Research article

On three-dimensional system of rational difference equations with second-order

  • Published: 22 April 2025
  • This work deals with the dynamical features of the system for three-dimensional difference equations

    $ \left\{ \begin{array}{ll} u_{n+1} = \alpha+\frac{u_{n-1}^q}{v_n^q},& \\ &\\ v_{n+1} = \alpha+\frac{v_{n-1}^q}{w_n^q},& n = 0,1,\cdots,\\ &\\ w_{n+1} = \alpha+\frac{w_{n-1}^q}{u_n^q}, \end{array} \right. $

    where the initial values $ u_i, v_i, w_i\in(0, \infty), i\in\{-1, 0\} $, and the parameters $ \alpha > 0, q\ge 1 $. In detail, the local asymptotical stability of the positive equilibrium point, boundedness, persistence, and oscillation behavior of the positive solution for the systems are obtained. Furthermore, using Matlab software, we give some examples to show the validity of theoretic analysis.

    Citation: Qianhong Zhang, Shirui Zhang, Zhongni Zhang, Fubiao Lin. On three-dimensional system of rational difference equations with second-order[J]. Electronic Research Archive, 2025, 33(4): 2352-2365. doi: 10.3934/era.2025104

    Related Papers:

  • This work deals with the dynamical features of the system for three-dimensional difference equations

    $ \left\{ \begin{array}{ll} u_{n+1} = \alpha+\frac{u_{n-1}^q}{v_n^q},& \\ &\\ v_{n+1} = \alpha+\frac{v_{n-1}^q}{w_n^q},& n = 0,1,\cdots,\\ &\\ w_{n+1} = \alpha+\frac{w_{n-1}^q}{u_n^q}, \end{array} \right. $

    where the initial values $ u_i, v_i, w_i\in(0, \infty), i\in\{-1, 0\} $, and the parameters $ \alpha > 0, q\ge 1 $. In detail, the local asymptotical stability of the positive equilibrium point, boundedness, persistence, and oscillation behavior of the positive solution for the systems are obtained. Furthermore, using Matlab software, we give some examples to show the validity of theoretic analysis.



    加载中


    [1] E. Camouzis, G. Ladas, Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjecture, Chapman and Hall, London, 2008. https://doi.org/10.1201/9781584887669
    [2] S. Elaydi, An Introduction to Difference Equations, Springer, New York, 1995. https://doi.org/10.5860/choice.34-0980
    [3] V. L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Chapman and Hall, London, 1993. https://doi.org/10.2307/2132760
    [4] M. R. S. Kulenovic, G. Ladas, Dynamics of Second-Order Rational Difference Equations with Open Problems and Conjecture, Chapman and Hall, London, 2002. https://doi.org/10.1201/9781420035384
    [5] E. Akin, Ö. Öztürk, Limiting behaviors of nonoscillatory solutions for two-dimensional nonlinear time scale systems, Mediterr. J. Math., 14 (2017), 34. https://doi.org/10.1007/s00009-016-0836-z doi: 10.1007/s00009-016-0836-z
    [6] S. Qiu, Y. Zhang, X. Tu, Global boundedness and asymptotic behavior of a two-species chemotaxis system with signal-dependent motilities and indirect signal consumption, J. Evol. Equations, 98 (2024). https://doi.org/10.1007/s00028-024-01029-7
    [7] G. Ren, B. Liu, Global solvability for a predator-prey model with prey-taxis and rotational flux terms, Chin. Ann. Math. Ser. B, 45 (2024), 297–318. https://doi.org/10.1007/s11401-024-0018-4 doi: 10.1007/s11401-024-0018-4
    [8] R. Arul, M. Angayarkanni, Oscillatory and asymptotic behavior of second order neutral difference equations with "Maxima", J. Adv. Math., 9 (2013), 1916–1924. https://doi.org/10.24297/JAM.V9I2.2405 doi: 10.24297/JAM.V9I2.2405
    [9] G. Papaschinopoulos, C. J. Schinas, On a system of two nonlinear difference equations, J. Math. Anal. Appl., 219 (1998), 415–426. https://doi.org/10.1006/jmaa.1997.5829 doi: 10.1006/jmaa.1997.5829
    [10] G. Papaschinopoulos, C. J. Schinas, On the system of two nonlinear difference equations $x_{n+1} = A+\frac{x_{n-1}}{y_n}, y_{n+1} = A+\frac{y_{n-1}}{x_n}$, Int. J. Math. Sci., 23 (2000), 839–848. https://doi.org/10.1155/S0161171200003227 doi: 10.1155/S0161171200003227
    [11] Q. Zhang, L. Yang, J. Liu, Dynamics of a system of rational third-order difference equation, Adv. Differ. Equations, 2012 (2012), 136. https://doi.org/10.1186/1687-1847-2012-136 doi: 10.1186/1687-1847-2012-136
    [12] H. Bao, Dynamical behavior of a system of second-order nonlinear difference equations, Int. J. Differ. Equations, 2015 (2015), 679017. https://doi.org/10.1155/2015/679017 doi: 10.1155/2015/679017
    [13] O. Inci, S. Yüksel, Dynamical behavior of a system of three-dimensional nonlinear difference equations, Adv. Differ. Equations, 2018 (2018), 223. https://doi.org/10.1186/s13662-018-1667-y doi: 10.1186/s13662-018-1667-y
    [14] K. Abdul, S. Stephen, H. M. E. Hala, B. A. A. Mahmoud, B. R. Al-Sinan, T. F. Ibrahim, et al., The dynamical behavior of a three-dimensional system of exponential difference equations, Mathematics, 11 (2023), 1808. https://doi.org/10.3390/math11081808 doi: 10.3390/math11081808
    [15] A. Khaliq, H. S. Alayachi, M. Zubair, M. Rohail, A. Q. Khan, On stability analysis of a class of three-dimensional system of exponential difference equations, AIMS Math., 8 (2022), 5016–5035. https://doi.org/10.3934/math.2023251 doi: 10.3934/math.2023251
    [16] G. Stefanidou, G. Papaschinopoluos, C. J. Schinas, On a system of two exponential type difference equations, Commum. Appl. Nonlinear Anal., 17 (2010), 1–13. https://doi.org/10.1155/2010/196920 doi: 10.1155/2010/196920
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(764) PDF downloads(38) Cited by(1)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog