Research article

The semiclassical limit of the Kastler–Kalau–Walze-type theorem

  • Received: 13 November 2024 Revised: 17 March 2025 Accepted: 17 April 2025 Published: 24 April 2025
  • In physics, the semiclassical limit principle asserts that as Planck's constant 0, quantum states reduce to classical configurations. We extend this framework to the noncommutative residue by applying the semiclassical limit to the spectral geometry. By introducing the coefficient ε, we establish a proof of the Kastler–Kalau–Walze-type theorem for the perturbations of the Dirac operator on four-dimensional compact manifolds with (without) boundary. As ε0, we demonstrate the emergence of a semiclassical limit, thereby providing the classical formulation of the theorem. This result elucidates the interplay between quantum corrections and classical geometric invariants in the presence of boundary conditions.

    Citation: Tong Wu, Yong Wang. The semiclassical limit of the Kastler–Kalau–Walze-type theorem[J]. Electronic Research Archive, 2025, 33(4): 2452-2474. doi: 10.3934/era.2025109

    Related Papers:

    [1] Mustafa Aydin, Nazim I. Mahmudov, Hüseyin Aktuğlu, Erdem Baytunç, Mehmet S. Atamert . On a study of the representation of solutions of a $ \Psi $-Caputo fractional differential equations with a single delay. Electronic Research Archive, 2022, 30(3): 1016-1034. doi: 10.3934/era.2022053
    [2] Humberto Rafeiro, Joel E. Restrepo . Revisiting Taibleson's theorem. Electronic Research Archive, 2022, 30(2): 565-573. doi: 10.3934/era.2022029
    [3] Maurıicio F. S. Lima, Jaume Llibre . Hopf bifurcation for a class of predator-prey system with small immigration. Electronic Research Archive, 2024, 32(7): 4604-4613. doi: 10.3934/era.2024209
    [4] Junsheng Gong, Jiancheng Liu . A Liouville-type theorem of a weighted semilinear parabolic equation on weighted manifolds with boundary. Electronic Research Archive, 2025, 33(4): 2312-2324. doi: 10.3934/era.2025102
    [5] Mufit San, Seyma Ramazan . A study for a higher order Riemann-Liouville fractional differential equation with weakly singularity. Electronic Research Archive, 2024, 32(5): 3092-3112. doi: 10.3934/era.2024141
    [6] Xiaoming An, Shuangjie Peng . Multi-peak semiclassical bound states for Fractional Schrödinger Equations with fast decaying potentials. Electronic Research Archive, 2022, 30(2): 585-614. doi: 10.3934/era.2022031
    [7] Min Li . Long-wavelength limit for the Green–Naghdi equations. Electronic Research Archive, 2022, 30(7): 2700-2718. doi: 10.3934/era.2022138
    [8] Fei-fan Li, Ji-jun Ao . A dissipative third-order boundary value problem with distributional potentials and eigenparameter-dependent boundary conditions. Electronic Research Archive, 2025, 33(5): 3378-3393. doi: 10.3934/era.2025149
    [9] Meng Wang, Naiwei Liu . Qualitative analysis and traveling wave solutions of a predator-prey model with time delay and stage structure. Electronic Research Archive, 2024, 32(4): 2665-2698. doi: 10.3934/era.2024121
    [10] Yue Ma, Zhongfei Li . Robust portfolio choice with limited attention. Electronic Research Archive, 2023, 31(7): 3666-3687. doi: 10.3934/era.2023186
  • In physics, the semiclassical limit principle asserts that as Planck's constant 0, quantum states reduce to classical configurations. We extend this framework to the noncommutative residue by applying the semiclassical limit to the spectral geometry. By introducing the coefficient ε, we establish a proof of the Kastler–Kalau–Walze-type theorem for the perturbations of the Dirac operator on four-dimensional compact manifolds with (without) boundary. As ε0, we demonstrate the emergence of a semiclassical limit, thereby providing the classical formulation of the theorem. This result elucidates the interplay between quantum corrections and classical geometric invariants in the presence of boundary conditions.



    The noncommutative residue, also known as great important study subject in noncommutative geometry, has been extensively studied in [1,2]. In [3], Connes employed the noncommutative residue to derive a four-dimensional conformal Polyakov action analogue and demonstrated that the noncommutative residue on a compact manifold M coincides with the Dixmier's trace for pseudodifferential operators of orderdimM in [4]. Moreover, Connes claimed the noncommutative residue of the square of the inverse of the Dirac operator was proportional to the Einstein–Hilbert action. Kastler, Kalau, and Walze proved this conclusion respectively in [5,6], which is called the Kastler–Kalau–Walze theorem. Afterwards, Ackermann proved that the noncommutative residue of the square of the inverse of the Dirac operator Wres(D2) in turn is essentially the second coefficient of the heat kernel expansion of D2 in [7], which enriches the results on noncommutative residues on manifolds without boundary.

    Furthermore, Wang uses ~Wres[(π+D1)2] instead of Wres(D2) to generalize the results from manifolds without boundary to manifolds with boundary in [8,9], and proved the Kastler–Kalau–Walze-type theorem for the Dirac operator and the signature operator on lower-dimensional manifolds with boundary [10]. Here ~Wres denotes the noncommutative residue for manifolds with boundary, and π+D1 is an element in Boutet de Monvel's algebra (see (3.1) in Section 3.1). In [10,11], Wang computed ~Wres[π+D1π+D1] and ~Wres[π+D2π+D2] for symmetric operators, where the boundary term vanished in these cases. However, when computing ~Wres[π+D1π+D3], a nonvanishing boundary term emerged [12], leading Wang to provide a theoretical interpretation of gravitational action on the boundary. In other words, this work effectively established a framework for investigating the Kastler–Kalau–Walze-type theorem on manifolds with boundary.

    Subsequent studies [13,14,15,16,17,18] explored various perturbations of the Dirac operator by zero-order differential operators. In [15], Wang extended the Kastler–Kalau–Walze-type theorem for perturbations of Dirac operators on compact manifolds (with or without boundary) and proposed two distinct operator-theoretic interpretations of boundary gravitational action. Further developments by Wang, Wang, and Yang [17] ocused on 4-dimensional compact manifolds with boundary, where they derived two operator-theoretic explanations for gravitational action and proved a Kastler–Kalau–Walze-type theorem for nonminimal operators on complex manifolds. Additionally, in [16], Wang, Wang, and Wu introduced novel spectral functionals, which extended traditional spectral functionals to noncommutative realm with torsion and connected them to the noncommutative residue for manifolds with boundary.

    The semiclassical limit not only connects quantum and classical physics theoretically but also provides important research tools and application value in the field of mathematics. In physics, the semiclassical limit refers to the transitional regime between quantum mechanics and classical mechanics. When the characteristic action ˉS of a system is much larger than Planck's constant , quantum effects gradually diminish, and the system's behavior approaches that of classical mechanics. In mathematics, this is often achieved by taking the limit where Planck's constant 0.

    There are many studies on the semiclassical limit of the spectral geometry. B¨ar and Pf¨affle studied semiclassical approximations for the heat kernel of a general self-adjoint Laplace-type operator within a geometric framework in [19]. Later, Ludewig [20] examined the semiclassical asymptotic expansion of the heat kernel arising from Witten's perturbation of the de Rham complex by a given function. By employing the stationary phase method, Ludewig derived a time-dependent integral formula, ultimately leading to a proof of the Poincarˊe-Hopf theorem. Meanwhile, Savale [21] analyzed the remainder term in the semiclassical limit formula (introduced in [22]) for the eta invariant on a metric contact manifold. Specifically, Savale demonstrated that this remainder term is governed by the volumes of recurrence sets of the Reeb flow. Obviously, the noncommutative residues as a part of the spectral geometry; thus, in order to extend the study of the semiclassical limit of the spectral geometry, motivated by [19,20,21] and Theorem 3.12 in [23], we introduce the semiclassical limit into the noncommutative residue. Based on the research of [24], we prove the semiclassical limit of the Kastler–Kalau–Walze-type theorem for the perturbations of the Dirac operator on 4-dimensional compact oriented spin manifolds with (without) boundary by taking the limit ε0. For a fixed ε>0, we may consider the Kastler–Kalau–Walze-type theorem as a theorem in the quantum state. And when ε0, we give the classical state of the Kastler–Kalau–Walze-type theorem.

    This paper is organized as follows: By using Wres(P):=SMtr(σPn)(x,ξ), Section 2 gives semiclassical limits of the noncommutative residues of three cases for the perturbations of the Dirac operator on 4-dimensional manifolds without boundary. Moreover, we give the semiclassical limit of the Kastler–Kalau–Walze-type theorem about the perturbation of the Dirac operator on 4-dimensional manifolds with boundary in Section 3.

    In this section, we study the semiclassical limits of the noncommutative residues on 4-dimensional manifolds without boundary in three different cases.

    Firstly, we recall the main facts regarding the Dirac operator D. Let M be a 4-dimensional compact oriented spin manifold with Riemannian metric g, and let denote the Levi–Civita connection associated with g. Then the Dirac operator D can be expressed locally in terms of an orthonormal frame ei (with corresponding dual coframe θk) of the frame bundle of M [5]:

    D=iγi˜i=iγi(ei+σi);σi(x)=14γij,k(x)γiγk=18γij,k(x)[γjγkγkγj],γij,k=γik,j=12[cij,k+cki,j+ckj,i],i,j,k=1,,4;ckij=θk([ei.ej]),

    where the γij,k represents the Levi–Civita connection with spin connection ˜, the γi denote constant self-adjoint Dirac matrices, which satisfy γiγj+γjγi=2δij.

    Using local coordinates xμ that induce the alternative vierbein μ=Siμ(x)ei (with dual vierbein dxμ), γiei=γμμ is obtained, where the γμ are now x-dependent Dirac matrices, which satisfy γμγν+γνγμ=2gμν (we use Latin sub-(super-) scripts for the basic ei and Greek sub-(super-) scripts for the basis μ, the type of sub-(super-) scripts specifying the type of Dirac matrices). Then the Dirac operator in the Greek basis is expressed by

    D=iγμ˜μ=iγμ(eμ+σμ);σμ(x)=Siμ(x)σi.

    Consider a pseudodifferential operator P that acts on sections of a vector bundle over a compact Riemannian manifold M. In [5], the noncommutative residues of P is defined by

    Wres(P):=Mξ=1tr[σn(P)](x,ξ)σ(ξ)dx, (2.1)

    where ξSn1and tr denotes shorthand for trace.

    Next, by (2.1), to obtain the semiclassical limit of the noncommutative residues on manifolds without boundary, we consider the following three different cases. From the point of view of the following three different cases, we give the classical state of the noncommutative residue on manifolds without boundary.

    (1)limε0ε3Wres(εD2+λ1D+λ2)1;(2)limε0ε3Wres(εD2+λ1c(X)D+λ2)1;(3)limε0ε3Wres(εD2+λ1S(TM)X+λ2)1,

    where λ1,λ2 are C(M) functions.

    In this subsection, we want to compute limε0ε3Wres(εD2+λ1D+λ2)1, by ε3Wres(εD2+λ1D+λ2)1=ε2Wres(D2+λ1εD+λ2ε)1, we need to compute Wres(D2+λ1εD+λ2ε)1.

    Set A=D2+λ1εD+λ2ε, we utilize the composition of pseudodifferential operators to express the symbol of the operator. Simplify the abbreviation of the principal symbol: ξ=jξjdxj, αξ=α/ξα,xα=α/xα, then the following identity holds:

    σPQ(x,ξ)=α(i)αα!αξσP(x,ξ)xασQ(x,ξ). (2.2)

    Firstly, we compute the total symbol σ(x,ξ) of A, which is given by the sum of terms Ak of order k(k=0,1,2):

    A=A2+A1+A0.

    Then, we have

    σA2(x,ξ)=|ξ|2;σA1(x,ξ)=i(Γμ2σμ)ξμ+iλ1εc(ξ);σA0(x,ξ)=(xσμ+σμσμΓμσμ)+14s+iλ1εγμσμ+λ2ε. (2.3)

    Next, we compute A1 from order -4 to order -2 using the above results; that is, σA1k,k=2,3,4. The full symbol σ of A is expressed in terms of decreasing order:

    σA1=σA12+σA13+σA14+termsoforder5.

    Using (2.2), the negative order of the symbol of A1 yields:

    σA12=(σA2)1;σA13=σA12[σA1σA12iμξσA2xμσA12];σA14=σA12[σA1σA13+σA0σA12iμξσA1xμσA12iμξσA2xμσA13].

    Moreover, by (2.3), the following result is obtained.

    σA12=|ξ|2;σA13=|ξ|2[(i(Γμ2σμ)ξμ+iλ1εc(ξ))|ξ|2iμξ(|ξ|2)xμ(|ξ|2)];σA14=|ξ|6ξμξν(Γμ2σμ)(Γν2σν)2|ξ|8ξμξαξβ(Γν2σν)xμgαβ+|ξ|4(xμσμ+σμσμΓμσμ)14|ξ|4s2i|ξ|2ξμxμσA13+|ξ|6ξαξβ(Γμ2σμ)xμgαβ|ξ|6ξαξβgμνxμνgαβ+2|ξ|8ξαξβξγξδgμνxμgαβxνgγδ|ξ|6λ1εc(ξ)(Γμ2σμ)ξμ|ξ|6(Γμ2σμ)ξμλ1εc(ξ)|ξ|41ε(iλ1γμσμ+λ2)+2|ξ|8λ1εc(ξ)ξμξαξβxμgαβ+|ξ|4λ21ε2|ξ|4μξ[λ1εc(ξ)]ξαξβxμgαβ.

    Regrouping the terms and inserting

    xμσA13=2i|ξ|6ξνξαξβ(Γν2σν)xμgαβi|ξ|4ξνxμ(Γν2σν)+6i|ξ|8ξνξαξβξγξδxμgαβxνgγδ2i|ξ|6ξαξγξδxμgναxνgγδ2i|ξ|6ξνξγξδxμνgγδixμ[|ξ|4λ1εc(ξ)].

    We obtain for σA14 the sum of terms:

    N1=|ξ|6ξμξνΓμΓν+|ξ|4[gμν|ξ|4ξμν][σμσνΓνσν];N2=|ξ|4xμσμ14|ξ|4s;N3=6|ξ|8ξμξνξαξβ(Γν2σν)xμgαβ;N4=2|ξ|6ξμξνxμ(Γν2σν);N5=12|ξ|10ξμξνξαξβξγξδxμgαβxνgγδ;N6=4|ξ|8ξμξαξγξδxμgναxνgγδ;N7=|ξ|6ξαξβ(Γμ2σμ)xμgαβ;N8=4|ξ|8ξμξνξγξδxμνgγδ;N9=|ξ|6ξαξβgμνxμνgαβ;N10=2|ξ|8ξαξβξγξδgμνxμgαβxνgγδ,

    and

    M1=|ξ|6λ1εc(ξ)(Γμ2σν)ξμ;M2=|ξ|6(Γμ2σν)ξμλ1εc(ξ);M3=2|ξ|8λ1εc(ξ)ξμξαξβxμgαβ;M4=|ξ|4λ21ε2;M5=|ξ|41ε(λ1iγμσμ+λ2);M6=|ξ|4λ1εμξ[c(ξ)]ξαξβxμgαβ;M7=2|ξ|2ξμμx[|ξ|4λ1εc(ξ)].

    Let s denote the scalar curvature, from [5], we obtain

    |ξ|=1tr[10i=1Ni]σ(ξ)=s12tr[id]. (2.4)

    The next step involves computing |ξ|=1tr[7i=1Mi]σ(ξ).

    (1):

    In normal coordinates, using the facts: Γμαβ(x0)=σμ(x0)=0, xμgαβ(x0)=0, the results of the terms M1, M2, M3, and M6 disappear.

    (2):

    |ξ|=1tr(M4)(x0)σ(ξ)=λ21ε2VolS3tr[id]=2λ21ε2π2tr[id],

    and

    |ξ|=1tr(M5)(x0)σ(ξ)=λ2εVolS3tr[id]=2λ2επ2tr[id].

    (3):

    By xμ[|ξ|4c(ξ)]=2|ξ|6xμ(|ξ|2)c(ξ)+|ξ|4xμ[c(ξ)], xμ(|ξ|2)(x0)=0 and xμ[c(ξ)]=0, we have

    |ξ|=1tr(M7)(x0)σ(ξ)=0.

    Therefore, when n=4, trS(TM)[id]=4 and by (2.1), this implies

    Wres(D2+λ1εD+λ2ε)1=4M(2λ21ε2π22λ2επ2+112s)dVolM.

    Further, we obtain the semiclassical limit of the above result. That is the following theorem.

    Theorem 2.1. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we derive the semiclassical limit of the noncommutative residue about εD2+λ1D+λ2

    limε0ε3Wres(εD2+λ1D+λ2)1=8Mλ21π2dVolM.

    Corollary 2.2. If M is a 4-dimensional compact oriented spin manifolds without boundary, then when λ1=ε, we obtain the following equality:

    limε0ε2Wres(εD2+εD+λ2)1=8M(1λ2)π2dVolM.

    Let c(X) denote a Clifford action on M, where X=nα=1aαeα=nj=1Xjj is a vector field. Then we can set B=D2+λ1εc(X)D+λ2ε, the next step is to compute the total symbol σ(x,ξ) of B; the sum of terms Bk of order k(k=0,1,2) is given by:

    B=B2+B1+B0.

    By (2.2), we have

    σB2(x,ξ)=|ξ|2;σB1(x,ξ)=i(Γμ2σμ)ξμ+iλ1εc(X)c(ξ);σB0(x,ξ)=(xσμ+σμσμΓμσμ)+14s+iλ1εc(X)γμσμ+λ2ε. (2.5)

    Next, we compute B1 from order -4 to order -2 using the above results; that is, we compute σB1k,k=2,3,4. the full symbol σ of B is expressed into terms of decreasing order:

    σB1=σB12+σB13+σB14+termsoforder5.

    Using (2.2), the negative order of the symbol of B1 yields:

    σB12=(σB2)1;σB13=σB12[σB1σB12iμξσB2xμσB12];σB14=σB12[σB1σB13+σB0σB12iμξσB1xμσB12iμξσB2xμσB13].

    Then by (2.5), it follows that

    σB12=|ξ|2;σB13=|ξ|2[(i(Γμ2σμ)ξμ+iλ1εc(X)c(ξ))|ξ|2iμξ(|ξ|2)xμ(|ξ|2)];σB14=|ξ|6ξμξν(Γμ2σμ)(Γν2σν)2|ξ|8ξμξαξβ(Γν2σν)xμgαβ+|ξ|4(xμσμ+σμσμΓμσμ)14|ξ|4s2i|ξ|2ξμxμσ3+|ξ|6ξαξβ(Γμ2σμ)xμgαβ|ξ|6ξαξβgμνxμνgαβ+2|ξ|8ξαξβξγξδgμνxμgαβxνgγδ|ξ|6λ1εc(X)c(ξ)(Γμ2σμ)ξμ|ξ|6(Γμ2σμ)ξμλ1εc(X)c(ξ)|ξ|41ε(iλ1c(X)γμσμ+λ2)+2|ξ|8λ1εc(X)c(ξ)ξμξαξβxμgαβ|ξ|6λ21ε2[c(X)c(ξ)]2|ξ|4μξ[λ1εc(X)c(ξ)]ξαξβxμgαβ.

    Regrouping the terms and inserting

    xμσB13=2i|ξ|6ξνξαξβ(Γν2σν)xμgαβi|ξ|4ξνxμ(Γν2σν)+6i|ξ|8ξνξαξβξγξδxμgαβxνgγδ2i|ξ|6ξαξγξδxμgναxνgγδ2i|ξ|6ξνξγξδxμνgγδixμ[|ξ|4λ1εc(X)c(ξ)].

    Then σB14 includes the sum of terms: N1N10 and R1R7:

    R1=|ξ|6λ1εc(X)c(ξ)(Γμ2σν)ξμ;R2=|ξ|6(Γμ2σν)ξμλ1εc(X)c(ξ);R3=2|ξ|8λ1εc(X)c(ξ)ξμξαξβxμgαβ;R4=|ξ|6λ21ε2c(X)c(ξ)c(X)c(ξ);R5=|ξ|41ε(λ1ic(X)γμσμ+λ2);R6=|ξ|4λ1εμξ[c(X)c(ξ)]ξαξβxμgαβ;R7=2|ξ|2ξμμx[|ξ|4λ1εc(X)c(ξ)].

    Then, similarly, we compute |ξ|=1tr[7i=1Ri]σ(ξ).

    (1):

    In normal coordinates, using the facts, we have: Γμαβ(x0)=σμ(x0)=0, xμgαβ(x0)=0, the results of the terms R1, R2, R3, and R6 disappear.

    (2):

    tr[c(X)c(ξ)c(X)c(ξ)]|ξ|=1=2ξ(X)tr[c(X)c(ξ)]|ξ|=1|X|2tr[id],

    and

    2ξ(X)tr[c(X)c(ξ)]|ξ|=1=4ξ(X)2tr[id]+2ξ(X)tr[c(ξ)c(X)]|ξ|=1. (2.6)

    Then by |ξ|=1ξ(X)2σ(ξ)=12|X|2π2tr[id], we have

    |ξ|=1tr(R4)(x0)σ(ξ)=λ21ε2|X|2π2tr[id].

    (3):

    |ξ|=1tr(R5)(x0)σ(ξ)=2λ2επ2tr[id].

    (4):

    By μx[c(X)c(ξ)](x0)=c(X)μx[c(ξ)]+μx[c(X)]c(ξ)=nj=1μx(Xj)c(ej)c(ξ)(x0), we have

    tr(R7)(x0)=2ξμξkλ1εn1kμx(Xk)tr[id]. (2.7)

    Then

    |ξ|=1tr(R7)(x0)σ(ξ)=λ12εkxk(Xk)VolS3tr[id]=λ12εdivM(X)VolS3tr[id]=λ1εdivM(X)π2tr[id],

    where divM denotes divergence of M.

    Thus by (2.1), we obtain the following result:

    Wres(D2+λ1εc(X)D+λ2ε)1=4M(λ21ε2|X|2π22λ2επ2+λ1εdivM(X)π2+112s)dVolM.

    Further, we obtain the following theorem.

    Theorem 2.3. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we derive the semiclassical limit of the noncommutative residue about εD2+λ1c(X)D+λ2

    limε0ε3Wres(εD2+λ1c(X)D+λ2)1=4Mλ21|X|2π2dVolM.

    Corollary 2.4. If M is a 4-dimensional compact oriented spin manifolds without boundary, then when λ1=ε, the following equality holds:

    limε0ε2Wres(εD2+εc(X)D+λ2)1=4M(|X|22λ2)π2dVolM.

    Define S(TM)X:=X+14ijLXei,ejc(ei)c(ej), which is a spin connection. And let gij=g(dxi,dxj) and Lij=kΓkijk, we denote that

    σi=14s,tωs,t(ei)c(ei)c(es)c(et);ξj=gijξi;Γk=gijΓkij;σj=gijσi.

    Set C=D2+λ1εS(TM)X+λ2ε, E(X)=14ijLXei,ejc(ei)c(ej). The next step is to compute the total symbol σ(x,ξ) of C1 from order -4 to order -2, with C the following sum of terms Ck of order k:

    C=C2+C1+C0.

    Then, we have

    σC2(x,ξ)=|ξ|2;σC1(x,ξ)=i(Γμ2σμ)ξμ+iλ1εnj=1Xjξj;σC0(x,ξ)=(xσμ+σμσμΓμσμ)+14s+iλ1εE(X)+λ2ε.

    Further, by (2.2), we obtain

    σC12=|ξ|2;σC13=|ξ|2[(i(Γμ2σμ)ξμ+iλ1εnj=1Xjξj)|ξ|2iμξ(|ξ|2)xμ(|ξ|2)];σC14=|ξ|6ξμξν(Γμ2σμ)(Γν2σν)2|ξ|8ξμξαξβ(Γν2σν)xμgαβ+|ξ|4(xμσμ+σμσμΓμσμ)14|ξ|4s2i|ξ|2ξμxμσ3+|ξ|6ξαξβ(Γμ2σμ)xμgαβ|ξ|6ξαξβgμνxμνgαβ+2|ξ|8ξαξβξγξδgμνxμgαβxνgγδ|ξ|6λ1εnj=1Xjξj(Γμ2σμ)ξμ|ξ|6(Γμ2σμ)ξμλ1εnj=1Xjξj|ξ|41ε(iλ1E(X)+λ2)+2|ξ|8λ1εnj=1Xjξjξμξαξβxμgαβ|ξ|6λ21ε2nj=1Xjξjnk=1Xkξk|ξ|4μξ[λ1εnj=1Xjξj]ξαξβxμgαβ.

    Regrouping the terms and inserting

    xμσC13=2i|ξ|6ξνξαξβ(Γν2σν)xμgαβi|ξ|4ξνxμ(Γν2σν)+6i|ξ|8ξνξαξβξγξδxμgαβxνgγδ2i|ξ|6ξαξγξδxμgναxνgγδ2i|ξ|6ξνξγξδxμνgγδixμ[|ξ|4λ1εnj=1Xjξj].

    We obtain for σC14 the sum of terms: N1N10 and T1T7:

    T1=|ξ|6λ1εnj=1Xjξj(Γμ2σν)ξμ;T2=|ξ|6(Γμ2σν)ξμλ1εnj=1Xjξj;T3=2|ξ|8λ1εnj=1Xjξjξμξαξβxμgαβ;T4=|ξ|6λ21ε2nj=1Xjξjnk=1Xkξk;T5=|ξ|41ε(λ1c(X)E(X)+λ2);T6=|ξ|4λ1εμξ[nj=1Xjξj]ξαξβxμgαβ;T7=2|ξ|2ξμμξ[|ξ|4λ1εnj=1Xjξj].

    Then, we proceed to compute |ξ|=1tr[7i=1Ti]σ(ξ).

    (1):

    In normal coordinates, using the facts: Γμαβ(x0)=σμ(x0)=0, xμgαβ(x0)=0, the results of the terms T1, T2, T3, and T6 disappear.

    (2):

    By |ξ|=1ξjξkσ(ξ)=14VolS3δjk=12π2δjk, we have

    |ξ|=1tr(T4)(x0)σ(ξ)=λ212ε2|X|2π2tr[id].

    (3):

    |ξ|=1tr(T5)(x0)σ(ξ)=2λ2επ2tr[id].

    (4):

    Similar to (2.7), we have

    |ξ|=1tr(T7)(x0)σ(ξ)=λ1εdivM(X)π2tr[id].

    Thus, we obtain the following result:

    Wres(D2+λ1εS(TM)X+λ2ε)1=4M(λ212ε2|X|2π22λ2επ2λ1εdivM(X)π2+112s)dVolM.

    Building on these preliminaries, we obtain:

    Theorem 2.5. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we obtain the semiclassical limit of the noncommutative residue about εD2+λ1S(TM)X+λ2

    limε0ε3Wres(εD2+λ1S(TM)X+λ2)1=4Mλ212|X|2π2dVolM.

    Corollary 2.6. If M is a 4-dimensional compact oriented spin manifolds without boundary, then when λ1=ε, we obtain the following equality:

    limε0ε2Wres(εD2+εS(TM)X+λ2)1=4M(12|X|22λ2)π2dVolM.

    In this section, we study the semiclassical limit of the Kastler–Kalau–Walze-type theorem for the perturbation of the Dirac operator on 4-dimensional manifolds with boundary, that is, to compute limε0ε4~Wres[π+(εD+c(X))1π+(εD+c(Z))1].

    In this subsection, we recall some fundamental concepts and key formulas about Boutet de Monvel's calculus, along with the definition of the noncommutative residue for manifolds with boundary. These preliminaries will be essential for our subsequent analysis. For a more comprehensive treatment of these topics, we refer readers to Section 2 in [10].

    Denote by π+ (resp. π) the projection on H+ (resp. H). Let ˜H={rational functions having no poles on the real axis}. Then for h˜H,

    π+h(ξ0)=12πilimu0Γ+h(ξ)ξ0+iuξdξ, (3.1)

    where Γ+ is a Jordan closed curve included in Im(ξ)>0 surrounding all the singularities of h in the upper half-plane and ξ0R. Similarly, we define π on ˜H,

    πh=12πΓ+h(ξ)dξ. (3.2)

    So π(H)=0.

    For hHL1(R),

    πh=12πRh(v)dv,

    and for hH+L1(R), πh=0.

    Let G, T be, respectively, the singular Green operator and the trace operator of order m and type d. Let K be a potential operator and S be a classical pseudodifferential operator of order m along the boundary. An operator of order mZ and type d is a matrix

    ˜A=(π+P+GKTS): C(M,E1)  C(M,F1) C(M,E2)  C(M,F2),

    where M is a manifold with boundary M and E1,E2 (resp. F1,F2) are vector bundles over M (resp. M). Here, P:C0(Ω,¯E1)C(Ω,¯E2) is a classical pseudodifferential operator of order m on Ω, where Ω is a collar neighborhood of M and ¯Ei|M=Ei(i=1,2). P has an extension: E(Ω,¯E1)D(Ω,¯E2), where E(Ω,¯E1)(D(Ω,¯E2)) is the dual space of C(Ω,¯E1)(C0(Ω,¯E2)). Let e+:C(M,E1)E(Ω,¯E1) denotes extension by zero from M to Ω, and r+:D(Ω,¯E2)D(Ω,E2) denotes the restriction from Ω to X; then define

    π+P=r+Pe+:C(M,E1)D(Ω,E2).

    In addition, P is supposed to have the transmission property; this means that, for all j,k,α, the homogeneous component pj of order j in the asymptotic expansion of the symbol p of P in local coordinates near the boundary satisfies

    kxnαξpj(x,0,0,+1)=(1)j|α|kxnαξpj(x,0,0,1),

    then π+P:C(M,E1)C(M,E2) by Theorem 4 in [25] page 139.

    Denote by B the Boutet de Monvel's algebra. We recall that the main theorem is in [10,26].

    Theorem 3.1. [26] (Fedosov-Golse-Leichtnam-Schrohe) Let M and M be connected, dimM=n3, and let S (resp. S) be the unit sphere about ξ (resp. ξ) and σ(ξ) (resp. σ(ξ)) be the corresponding canonical n1 (resp. (n2)) volume form. Set ˜A=(π+P+GKTS) B, and denote by p, b and s the local symbols of P,G, and S, respectively. Define:

    ~Wres(˜A)=XStrE[pn(x,ξ)]σ(ξ)dx+2πXS{trE[(trbn)(x,ξ)]+trF[s1n(x,ξ)]}σ(ξ)dx,

    where ~Wres denotes the noncommutative residue of an operator in the Boutet de Monvel's algebra, and

    S={(ξ1,ξ2,,ξn)Rn|ni,j=1gijξiξj=1},

    in the normal coordinate,

    S(x0)={(ξ1,ξ2,,ξn)Rn|ni=1ξ2i=1}.

    Then a) ~Wres([˜A,B])=0, for any ˜A,BB; b) It is the unique continuous trace on B/B.

    Definition 3.2. [10] Lower-dimensional volumes of spin manifolds with boundary are defined by

    Vol(p1,p2)nM:=~Wres[π+Dp1π+Dp2],

    and

    ~Wres[π+Dp1π+Dp2]=M|ξ|=1trTMC[σn(Dp1p2)]σ(ξ)dx+MΦ, (3.3)

    where

    Φ=|ξ|=1+j,k=0(i)|α|+j+k+1α!(j+k+1)!×trTMC[jxnαξkξnσ+r(Dp1)(x,0,ξ,ξn)×αxj+1ξnkxnσl(Dp2)(x,0,ξ,ξn)]dξnσ(ξ)dx, (3.4)

    and the sum is taken over r+lk|α|j1=n,rp1,lp2.

    By ε4~Wres[π+(εD+c(X))1π+(εD+c(Z))1]=ε2~Wres[π+(D+c(X)ε)1π+(D+c(Z)ε)1] and (3.3), we first compute

    ~Wres[π+(D+c(X)ε)1π+(D+c(Z)ε)1]=M|ξ|=1trS(TM)C[σ4(D2+c(Z)Dε+Dc(X)ε+c(Z)c(X)ε2)1]σ(ξ)dx+MΦ, (3.5)

    where

    Φ=|ξ|=1+j,k=0(i)|α|+j+k+1α!(j+k+1)!×trS(TM)C[jxnαξkξnσ+r(D+c(X)ε)1(x,0,ξ,ξn)×αxj+1ξnkxnσl(D+c(Z)ε)1(x,0,ξ,ξn)]dξnσ(ξ)dx, (3.6)

    and the sum is taken over r+lkj|α|=3,r1,l1.

    Since [σn(Dp1p2)]|M has the same expression as σn(Dp1p2) in the case of manifolds without boundary, so locally we can compute the interior term by [5,6,10,27].

    Set V=D2+c(Z)Dε+Dc(X)ε+c(Z)c(X)ε2, where Z=nα=1aαeα=nj=1Zjj is a vector field. The next step is to compute the total symbol σ(x,ξ) of V1 from order -4 to order -2, with V the following sum of terms Vk of order k:

    σV2(x,ξ)=|ξ|2;σV1(x,ξ)=i(Γμ2σμ)ξμ+iεc(Z)c(ξ)+iεc(ξ)c(X);σV0(x,ξ)=(xσμ+σμσμΓμσμ)+14s+iεc(Z)γμσμ+iεγμσμc(X)+c(Z)c(X)ε2.

    By (2.2) and the composition formula of pseudodifferential operators, σV14 is obtained, which include the sum of terms N1N10 and F1F7:

    F1=|ξ|61ε[c(Z)c(ξ)+c(ξ)c(X)](Γμ2σν)ξμ;F2=|ξ|6(Γμ2σν)ξμ1ε[c(Z)c(ξ)+c(ξ)c(X)];F3=2|ξ|81ε[c(Z)c(ξ)+c(ξ)c(X)]ξμξαξβxμgαβ;F4=|ξ|6f1ε2[c(Z)c(ξ)+c(ξ)c(X)]2;F5=|ξ|4[iεc(Z)γμσμ+iεγμσμc(X)+c(Z)c(X)ε2];F6=|ξ|41εμξ[c(Z)c(ξ)+c(ξ)c(X)]ξαξβxμgαβ;F7=2|ξ|2ξμμξ[|ξ|41ε[c(Z)c(ξ)+c(ξ)c(X)]].

    Next, we proceed to compute |ξ|=1tr[7i=1Fi]σ(ξ).

    (1):

    In normal coordinates, using the facts: Γμαβ(x0)=σμ(x0)=0, xμgαβ(x0)=0, the terms F1, F2, F3, and F6 disappear.

    (2):

    tr[c(Z)c(ξ)+c(ξ)c(X)]2|ξ|=1=tr[c(Z)c(ξ)c(Z)c(ξ)]+tr[c(Z)c(ξ)c(ξ)c(X)]+tr[c(ξ)c(X)c(Z)c(ξ)]+tr[c(ξ)c(X)c(ξ)c(X)].

    By (2.6), we have

    |ξ|=1=tr[c(Z)c(ξ)c(Z)c(ξ)]σ(ξ)=|Z|2π2tr[id],
    |ξ|=1=tr[c(ξ)c(X)c(ξ)c(X)]σ(ξ)=|X|2π2tr[id],
    |ξ|=1(tr[c(Z)c(ξ)c(ξ)c(X)]+tr[c(ξ)c(X)c(Z)c(ξ)])σ(ξ)=4g(X,Z)π2tr[id].

    Then

    |ξ|=1tr(F4)(x0)σ(ξ)=1ε2(|Z|2+|X|2+4g(X,Z))π2tr[id].

    (3):

    |ξ|=1tr(F5)(x0)σ(ξ)=2ε2g(X,Z)π2tr[id].

    (4):

    By (2.7), we have

    |ξ|=1tr(F7)(x0)σ(ξ)=1ε[divM(X)+divM(Z)]π2tr[id].

    Therefore, we obtain the following result

    Wres(D2+c(Z)Dε+Dc(X)ε+c(Z)c(X)ε2)1=4M(1ε2|X|2π2+1ε2|Z|2π2+6ε2g(X,Z)π21εdivM(X)π21εdivM(Z)π2+112s)dVolM.

    Further, above observations yields the following theorem

    Theorem 3.3. If M is a 4-dimensional compact oriented spin manifolds without boundary, then we derive the following equality:

    limε0ε4Wres[π+(εD+c(X))1π+(εD+c(Z))1]=4M(|X|2+|Z|2+6g(X,Z))π2dVolM.

    In this subsection, we proceed to calculate the boundary term: MΦ. From [10], some symbols associated with these operators can be expressed.

    Lemma 3.4. The positive order symbol of D+c(Z)ε holds:

    σ1(D+c(Z)ε)=σ1(D+c(X)ε)=σ1(D)=ic(ξ);σ0(D+c(Z)ε)=σ0(D)+c(Z)ε=14i,s,tωs,t(ei)c(ei)c(es)c(et)+c(Z)ε;σ0(D+c(X)ε)=σ0(D)+c(X)ε=14i,s,tωs,t(ei)c(ei)c(es)c(et)+c(X)ε.

    Then, utilizing the composition formula of pseudodifferential operators, we arrive at the following lemma.

    Lemma 3.5. The negative order symbol of (D+c(Z)ε)1 holds:

    σ1(D+c(Z)ε)1=σ1(D+c(X)ε)1=ic(ξ)|ξ|2;σ2(D+c(Z)ε)1=c(ξ)σ0(D+c(Z)ε)c(ξ)|ξ|4+c(ξ)|ξ|6jc(dxj)[xj(c(ξ))|ξ|2c(ξ)xj(|ξ|2)];σ2(D+c(X)ε)1=c(ξ)σ0(D+c(X)ε)c(ξ)|ξ|4+c(ξ)|ξ|6jc(dxj)[xj(c(ξ))|ξ|2c(ξ)xj(|ξ|2)].

    By computations, we obtain the semiclassical limit of the Kastler–Kalau–Walze-type theorem.

    Theorem 3.6. Let M be a 4-dimensional oriented compact manifold with boundary M, then

    limε0ε4~Wres[π+(εD+c(X))1π+(εD+c(Z))1]=4M(|X|2+|Z|2+6g(X,Z))π2dVolM.

    In particular, as the semiclassical limit is taken, the boundary term goes to zero.

    Proof. For n=4, the summation condition r+lkj|α|=3,r1,l1, it leads to the following five cases:

    case a) When r=1,l=1,k=j=0,|α|=1.

    By (3.6), we obtain

    Φ1=|ξ|=1+|α|=1tr[αξπ+ξnσ1(D+c(X)ε)1×αxξnσ1(D+c(Z)ε)1](x0)dξnσ(ξ)dx.

    For i<n, we obtain

    xi(ic(ξ)|ξ|2)(x0)=ixi[c(ξ)](x0)|ξ|2ic(ξ)xi(|ξ|2)(x0)|ξ|4=0,

    so Φ1=0.

    case b) When r=1,l=1,k=|α|=0,j=1.

    From (3.6), we obtain

    Φ2=12|ξ|=1+tr[xnπ+ξnσ1(D+c(X)ε)1×2ξnσ1(D+c(Z)ε)1](x0)dξnσ(ξ)dx.

    Applying Lemma 3.5 yields

    2ξnσ1(D+c(Z)ε)1(x0)=i(6ξnc(dxn)+2c(ξ)|ξ|4+8ξ2nc(ξ)|ξ|6);
    xnσ1(D+c(X)ε)1(x0)=ixnc(ξ)(x0)|ξ|2ic(ξ)|ξ|2h(0)|ξ|4.

    Using the Clifford algebra relations and the trace property trab=trba, we obtain:

    tr[c(ξ)c(dxn)]=0;tr[c(dxn)2]=4;tr[c(ξ)2](x0)||ξ|=1=4;tr[xnc(ξ)c(dxn)]=0;tr[xnc(ξ)c(ξ)](x0)||ξ|=1=2h(0).

    Then, we obtain

    Φ2=|ξ|=1+ih(0)(ξni)2(ξni)4(ξn+i)3dξnσ(ξ)dx=ih(0)Ω3Γ+1(ξni)2(ξn+i)3dξndx=ih(0)Ω32πi[1(ξn+i)3](1)|ξn=idx=38πh(0)Ω3dx,

    where Ω3 is the canonical volume of S2.

    case c) When r=1,l=1,j=|α|=0,k=1.

    From (3.6), we obtain

    Φ3=12|ξ|=1+tr[ξnπ+ξnσ1(D+c(X)ε)1×ξnxnσ1(D+c(Z)ε)1](x0)dξnσ(ξ)dx.

    Applying Lemma 3.5 yields

    ξnxnσ1(D+c(Z)ε)1(x0)||ξ|=1=ih(0)[c(dxn)|ξ|44ξnc(ξ)+ξnc(dxn)|ξ|6]2ξnixnc(ξ)(x0)|ξ|4;
    ξnπ+ξnσ1(D+c(X)ε)1(x0)||ξ|=1=c(ξ)+ic(dxn)2(ξni)2.

    Similar to caseb), we obtain

    tr{c(ξ)+ic(dxn)2(ξni)2×ih(0)[c(dxn)|ξ|44ξnc(ξ)+ξnc(dxn)|ξ|6]}=2h(0)i3ξn(ξni)4(ξn+i)3

    and

    tr[c(ξ)+ic(dxn)2(ξni)2×2ξnixnc(ξ)(x0)|ξ|4]=2ih(0)ξn(ξni)4(ξn+i)2.

    Thus, we obtain

    Φ3=|ξ|=1+h(0)(i3ξn)(ξni)4(ξn+i)3dξnσ(ξ)dx|ξ|=1+h(0)iξn(ξni)4(ξn+i)2dξnσ(ξ)dx=h(0)Ω32πi3![(i3ξn)(ξn+i)3](3)|ξn=idx+h(0)Ω32πi3![iξn(ξn+i)2](3)|ξn=idx=38πh(0)Ω3dx.

    case d) When r=2,l=1,k=j=|α|=0.

    From (3.6), we obtain

    Φ4=i|ξ|=1+tr[π+ξnσ2(D+c(X)ε)1×ξnσ1(D+c(Z)ε)1](x0)dξnσ(ξ)dx.

    Denote

    Q(x0)=14s,t,iωs,t(ei)(x0)c(ei)c(es)c(et).

    Then applying Lemma 3.5 yields

    π+ξnσ2(D+c(X)ε)1||ξ|=1=π+ξn[c(ξ)Q(x0)c(ξ)(1+ξ2n)2]+π+ξn[c(ξ)c(X)c(ξ)ε(1+ξ2n)2]+π+ξn[c(ξ)c(dxn)xn[c(ξ)](x0)(1+ξ2n)2h(0)c(ξ)c(dxn)c(ξ)(1+ξ2n)3]:=E1E2+E3,

    where

    E1=14(ξni)2[(2+iξn)c(ξ)Q20(x0)c(ξ)+iξnc(dxn)Q20(x0)c(dxn)+(2+iξn)c(ξ)c(dxn)xnc(ξ)+ic(dxn)Q20(x0)c(ξ)+ic(ξ)Q20(x0)c(dxn)ixnc(ξ)], (3.7)
    E2=h(0)2[c(dxn)4i(ξni)+c(dxn)ic(ξ)8(ξni)2+3ξn7i8(ξni)3[ic(ξ)c(dxn)]], (3.8)

    and

    E3=2+iξn4ε(ξni)2c(ξ)c(X)c(ξ)+i4ε(ξni)2c(ξ)c(X)c(dxn)+i4ε(ξni)2c(dxn)c(X)c(ξ)+iξn4ε(ξni)2c(dxn)c(X)c(dxn).

    Since

    ξnσ1(D+c(Z)ε)1=i[c(dxn)1+ξ2n2ξnc(ξ)+2ξ2nc(dxn)(1+ξ2n)2]. (3.9)

    Using the Clifford algebra relations and the trace property trab=trba, we obtain:

    tr[c(ξ)c(X)c(ξ)c(dxn)]=4Xn;tr[c(ξ)c(X)c(ξ)c(ξ)]=4g(X,ξ);tr[c(dxn)c(X)c(dxn)c(dxn)]=4Xn;tr[c(dxn)c(X)c(ξ)c(ξ)c(dxn)]=4g(X,ξ).

    By (3.7) and (3.9), we have

    tr[C1×ξnσ1(D+c(Z)ε)1]||ξ|=1=3ih(0)2(ξni)2(1+ξ2n)2+h(0)ξ2niξn22(ξni)(1+ξ2n)2,

    By (3.8) and (3.9), we have

    tr[C2×ξnσ1(D+c(Z)ε)1]||ξ|=1=2ih(0)iξ2nξn+4i4(ξni)3(ξn+i)2,

    and

    tr[C3×ξnσ1(D+c(Z)ε)1]||ξ|=1=2iε(ξni)3(ξn+i)Xn4ξn+iξ2nε(ξni)4(ξn+i)2Xn+2ε(ξni)3(ξn+i)g(X,ξ)+4iξnξ2nε(ξni)4(ξn+i)2g(X,ξ).

    When i<n,|ξ|=1ξi1ξi2ξi2d+1σ(ξ)=0, so g(X,ξ) has no contribution for computing cased). Thus, we obtain

    i|ξ|=1+tr[(E1E2)×ξnσ1(D+c(X)ε)1](x0)dξnσ(ξ)dx=Ω3Γ+3h(0)(ξni)+ih(0)2(ξni)3(ξn+i)2dξndx=98πh(0)Ω3dx.
    i|ξ|=1+tr[E3×ξnσ1(D+c(X)ε)1](x0)dξnσ(ξ)dx=i|ξ|=1+2iε(ξni)3(ξn+i)Xndξnσ(ξ)dxi|ξ|=1+4ξn+iξ2nε(ξni)4(ξn+i)2Xndξnσ(ξ)dx=Ω3Xn1εΓ+2(ξni)3(ξn+i)dξndx+4ifΩ3Xn1εΓ+ξn+iξ2n(ξni)4(ξn+i)2dξndx=Ω3Xn2πi2!ε[2(ξn+i)](2)|ξn=idx+4ifΩ3Xn2πi3!ε[ξn+iξ2n(ξn+i)2](3)|ξn=idx=1εXnπΩ3dx.

    Thus

    Φ4=(98h(0)1εXn)πΩ3dx.

    case e) Whenr=1,l=2,k=j=|α|=0.

    Since

    From (3.6), we obtain

    Φ5=i|ξ|=1+tr[π+ξnσ1(D+c(X)ε)1×ξnσ2(D+c(Z)ε)1](x0)dξnσ(ξ)dx.

    Applying Lemma 3.5 yields

    π+ξnσ1(D+c(X)ε)1||ξ|=1=c(ξ)+ic(dxn)2(ξni). (3.10)

    Since

    σ2(D+c(Z)ε)1(x0)=c(ξ)σ0(D+c(Z)ε)(x0)c(ξ)|ξ|4+c(ξ)|ξ|6c(dxn)[xn[c(ξ)](x0)|ξ|2c(ξ)h(0)|ξ|2M].

    Further

    ξnσ2(D+c(Z)ε)1(x0)||ξ|=1=ξn{c(ξ)(Q(x0)+c(Z)ε)c(ξ)|ξ|4+c(ξ)|ξ|6c(dxn)[xn[c(ξ)](x0)|ξ|2c(ξ)h(0)]}=ξn{[c(ξ)Q(x0)]c(ξ)|ξ|4+c(ξ)|ξ|6c(dxn)[xn[c(ξ)](x0)|ξ|2c(ξ)h(0)]}+ξn(c(ξ)c(Z)εc(ξ)|ξ|4).

    By computations, we have

    ξn(c(ξ)c(Z)εc(ξ)|ξ|4)=4ξnε(1+ξ2n)3c(ξ)c(Z)c(ξ)+(1ε(1+ξ2n)24ξ2nε(1+ξ2n)3)(c(ξ)c(Z)c(dxn)+c(dxn)c(Z)c(ξ))+(2ξnε(1+ξ2n)24ξ3nε(1+ξ2n)3)c(dxn)c(Z)c(dxn). (3.11)

    We denote

    q12=c(ξ)Q(x0)c(ξ)|ξ|4+c(ξ)|ξ|6c(dxn)[xn[c(ξ)](x0)|ξ|2c(ξ)h(0)],

    then

    ξn(q12)=1(1+ξ2n)3[(2ξn2ξ3n)c(dxn)Q(x0)c(dxn)+(13ξ2n)c(dxn)Q(x0)c(ξ)+(13ξ2n)c(ξ)Q(x0)c(dxn)4ξnc(ξ)Q(x0)c(ξ)+(3ξ2n1)xnc(ξ)4ξnc(ξ)c(dxn)xnc(ξ)+2h(0)c(ξ)+2h(0)ξnc(dxn)]+6ξnh(0)c(ξ)c(dxn)c(ξ)(1+ξ2n)4. (3.12)

    By (3.10) and (3.12), we have

    tr[π+ξnσ1(D+c(X)ε)1×ξn(q12)](x0)=3h(0)(iξ2n+ξn2i)(ξi)3(ξ+i)3+12h(0)iξn(ξi)3(ξ+i)4.

    Then

    iΩ3Γ+[3h(0)(iξ2n+ξn2i)(ξni)3(ξn+i)3+12h(0)iξn(ξni)3(ξn+i)4]dξndx=98πh(0)Ω3dx.

    Then, using the Clifford algebra relations and the trace property trab=trba, we obtain:

    tr[c(ξ)c(Z)c(ξ)c(dxn)]=4Zn;tr[c(ξ)c(Z)c(ξ)c(ξ)]=4g(Z,ξ);tr[c(dxn)c(Z)c(dxn)c(dxn)]=4Zn;tr[c(dxn)c(Z)c(ξ)c(ξ)c(dxn)]=4g(Z,ξ).

    By (3.10) and (3.11), we have

    tr[π+ξnσ1(D+c(X)ε)1×ξn(c(ξ)c(Z)c(ξ)ε|ξ|4)](x0)=413ξ2n+3iξniξ3nε(ξni)4(ξn+i)3Zn+4i(13ξ2n)3ξn+ξ3nε(ξni)4(ξn+i)3g(Z,ξ).

    When i<n,|ξ|=1ξi1ξi2ξi2d+1σ(ξ)=0 and g(Z,ξ) has no contribution for computing casee), we have

    i|ξ|=1+tr[π+ξnσ1(D+c(X)ε)1×ξn(c(ξ)c(Z)c(ξ)ε|ξ|4)](x0)dξnσ(ξ)dx=i|ξ|=1+413ξ2n+3iξniξ3nε(ξni)4(ξn+i)3Zndξnσ(ξ)dx=4iΩ3Zn1εΓ+13ξ2n+3iξniξ3n(ξni)4(ξn+i)3dξndx=4iΩ3Zn2πi3!ε[13ξ2n+3iξniξ3n(ξn+i)3](3)|ξn=idx=1εZnπΩ3dx.

    Therefore

    Φ5=(98h(0)+1εZn)πΩ3dx.

    Now Φ can be expressed as the sum of the case a)case e),

    Φ=5i=1Φi=1ε(ZnXn)πΩ3dx.

    Finally, we obtain

    limε0ε2|ξ|=1Φ=limε0ε2|ξ|=11ε(ZnXn)πΩ3dVolM=0.

    By Theorem 3.3, Theorem 3.6 holds.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This first author was supported by NSFC. No.12401059 and the Liaoning Province Science and Technology Plan Joint Project 2023-BSBA-118. The second author was supported by NSFC. No.11771070. The authors thank the referee for his (or her) careful reading and helpful comments.

    The authors declare there are no conflicts of interest.



    [1] V. Guillemin, A new proof of Weyl's formula on the asymptotic distribution of eigenvalues, Adv. Math., 55 (1985), 131–160. https://doi.org/10.1016/0001-8708(85)90018-0 doi: 10.1016/0001-8708(85)90018-0
    [2] M. Wodzicki, Local invariants of spectral asymmetry, Invent. Math., 75 (1995), 143–178. https://doi.org/10.1007/BF01403095 doi: 10.1007/BF01403095
    [3] A. Connes, Quantized calculus and applications, in Proceedings of the XIth International Congress of Mathematical Physics, International Press, Cambridge, MA, (1995), 15–36.
    [4] A. Connes, The action functional in non-commutative geometry, Commun. Math. Phys., 117 (1998), 673–683. https://doi.org/10.1007/BF01218391 doi: 10.1007/BF01218391
    [5] D. Kastler, The dirac operator and gravitation, Commun. Math. Phys., 166 (1995), 633–643. https://doi.org/10.1007/BF02099890 doi: 10.1007/BF02099890
    [6] W. Kalau, M. Walze, Gravity, noncommutative geometry and the Wodzicki residue, J. Geom. Phys., 16 (1995), 327–344. https://doi.org/10.1016/0393-0440(94)00032-Y doi: 10.1016/0393-0440(94)00032-Y
    [7] T. Ackermann, A note on the Wodzicki residue, J. Geom. Phys., 20 (1996), 404–406. https://doi.org/10.1016/S0393-0440(95)00061-5 doi: 10.1016/S0393-0440(95)00061-5
    [8] Y. Wang, Differential forms and the Wodzicki residue for manifolds with boundary, J. Geom. Phys., 56 (2006), 731–753. https://doi.org/10.1016/j.geomphys.2005.04.015 doi: 10.1016/j.geomphys.2005.04.015
    [9] Y. Wang, Differtential forms the noncommutative residue for manifolds with boundary in the non-product case, Lett. Math. Phys., 77 (2006), 41–51. https://doi.org/10.1007/s11005-006-0078-2 doi: 10.1007/s11005-006-0078-2
    [10] Y. Wang, Gravity and the noncommutative residue for manifolds with boundary, Lett. Math. Phys., 80 (2007), 37–56. https://doi.org/10.1007/s11005-007-0147-1 doi: 10.1007/s11005-007-0147-1
    [11] Y. Wang, Lower-dimensional volumes and Kastler-Kalau-Walze type theorem for manifolds with boundary, Commun. Theor. Phys., 54 (2010), 38–42. https://doi.org/10.1088/0253-6102/54/1/08 doi: 10.1088/0253-6102/54/1/08
    [12] J. Wang, Y. Wang, The Kastler-Kalau-Walze type theorem for six-dimensional manifolds with boundary, J. Math. Phys., 56 (2015), 052501. https://doi.org/10.1063/1.4919889 doi: 10.1063/1.4919889
    [13] H. Li, T. Wu, Y. Wang, Statistical de Rham Hodge operators and general Kastler-Kalau-Walze type theorems for manifolds with boundary, J. Pseudo-Differ. Oper. Appl., 14 (2023). https://doi.org/10.1007/s11868-023-00563-1 doi: 10.1007/s11868-023-00563-1
    [14] S. Liu, T. Wu, Y. Wang, The Kastler-Kalau-Walze type theorems for the perturbation of the de Rham Hodge operator, J. Nonlinear Math. Phys., 29 (2022), 678–730. https://doi.org/10.1007/s44198-022-00056-7 doi: 10.1007/s44198-022-00056-7
    [15] Y. Wang, A Kastler-Kalau-Walze type theorem and the spectral action for perturbations of Dirac operators on manifolds with boundary, Abstr. Appl. Anal., 2014 (2014). https://doi.org/10.1155/2014/619120 doi: 10.1155/2014/619120
    [16] J. Wang, Y. Wang, T. Wu, Dirac operators with torsion, spectral Einstein functionals and the noncommutative residue, J. Math. Phys., 64 (2023). https://doi.org/10.1063/5.0160917 doi: 10.1063/5.0160917
    [17] J. Wang, Y. Wang, C. Yang, Dirac operators with torsion and the noncommutative residue for manifolds with boundary, J. Geom. Phys., 81 (2014), 92–111. https://doi.org/10.1016/j.geomphys.2014.03.007 doi: 10.1016/j.geomphys.2014.03.007
    [18] T. Wu, J. Wang, Y. Wang, Dirac-Witten operators and the Kastler-Kalau-Walze type theorem for manifolds with boundary, J. Nonlinear Math. Phys., 29 (2022), 1–40. https://doi.org/10.1007/s44198-021-00009-6 doi: 10.1007/s44198-021-00009-6
    [19] C. B¨ar, F. Pf¨affle, Asymptotic heat kernel expansion in the semiclassical limit, Commun. Math. Phys., 294 (2010), 731–744. https://doi.org/10.1007/s00220-009-0973-3 doi: 10.1007/s00220-009-0973-3
    [20] M. Ludewig, A semiclassical heat kernel proof of the Poincarˊe-Hopf theorem, Manuscr. Math., 148 (2015), 29–58. https://doi.org/10.1007/s00229-015-0741-y doi: 10.1007/s00229-015-0741-y
    [21] N. Savale, Hyperbolicity, irrationality exponents and the eta invariant, Commun. Partial Differ. Equations, 47 (2022), 989–1023. https://doi.org/10.1080/03605302.2021.2018711 doi: 10.1080/03605302.2021.2018711
    [22] N. Savale, A Gutzwiller type trace formula for the magnetic Dirac operator, Geom. Funct. Anal., 28 (2018), 1420–1486. https://doi.org/10.1007/s00039-018-0462-y doi: 10.1007/s00039-018-0462-y
    [23] P. Paradan, M. Vergne, Equivariant index of twisted Dirac operators and semi-classical limits, in Lie Groups, Geometry, and Representation Theory: A Tribute to the Life and Work of Bertram Kostant, Progress in Mathematics, 326 (2018), 419–458. https://doi.org/10.1007/978-3-030-02191-7_15
    [24] T. Wu, Y. Wang, The pseudo-differential perturbations of the Dirac operator and the Kastler-Kalau-Walze type theorems, J. Pseudo-Differ. Oper. Appl., 15 (2024). https://doi.org/10.1007/s11868-024-00648-5 doi: 10.1007/s11868-024-00648-5
    [25] S. Rempel, B. Schulze, Index Theory of Elliptic Boundary Problems, Akademie-Verlag, Berlin, 1982.
    [26] B. Fedosov, F. Golse, E. Leichtnam, E. Schrohe, The noncommutative residue for manifolds with boundary, J. Funct. Anal., 142 (1996), 1–31. https://doi.org/10.1006/jfan.1996.0142 doi: 10.1006/jfan.1996.0142
    [27] R. Ponge, Noncommutative geometry and lower dimensional volumes in Riemannian geometry, Lett. Math. Phys., 83 (2008), 19–32. https://doi.org/10.1007/s11005-007-0199-2 doi: 10.1007/s11005-007-0199-2
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(274) PDF downloads(28) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog