Z)ε)−1](x0)dξnσ(ξ′)dx′. |
For i<n, we obtain
∂xi(ic(ξ)|ξ|2)(x0)=i∂xi[c(ξ)](x0)|ξ|2−ic(ξ)∂xi(|ξ|2)(x0)|ξ|4=0, |
so Φ1=0.
case b) When r=−1,l=−1,k=|α|=0,j=1.
From (3.6), we obtain
Φ2=−12∫|ξ′|=1∫+∞−∞tr[∂xnπ+ξnσ−1(D+c(X)ε)−1×∂2ξnσ−1(D+c(Z)ε)−1](x0)dξnσ(ξ′)dx′. |
Applying Lemma 3.5 yields
∂2ξnσ−1(D+c(Z)ε)−1(x0)=i(−6ξnc(dxn)+2c(ξ′)|ξ|4+8ξ2nc(ξ)|ξ|6); |
∂xnσ−1(D+c(X)ε)−1(x0)=i∂xnc(ξ′)(x0)|ξ|2−ic(ξ)|ξ′|2h′(0)|ξ|4. |
Using the Clifford algebra relations and the trace property trab=trba, we obtain:
tr[c(ξ′)c(dxn)]=0;tr[c(dxn)2]=−4;tr[c(ξ′)2](x0)||ξ′|=1=−4;tr[∂xnc(ξ′)c(dxn)]=0;tr[∂xnc(ξ′)c(ξ′)](x0)||ξ′|=1=−2h′(0). |
Then, we obtain
Φ2=−∫|ξ′|=1∫+∞−∞ih′(0)(ξn−i)2(ξn−i)4(ξn+i)3dξnσ(ξ′)dx′=−ih′(0)Ω3∫Γ+1(ξn−i)2(ξn+i)3dξndx′=−ih′(0)Ω32πi[1(ξn+i)3](1)|ξn=idx′=−38πh′(0)Ω3dx′, |
where Ω3 is the canonical volume of S2.
case c) When r=−1,l=−1,j=|α|=0,k=1.
From (3.6), we obtain
Φ3=−12∫|ξ′|=1∫+∞−∞tr[∂ξnπ+ξnσ−1(D+c(X)ε)−1×∂ξn∂xnσ−1(D+c(Z)ε)−1](x0)dξnσ(ξ′)dx′. |
Applying Lemma 3.5 yields
∂ξn∂xnσ−1(D+c(Z)ε)−1(x0)||ξ′|=1=−ih′(0)[c(dxn)|ξ|4−4ξnc(ξ′)+ξnc(dxn)|ξ|6]−2ξni∂xnc(ξ′)(x0)|ξ|4; |
∂ξnπ+ξnσ−1(D+c(X)ε)−1(x0)||ξ′|=1=−c(ξ′)+ic(dxn)2(ξn−i)2. |
Similar to caseb), we obtain
tr{c(ξ′)+ic(dxn)2(ξn−i)2×ih′(0)[c(dxn)|ξ|4−4ξnc(ξ′)+ξnc(dxn)|ξ|6]}=2h′(0)i−3ξn(ξn−i)4(ξn+i)3 |
and
tr[c(ξ′)+ic(dxn)2(ξn−i)2×2ξni∂xnc(ξ′)(x0)|ξ|4]=−2ih′(0)ξn(ξn−i)4(ξn+i)2. |
Thus, we obtain
Φ3=−∫|ξ′|=1∫+∞−∞h′(0)(i−3ξn)(ξn−i)4(ξn+i)3dξnσ(ξ′)dx′−∫|ξ′|=1∫+∞−∞h′(0)iξn(ξn−i)4(ξn+i)2dξnσ(ξ′)dx′=−h′(0)Ω32πi3|ξn=idx′+h′(0)Ω32πi3|ξn=idx′=38πh′(0)Ω3dx′. |
case d) When r=−2,l=−1,k=j=|α|=0.
From (3.6), we obtain
Φ4=−i∫|ξ′|=1∫+∞−∞tr[π+ξnσ−2(D+c(X)ε)−1×∂ξnσ−1(D+c(Z)ε)−1](x0)dξnσ(ξ′)dx′. |
Denote
Q(x0)=−14∑s,t,iωs,t(ei)(x0)c(ei)c(es)c(et). |
Then applying Lemma 3.5 yields
π+ξnσ−2(D+c(X)ε)−1||ξ′|=1=π+ξn[c(ξ)Q(x0)c(ξ)(1+ξ2n)2]+π+ξn[c(ξ)c(X)c(ξ)ε(1+ξ2n)2]+π+ξn[c(ξ)c(dxn)∂xn[c(ξ′)](x0)(1+ξ2n)2−h′(0)c(ξ)c(dxn)c(ξ)(1+ξ2n)3]:=E1−E2+E3, |
where
E1=−14(ξn−i)2[(2+iξn)c(ξ′)Q20(x0)c(ξ′)+iξnc(dxn)Q20(x0)c(dxn)+(2+iξn)c(ξ′)c(dxn)∂xnc(ξ′)+ic(dxn)Q20(x0)c(ξ′)+ic(ξ′)Q20(x0)c(dxn)−i∂xnc(ξ′)], | (3.7) |
E2=h′(0)2[c(dxn)4i(ξn−i)+c(dxn)−ic(ξ′)8(ξn−i)2+3ξn−7i8(ξn−i)3[ic(ξ′)−c(dxn)]], | (3.8) |
and
E3=2+iξn4ε(ξn−i)2c(ξ′)c(X)c(ξ′)+i4ε(ξn−i)2c(ξ′)c(X)c(dxn)+i4ε(ξn−i)2c(dxn)c(X)c(ξ′)+iξn4ε(ξn−i)2c(dxn)c(X)c(dxn). |
Since
∂ξnσ−1(D+c(Z)ε)−1=i[c(dxn)1+ξ2n−2ξnc(ξ′)+2ξ2nc(dxn)(1+ξ2n)2]. | (3.9) |
Using the Clifford algebra relations and the trace property trab=trba, we obtain:
tr[c(ξ′)c(X)c(ξ′)c(dxn)]=−4Xn;tr[c(ξ′)c(X)c(ξ′)c(ξ′)]=4g(X,ξ′);tr[c(dxn)c(X)c(dxn)c(dxn)]=4Xn;tr[c(dxn)c(X)c(ξ′)c(ξ′)c(dxn)]=4g(X,ξ′). |
By (3.7) and (3.9), we have
tr[C1×∂ξnσ−1(D+c(Z)ε)−1]||ξ′|=1=3ih′(0)2(ξn−i)2(1+ξ2n)2+h′(0)ξ2n−iξn−22(ξn−i)(1+ξ2n)2, |
By (3.8) and (3.9), we have
tr[C2×∂ξnσ−1(D+c(Z)ε)−1]||ξ′|=1=2ih′(0)−iξ2n−ξn+4i4(ξn−i)3(ξn+i)2, |
and
tr[C3×∂ξnσ−1(D+c(Z)ε)−1]||ξ′|=1=2iε(ξn−i)3(ξn+i)Xn−4ξn+iξ2nε(ξn−i)4(ξn+i)2Xn+2ε(ξn−i)3(ξn+i)g(X,ξ′)+4iξn−ξ2nε(ξn−i)4(ξn+i)2g(X,ξ′). |
When i<n,∫|ξ′|=1ξi1ξi2⋯ξi2d+1σ(ξ′)=0, so g(X,ξ′) has no contribution for computing cased). Thus, we obtain
−i∫|ξ′|=1∫+∞−∞tr[(E1−E2)×∂ξnσ−1(D+c(X)ε)−1](x0)dξnσ(ξ′)dx′=Ω3∫Γ+3h′(0)(ξn−i)+ih′(0)2(ξn−i)3(ξn+i)2dξndx′=98πh′(0)Ω3dx′. |
−i∫|ξ′|=1∫+∞−∞tr[E3×∂ξnσ−1(D+c(X)ε)−1](x0)dξnσ(ξ′)dx′=−i∫|ξ′|=1∫+∞−∞2iε(ξn−i)3(ξn+i)Xndξnσ(ξ′)dx′−i∫|ξ′|=1∫+∞−∞−4ξn+iξ2nε(ξn−i)4(ξn+i)2Xndξnσ(ξ′)dx′=Ω3Xn1ε∫Γ+2(ξn−i)3(ξn+i)dξndx′+4ifΩ3Xn1ε∫Γ+ξn+iξ2n(ξn−i)4(ξn+i)2dξndx′=Ω3Xn2πi2!ε[2(ξn+i)](2)|ξn=idx′+4ifΩ3Xn2πi3!ε[ξn+iξ2n(ξn+i)2](3)|ξn=idx′=−1εXnπΩ3dx′. |
Thus
Φ4=(98h′(0)−1εXn)πΩ3dx′. |
case e) Whenr=−1,l=−2,k=j=|α|=0.
Since
From (3.6), we obtain
Φ5=−i∫|ξ′|=1∫+∞−∞tr[π+ξnσ−1(D+c(X)ε)−1×∂ξnσ−2(D+c(Z)ε)−1](x0)dξnσ(ξ′)dx′. |
Applying Lemma 3.5 yields
π+ξnσ−1(D+c(X)ε)−1||ξ′|=1=c(ξ′)+ic(dxn)2(ξn−i). | (3.10) |
Since
σ−2(D+c(Z)ε)−1(x0)=c(ξ)σ0(D+c(Z)ε)(x0)c(ξ)|ξ|4+c(ξ)|ξ|6c(dxn)[∂xn[c(ξ′)](x0)|ξ|2−c(ξ)h′(0)|ξ|2∂M]. |
Further
∂ξnσ−2(D+c(Z)ε)−1(x0)||ξ′|=1=∂ξn{c(ξ)(Q(x0)+c(Z)ε)c(ξ)|ξ|4+c(ξ)|ξ|6c(dxn)[∂xn[c(ξ′)](x0)|ξ|2−c(ξ)h′(0)]}=∂ξn{[c(ξ)Q(x0)]c(ξ)|ξ|4+c(ξ)|ξ|6c(dxn)[∂xn[c(ξ′)](x0)|ξ|2−c(ξ)h′(0)]}+∂ξn(c(ξ)c(Z)εc(ξ)|ξ|4). |
By computations, we have
∂ξn(c(ξ)c(Z)εc(ξ)|ξ|4)=−4ξnε(1+ξ2n)3c(ξ′)c(Z)c(ξ′)+(1ε(1+ξ2n)2−4ξ2nε(1+ξ2n)3)(c(ξ′)c(Z)c(dxn)+c(dxn)c(Z)c(ξ′))+(2ξnε(1+ξ2n)2−4ξ3nε(1+ξ2n)3)c(dxn)c(Z)c(dxn). | (3.11) |
We denote
q1−2=c(ξ)Q(x0)c(ξ)|ξ|4+c(ξ)|ξ|6c(dxn)[∂xn[c(ξ′)](x0)|ξ|2−c(ξ)h′(0)], |
then
∂ξn(q1−2)=1(1+ξ2n)3[(2ξn−2ξ3n)c(dxn)Q(x0)c(dxn)+(1−3ξ2n)c(dxn)Q(x0)c(ξ′)+(1−3ξ2n)c(ξ′)Q(x0)c(dxn)−4ξnc(ξ′)Q(x0)c(ξ′)+(3ξ2n−1)∂xnc(ξ′)−4ξnc(ξ′)c(dxn)∂xnc(ξ′)+2h′(0)c(ξ′)+2h′(0)ξnc(dxn)]+6ξnh′(0)c(ξ)c(dxn)c(ξ)(1+ξ2n)4. | (3.12) |
By (3.10) and (3.12), we have
tr[π+ξnσ−1(D+c(X)ε)−1×∂ξn(q1−2)](x0)=3h′(0)(iξ2n+ξn−2i)(ξ−i)3(ξ+i)3+12h′(0)iξn(ξ−i)3(ξ+i)4. |
Then
−iΩ3∫Γ+[3h′(0)(iξ2n+ξn−2i)(ξn−i)3(ξn+i)3+12h′(0)iξn(ξn−i)3(ξn+i)4]dξndx′=−98πh′(0)Ω3dx′. |
Then, using the Clifford algebra relations and the trace property trab=trba, we obtain:
tr[c(ξ′)c(Z)c(ξ′)c(dxn)]=−4Zn;tr[c(ξ′)c(Z)c(ξ′)c(ξ′)]=4g(Z,ξ′);tr[c(dxn)c(Z)c(dxn)c(dxn)]=4Zn;tr[c(dxn)c(Z)c(ξ′)c(ξ′)c(dxn)]=4g(Z,ξ′). |
By (3.10) and (3.11), we have
tr[π+ξnσ−1(D+c(X)ε)−1×∂ξn(c(ξ)c(Z)c(ξ)ε|ξ|4)](x0)=41−3ξ2n+3iξn−iξ3nε(ξn−i)4(ξn+i)3Zn+4i(1−3ξ2n)−3ξn+ξ3nε(ξn−i)4(ξn+i)3g(Z,ξ′). |
When i<n,∫|ξ′|=1ξi1ξi2⋯ξi2d+1σ(ξ′)=0 and g(Z,ξ′) has no contribution for computing casee), we have
−i∫|ξ′|=1∫+∞−∞tr[π+ξnσ−1(D+c(X)ε)−1×∂ξn(c(ξ)c(Z)c(ξ)ε|ξ|4)](x0)dξnσ(ξ′)dx′=−i∫|ξ′|=1∫+∞−∞41−3ξ2n+3iξn−iξ3nε(ξn−i)4(ξn+i)3Zndξnσ(ξ′)dx′=−4iΩ3Zn1ε∫Γ+1−3ξ2n+3iξn−iξ3n(ξn−i)4(ξn+i)3dξndx′=−4iΩ3Zn2πi3!ε[1−3ξ2n+3iξn−iξ3n(ξn+i)3](3)|ξn=idx′=1εZnπΩ3dx′. |
Therefore
Φ5=(−98h′(0)+1εZn)πΩ3dx′. |
Now Φ can be expressed as the sum of the case a)–case e),
Φ=5∑i=1Φi=1ε(Zn−Xn)πΩ3dx′. |
Finally, we obtain
limε→0ε2∫|ξ′|=1Φ=limε→0ε2∫|ξ′|=11ε(Zn−Xn)πΩ3dVolM=0. |
By Theorem 3.3, Theorem 3.6 holds.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This first author was supported by NSFC. No.12401059 and the Liaoning Province Science and Technology Plan Joint Project 2023-BSBA-118. The second author was supported by NSFC. No.11771070. The authors thank the referee for his (or her) careful reading and helpful comments.
The authors declare there are no conflicts of interest.
[1] |
V. Guillemin, A new proof of Weyl's formula on the asymptotic distribution of eigenvalues, Adv. Math., 55 (1985), 131–160. https://doi.org/10.1016/0001-8708(85)90018-0 doi: 10.1016/0001-8708(85)90018-0
![]() |
[2] |
M. Wodzicki, Local invariants of spectral asymmetry, Invent. Math., 75 (1995), 143–178. https://doi.org/10.1007/BF01403095 doi: 10.1007/BF01403095
![]() |
[3] | A. Connes, Quantized calculus and applications, in Proceedings of the XIth International Congress of Mathematical Physics, International Press, Cambridge, MA, (1995), 15–36. |
[4] |
A. Connes, The action functional in non-commutative geometry, Commun. Math. Phys., 117 (1998), 673–683. https://doi.org/10.1007/BF01218391 doi: 10.1007/BF01218391
![]() |
[5] |
D. Kastler, The dirac operator and gravitation, Commun. Math. Phys., 166 (1995), 633–643. https://doi.org/10.1007/BF02099890 doi: 10.1007/BF02099890
![]() |
[6] |
W. Kalau, M. Walze, Gravity, noncommutative geometry and the Wodzicki residue, J. Geom. Phys., 16 (1995), 327–344. https://doi.org/10.1016/0393-0440(94)00032-Y doi: 10.1016/0393-0440(94)00032-Y
![]() |
[7] |
T. Ackermann, A note on the Wodzicki residue, J. Geom. Phys., 20 (1996), 404–406. https://doi.org/10.1016/S0393-0440(95)00061-5 doi: 10.1016/S0393-0440(95)00061-5
![]() |
[8] |
Y. Wang, Differential forms and the Wodzicki residue for manifolds with boundary, J. Geom. Phys., 56 (2006), 731–753. https://doi.org/10.1016/j.geomphys.2005.04.015 doi: 10.1016/j.geomphys.2005.04.015
![]() |
[9] |
Y. Wang, Differtential forms the noncommutative residue for manifolds with boundary in the non-product case, Lett. Math. Phys., 77 (2006), 41–51. https://doi.org/10.1007/s11005-006-0078-2 doi: 10.1007/s11005-006-0078-2
![]() |
[10] |
Y. Wang, Gravity and the noncommutative residue for manifolds with boundary, Lett. Math. Phys., 80 (2007), 37–56. https://doi.org/10.1007/s11005-007-0147-1 doi: 10.1007/s11005-007-0147-1
![]() |
[11] |
Y. Wang, Lower-dimensional volumes and Kastler-Kalau-Walze type theorem for manifolds with boundary, Commun. Theor. Phys., 54 (2010), 38–42. https://doi.org/10.1088/0253-6102/54/1/08 doi: 10.1088/0253-6102/54/1/08
![]() |
[12] |
J. Wang, Y. Wang, The Kastler-Kalau-Walze type theorem for six-dimensional manifolds with boundary, J. Math. Phys., 56 (2015), 052501. https://doi.org/10.1063/1.4919889 doi: 10.1063/1.4919889
![]() |
[13] |
H. Li, T. Wu, Y. Wang, Statistical de Rham Hodge operators and general Kastler-Kalau-Walze type theorems for manifolds with boundary, J. Pseudo-Differ. Oper. Appl., 14 (2023). https://doi.org/10.1007/s11868-023-00563-1 doi: 10.1007/s11868-023-00563-1
![]() |
[14] |
S. Liu, T. Wu, Y. Wang, The Kastler-Kalau-Walze type theorems for the perturbation of the de Rham Hodge operator, J. Nonlinear Math. Phys., 29 (2022), 678–730. https://doi.org/10.1007/s44198-022-00056-7 doi: 10.1007/s44198-022-00056-7
![]() |
[15] |
Y. Wang, A Kastler-Kalau-Walze type theorem and the spectral action for perturbations of Dirac operators on manifolds with boundary, Abstr. Appl. Anal., 2014 (2014). https://doi.org/10.1155/2014/619120 doi: 10.1155/2014/619120
![]() |
[16] |
J. Wang, Y. Wang, T. Wu, Dirac operators with torsion, spectral Einstein functionals and the noncommutative residue, J. Math. Phys., 64 (2023). https://doi.org/10.1063/5.0160917 doi: 10.1063/5.0160917
![]() |
[17] |
J. Wang, Y. Wang, C. Yang, Dirac operators with torsion and the noncommutative residue for manifolds with boundary, J. Geom. Phys., 81 (2014), 92–111. https://doi.org/10.1016/j.geomphys.2014.03.007 doi: 10.1016/j.geomphys.2014.03.007
![]() |
[18] |
T. Wu, J. Wang, Y. Wang, Dirac-Witten operators and the Kastler-Kalau-Walze type theorem for manifolds with boundary, J. Nonlinear Math. Phys., 29 (2022), 1–40. https://doi.org/10.1007/s44198-021-00009-6 doi: 10.1007/s44198-021-00009-6
![]() |
[19] |
C. B¨ar, F. Pf¨affle, Asymptotic heat kernel expansion in the semiclassical limit, Commun. Math. Phys., 294 (2010), 731–744. https://doi.org/10.1007/s00220-009-0973-3 doi: 10.1007/s00220-009-0973-3
![]() |
[20] |
M. Ludewig, A semiclassical heat kernel proof of the Poincarˊe-Hopf theorem, Manuscr. Math., 148 (2015), 29–58. https://doi.org/10.1007/s00229-015-0741-y doi: 10.1007/s00229-015-0741-y
![]() |
[21] |
N. Savale, Hyperbolicity, irrationality exponents and the eta invariant, Commun. Partial Differ. Equations, 47 (2022), 989–1023. https://doi.org/10.1080/03605302.2021.2018711 doi: 10.1080/03605302.2021.2018711
![]() |
[22] |
N. Savale, A Gutzwiller type trace formula for the magnetic Dirac operator, Geom. Funct. Anal., 28 (2018), 1420–1486. https://doi.org/10.1007/s00039-018-0462-y doi: 10.1007/s00039-018-0462-y
![]() |
[23] | P. Paradan, M. Vergne, Equivariant index of twisted Dirac operators and semi-classical limits, in Lie Groups, Geometry, and Representation Theory: A Tribute to the Life and Work of Bertram Kostant, Progress in Mathematics, 326 (2018), 419–458. https://doi.org/10.1007/978-3-030-02191-7_15 |
[24] |
T. Wu, Y. Wang, The pseudo-differential perturbations of the Dirac operator and the Kastler-Kalau-Walze type theorems, J. Pseudo-Differ. Oper. Appl., 15 (2024). https://doi.org/10.1007/s11868-024-00648-5 doi: 10.1007/s11868-024-00648-5
![]() |
[25] | S. Rempel, B. Schulze, Index Theory of Elliptic Boundary Problems, Akademie-Verlag, Berlin, 1982. |
[26] |
B. Fedosov, F. Golse, E. Leichtnam, E. Schrohe, The noncommutative residue for manifolds with boundary, J. Funct. Anal., 142 (1996), 1–31. https://doi.org/10.1006/jfan.1996.0142 doi: 10.1006/jfan.1996.0142
![]() |
[27] |
R. Ponge, Noncommutative geometry and lower dimensional volumes in Riemannian geometry, Lett. Math. Phys., 83 (2008), 19–32. https://doi.org/10.1007/s11005-007-0199-2 doi: 10.1007/s11005-007-0199-2
![]() |