Research article

Long-wavelength limit for the Green–Naghdi equations

  • Received: 29 January 2022 Revised: 02 May 2022 Accepted: 06 May 2022 Published: 23 May 2022
  • This paper studies the long-wavelength limit for the one-dimensional Green–Naghdi (GN) equations, which are often used to describe the propagation of fully nonlinear waves in coastal oceanography. We prove that, under the long-wavelength, small-amplitude approximation, the formal Korteweg–de Vries (KdV) equation for the GN equations is mathematically valid in the time interval for which the KdV dynamics survive. The main idea in the proof is to apply the Gardner–Morikawa transform, the reductive perturbation method, and some error energy estimates. The main novelties of this paper are the construction of valid approximate solutions of the GN equations with respect to the small wave amplitude parameter and global uniform energy estimates for the error system.

    Citation: Min Li. Long-wavelength limit for the Green–Naghdi equations[J]. Electronic Research Archive, 2022, 30(7): 2700-2718. doi: 10.3934/era.2022138

    Related Papers:

  • This paper studies the long-wavelength limit for the one-dimensional Green–Naghdi (GN) equations, which are often used to describe the propagation of fully nonlinear waves in coastal oceanography. We prove that, under the long-wavelength, small-amplitude approximation, the formal Korteweg–de Vries (KdV) equation for the GN equations is mathematically valid in the time interval for which the KdV dynamics survive. The main idea in the proof is to apply the Gardner–Morikawa transform, the reductive perturbation method, and some error energy estimates. The main novelties of this paper are the construction of valid approximate solutions of the GN equations with respect to the small wave amplitude parameter and global uniform energy estimates for the error system.



    加载中


    [1] A. Green, P. Naghdi, A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech., 78 (1976), 237–246. https://doi.org/10.1017/s0022112076002425 doi: 10.1017/s0022112076002425
    [2] C. Su, C. Gardner, Korteweg-de Vries equation and generalizations Ⅲ: Derivation of the Korteweg-de Vries equation and Burgers equation, J. Math. Phys., 10 (1969), 536–539. https://doi.org/10.1063/1.1664873 doi: 10.1063/1.1664873
    [3] G. Wei, J. T. Kirby, S. T. Grilli, R. Subramanya, A fully nonlinear Boussinesq model for surface waves, Ⅰ. Highly nonlinear unsteady waves, J. Fluid Mech., 294 (1995), 71–92. https://doi.org/10.1017/S0022112095002813 doi: 10.1017/S0022112095002813
    [4] D. Lannes, B. Alvarez-Samaniego, A Nash-Moser theorem for singular evolution equations, application to the Serre and Green-Naghdi equations, Indiana Univ. Math. J., 57 (2008), 97–132. https://doi.org/10.1512/iumj.2008.57.3200 doi: 10.1512/iumj.2008.57.3200
    [5] Y. A. Li, A shallow-water approximation to the full water wave problem, Commun. Pure Appl. Math., 59 (2006), 1225–1285. https://doi.org/10.1002/cpa.20148 doi: 10.1002/cpa.20148
    [6] B. Alvarez-Samaniego, D. Lannes, Large time existence for 3D water-waves and asymptotics, Invent. Math., 171 (2008), 485–541. https://doi.org/10.1007/s00222-007-0088-4 doi: 10.1007/s00222-007-0088-4
    [7] Y. Benia, A. Scapellato, Existence of solution to Korteweg-de Vries equation in a non-parabolic domain, Nonlinear Anal., 195 (2020), 111758. https://doi.org/10.1016/j.na.2020.111758 doi: 10.1016/j.na.2020.111758
    [8] Y. Benia, B. K. Sadallah, Existence of solution to Korteweg-de Vries equation in domains that can be transformed into rectangles, Math. Methods Appl. Sci., 41 (2018), 2684–2698. https://doi.org/10.1002/mma.4773 doi: 10.1002/mma.4773
    [9] K. Kano, T. Nishida, A mathematical justification for Korteweg-de Vries equation and Boussinesq equation of water surface waves, Osaka J. Math., 23 (1986), 389–413. https://doi.org/10.1016/0362-546X(86)90145-8 doi: 10.1016/0362-546X(86)90145-8
    [10] D. J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422–442. https://doi.org/10.1080/14786449508620739 doi: 10.1080/14786449508620739
    [11] J. Bae, B. Kwon, Small amplitude limit of solitary waves for the Euler-Poisson system, J. Differ. Equations, 266 (2019), 3450–3478. https://doi.org/10.1016/j.jde.2018.09.006 doi: 10.1016/j.jde.2018.09.006
    [12] Y. Guo, X. Pu, KdV limit of the Euler-Poisson system, Arch. Ration. Mech. Anal., 11 (2014), 673–710. https://doi.org/10.1007/s00205-013-0683-z doi: 10.1007/s00205-013-0683-z
    [13] X. Pu, Dispersive limit of the Euler-Poisson system in higher dimensions, SIAM J. Math. Anal., 45 (2013), 834–878. https://doi.org/10.1137/120875648 doi: 10.1137/120875648
    [14] X. Pu, M. Li, KdV limit of the hydromagnetic waves in cold plasma, Z. Angew. Math. Phys., 70 (2019), 81. https://doi.org/10.1007/s00033-019-1076-4 doi: 10.1007/s00033-019-1076-4
    [15] D. Lannes, F. Linares, J. Saut, The Cauchy problem for the Euler–Poisson system and derivation of the Zakharov–Kuznetsov equation, in Studies in Phase Space Analysis with Applications to PDEs, Birkhäuser, New York, NY, 84 (2013), 181–213. https://doi.org/10.1007/978-1-4614-6348-1_10
    [16] R. Miura, The Korteweg-de Vries equation: A survey of results, SIAM Rev., 18 (1976), 412–459. https://doi.org/10.2307/2028638 doi: 10.2307/2028638
    [17] F. Haas, L. Garcia, J. Goedert, G. Manfredi, Quantum ion-acoustic waves, Phys. Plasmas, 10 (2003), 3858–3866. https://doi.org/10.1063/1.1609446 doi: 10.1063/1.1609446
    [18] H. Liu, X. Pu, Long wavelength limit for the quantum Euler-Poisson equation, SIAM J. Math. Anal., 48 (2016), 2345–2381. https://doi.org/10.1137/15M1046587 doi: 10.1137/15M1046587
    [19] C. Gardner, G. Morikawa, Similarity in the asymptotic behavior of collision-free hydromagnetic waves and water waves, Report MF-2, NYO-9080, Courant Institute of Mathematical Sciences, New York University, 1960.
    [20] I. Ahmad, H. Ahmad, M. Inc, H. Rezazadeh, M. A. Akbar, M. M. A. Khater, et al., Solution of fractional-order Korteweg-de Vries and Burgers' equations utilizing local meshless method, J. Ocean Eng. Sci., 2021. https://doi.org/10.1016/j.joes.2021.08.014 doi: 10.1016/j.joes.2021.08.014
    [21] L. Akinyemi, O. S. Iyiola, A reliable technique to study nonlinear time-fractional coupled Korteweg-de Vries equations, Adv. Differ. Equations, (2020), 169. https://doi.org/10.1186/s13662-020-02625-w doi: 10.1186/s13662-020-02625-w
    [22] L. Akinyemi, P. Veeresha, S. O. Ajibola, Numerical simulation for coupled nonlinear Schrödinger-Korteweg-de Vries and Maccari systems of equations, Mod. Phys. Lett. B, 35 (2021), 2150339. https://doi.org/10.1142/S0217984921503395 doi: 10.1142/S0217984921503395
    [23] G. Schneider, C. Wayne, The long-wave limit for the water wave problem I. The case of zero surface tension, Commun. Math. Phys., 53 (2000), 1475–1535. https://doi.org/10.1002/1097-0312(200012)53:12 & lt; 1475::AID-CPA1 & gt; 3.0.CO; 2-V doi: 10.1002/1097-0312(200012)53:12<1475::AID-CPA1>3.0.CO;2-V
    [24] G. Schneider, C. Wayne, Corrigendum: The long-wave limit for the water wave problem I. The case of zero surface tension, Commun. Pure Appl. Math., 65 (2012), 587–591. https://doi.org/10.1002/cpa.21391 doi: 10.1002/cpa.21391
    [25] D. Lannes, The water waves problem: mathematical analysis and asymptotics, AMS Ebooks Program, 2013. https://doi.org/10.1090/surv/188
    [26] J. L. Bona, T. Colin, D. Lannes, Long wave approximations for water waves, Arch. Ration. Mech. Anal., 178 (2005), 373–410. https://doi.org/10.1007/s00205-005-0378-1 doi: 10.1007/s00205-005-0378-1
    [27] W. Craig, An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits, Commun. Partial Differ. Equations, 10 (1985), 787–1003. https://doi.org/10.1080/03605308508820396 doi: 10.1080/03605308508820396
    [28] T. Iguchi, A long wave approximation for capillary-gravity waves and an effect of the bottom, Commun. Partial Differ. Equations, 32 (2007), 37–85. https://doi.org/10.1080/03605300601088708 doi: 10.1080/03605300601088708
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(819) PDF downloads(42) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog