In this paper, we continued and extended the work in [
$ \left\{ \begin{array}{l} -\left( u^{\prime }/\sqrt{1-{u^{\prime }}^{2}}\right) ^{\prime } = \lambda f(u), \text{ in }\left( -L, L\right) , \\ u(-L) = u(L) = 0, \end{array} \right. $
where $ \lambda, L > 0 $ and $ f\in C^{2}(0, \infty) $. Notice that we allow $ f(0^{+}) = -\infty $. To illustrate the applicability of these results, we presented some examples, such as the diffusive logistic equation with a Holling type-Ⅱ functional response.
Citation: Shao-Yuan Huang, Wei-Hsun Lee. Sufficient conditions for exact bifurcation curves in Minkowski curvature problems and their applications[J]. Electronic Research Archive, 2025, 33(4): 2325-2351. doi: 10.3934/era.2025103
In this paper, we continued and extended the work in [
$ \left\{ \begin{array}{l} -\left( u^{\prime }/\sqrt{1-{u^{\prime }}^{2}}\right) ^{\prime } = \lambda f(u), \text{ in }\left( -L, L\right) , \\ u(-L) = u(L) = 0, \end{array} \right. $
where $ \lambda, L > 0 $ and $ f\in C^{2}(0, \infty) $. Notice that we allow $ f(0^{+}) = -\infty $. To illustrate the applicability of these results, we presented some examples, such as the diffusive logistic equation with a Holling type-Ⅱ functional response.
| [1] |
S. Y. Huang, Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications, J. Differ. Equations, 264 (2018), 5977–6011. http://doi.org/10.1016/j.jde.2018.01.021 doi: 10.1016/j.jde.2018.01.021
|
| [2] |
S. Y. Huang, Bifurcation diagrams of positive solutions for one-dimensional Minkowski-curvature problem and its applications, Discrete Contin. Dyn. Syst., 39 (2019), 3443–3462. http://doi.org/10.3934/dcds.2019142 doi: 10.3934/dcds.2019142
|
| [3] |
S. Y. Huang, Classification and evolution of bifurcation curves of semipositone problem with Minkowski-curvature operator and its applications, J. Differ. Equations, 400 (2024), 278–311. http://doi.org/10.1016/j.jde.2024.04.026 doi: 10.1016/j.jde.2024.04.026
|
| [4] |
S. Y. Huang, S. H. Wang, Bifurcation curves for the one-dimensional perturbed Gelfand problem with the Minkowski-curvature operator, J. Differ. Equations, 416 (2025), 700–726. http://dx.doi.org/10.1016/j.jde.2024.10.002 doi: 10.1016/j.jde.2024.10.002
|
| [5] |
Z. He, L. Miao, $S$-shaped connected component of positive solutions for a Minkowski-curvature Dirichlet problem with indefinite weight, Bull. Iran. Math. Soc., 48 (2022), 213–225. http://doi.org/10.1007/s41980-020-00512-4 doi: 10.1007/s41980-020-00512-4
|
| [6] | C. Corsato, Mathematical Analysis of Some Differential Models Involving the Euclidean or the Minkowski Mean Curvature Operator, Ph.D thesis, University of Trieste, 2015. |
| [7] | K. C. Hung, Bifurcation curve for the Minkowski-curvature equation with concave or geometrically concave nonlinearity, Bound. Value Probl., 98 (2024). http://doi.org/10.1186/s13661-024-01906-7 |
| [8] |
Z. He, M. Xu, Y. Z. Zhao, X. B. Yao, Bifurcation curves of positive solutions for one-dimensional Minkowski curvature problem, AIMS Math., 7 (2022), 17001–17018. http://doi.org/10.3934/math.2022934 doi: 10.3934/math.2022934
|
| [9] |
R. Ma, L. Wei, Z. Chen, Evolution of bifurcation curves for one-dimensional Minkowski-curvature problem, Appl. Math. Lett., 103 (2020), 106176. http://doi.org/10.1016/j.aml.2019.106176 doi: 10.1016/j.aml.2019.106176
|
| [10] |
K. C. Hung, S. H. Wang, Bifurcation diagrams of a $p$-Laplacian Dirichlet problem with Allee effect and an application to a diffusive logistic equation with predation, J. Math. Anal. Appl., 375 (2011), 294–309. http://doi.org/10.1016/j.jmaa.2010.09.008 doi: 10.1016/j.jmaa.2010.09.008
|
| [11] |
C. C. Tzeng, K. C. Hung, S. H. Wang, Global bifurcation and exact multiplicity of positive solutions for a positone problem with cubic nonlinearity, J. Differ. Equations, 252 (2012), 6250–6274. http://doi.org/10.1016/j.jde.2012.02.020 doi: 10.1016/j.jde.2012.02.020
|
| [12] |
A. Boscaggin, G. Feltrin, F. Zanolin, Positive solutions for a Minkowski-curvature equation with indefinite weight and super-exponential nonlinearity, Commun. Contemp. Math., 25 (2023), 2250005. http://doi.org/10.1142/S0219199722500055 doi: 10.1142/S0219199722500055
|
| [13] |
F. Ye, S. Yu, C. L. Tang, Global bifurcation of one-signed radial solutions for Minkowski-curvature equations involving indefinite weight and non-differentiable nonlinearities, J. Math. Anal. Appl., 540 (2024), 128583. http://doi.org/10.1016/j.jmaa.2024.128583 doi: 10.1016/j.jmaa.2024.128583
|