This present study analyzes COVID-19 transmission using a nonlinear mathematical model with a Caputo fractional derivative. By using fixed point theory, the existence and uniqueness of the solution are examined. We compute the basic reproduction number and investigate the stability analysis of the model. Approximate solutions are obtained using fractional Adam–Bashforth–Moulton method. A comprehensive exploration of optimal control is performed, utilizing one control parameter to investigate the fluctuations in the infected people under some conditions. The simulation results demonstrate the potential of fractional order derivatives with control parameter for a pandemic situation.
Citation: S. Suganya, V. Parthiban, R Kavikumar, Oh-Min Kwon. Transmission dynamics and stability of fractional order derivative model for COVID-19 epidemic with optimal control analysis[J]. Electronic Research Archive, 2025, 33(4): 2172-2194. doi: 10.3934/era.2025095
This present study analyzes COVID-19 transmission using a nonlinear mathematical model with a Caputo fractional derivative. By using fixed point theory, the existence and uniqueness of the solution are examined. We compute the basic reproduction number and investigate the stability analysis of the model. Approximate solutions are obtained using fractional Adam–Bashforth–Moulton method. A comprehensive exploration of optimal control is performed, utilizing one control parameter to investigate the fluctuations in the infected people under some conditions. The simulation results demonstrate the potential of fractional order derivatives with control parameter for a pandemic situation.
| [1] | World Health Organization, Coronavirus disease (COVID-19), 2021. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines. |
| [2] |
D. Chalishajar, D. H. Geary, G. Cox, Review study of detection of diabetes models through delay differential equations, Appl. Math., 7 (2016), 1087–1102. http://dx.doi.org/10.4236/am.2016.710097 doi: 10.4236/am.2016.710097
|
| [3] | D. Chalishajar, C. A. Stanford, Mathematical analysis of insulin-Glucose feedback system of diabeties, Int. J. Eng., 5 (2014). |
| [4] |
C. Coelho, M. F. Costa, L. L. Ferrás, Fractional calculus meets neural networks for computer Vision: A survey, AI, 5 (2024), 1391–1426. https://doi.org/10.3390/ai5030067 doi: 10.3390/ai5030067
|
| [5] |
W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709–726. https://doi.org/10.1016/j.jmaa.2006.10.040 doi: 10.1016/j.jmaa.2006.10.040
|
| [6] |
H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
|
| [7] |
S. Jain, D. N. Chalishajar, Chikungunya transmission of mathematical model using the fractional derivative, Symmetry, 15 (2023). https://doi.org/10.3390/sym15040952 doi: 10.3390/sym15040952
|
| [8] | A. Atangana, S. Qureshi, Mathematical modeling of an autonomous nonlinear dynamical system for malaria transmission using Caputo derivative, in Fractional Order Analysis: Theory, Methods and Applications, WILEY, 2020. https://doi.org/10.1002/9781119654223.ch9 |
| [9] |
A. Kilicman, A fractional order SIR epidemic model for dengue transmission, Chaos, Solitons & Fractals, 114 (2018), 55–62. https://doi.org/10.1016/j.chaos.2018.06.031 doi: 10.1016/j.chaos.2018.06.031
|
| [10] |
V. P. Latha, F. A. Rihan, R. Rakkiyappan, G. Velmurugan, A fractional-order delay differential model for Ebola infection and CD8+ T-cells response: Stability analysis and Hopf bifurcation, Int. J. Biomath., 10 (2017). https://doi.org/10.1142/S179352451750111X doi: 10.1142/S179352451750111X
|
| [11] |
H. Singh, Analysis for fractional dynamics of Ebola virus model, Chaos, Solitons & Fractals, 138 (2020), 109992. https://doi.org/10.1016/j.chaos.2020.109992 doi: 10.1016/j.chaos.2020.109992
|
| [12] |
A. Abdullahi, Modelling of transmission and control of Lassa fever via Caputo fractional-order derivative, Chaos, Solitons & Fractals, 151 (2021), 111271. https://doi.org/10.1016/j.chaos.2021.111271 doi: 10.1016/j.chaos.2021.111271
|
| [13] |
Y. Ding, H. Ye, A fractional-order differential equation model of HIV infection of CD4+ T-cells, Math. Comput. Modell., 50 (2009), 386–392. https://doi.org/10.1016/j.mcm.2009.04.019 doi: 10.1016/j.mcm.2009.04.019
|
| [14] |
I. Ullah, S. Ahmad, M. U. Rahman, M. Arfan, Investigation of fractional order tuberculosis (TB) model via Caputo derivative, Chaos, Solitons & Fractals, 142 (2021), 110479. https://doi.org/10.1016/j.chaos.2020.110479 doi: 10.1016/j.chaos.2020.110479
|
| [15] |
J. Danane, K. Allali, Z. Hammouch, Mathematical analysis of a fractional differential model of HBV infection with antibody immune response, Chaos, Solitons & Fractals, 136 (2020), 109787. https://doi.org/10.1016/j.chaos.2020.109787 doi: 10.1016/j.chaos.2020.109787
|
| [16] |
M. A. Khan, Z. Hammouch, D. Baleanu, Modeling the dynamics of hepatitis E via the Caputo–Fabrizio derivative, Math. Modell. Nat. Phenom., 14 (2019). https://doi.org/10.1051/mmnp/2018074 doi: 10.1051/mmnp/2018074
|
| [17] |
H. Jafari, R. M. Ganji, N. S. Nkomo, Y. P. Lv, A numerical study of fractional order population dynamics model, Results Phys., 27 (2021), 104456. https://doi.org/10.1016/j.rinp.2021.104456 doi: 10.1016/j.rinp.2021.104456
|
| [18] |
M. F. Farayola, S. Shafie, F. M. Siam, I. Khan, Mathematical modeling of radiotherapy cancer treatment using Caputo fractional derivative, Comput. Methods Programs Biomed., 188 (2020), 105306. https://doi.org/10.1016/j.cmpb.2019.105306 doi: 10.1016/j.cmpb.2019.105306
|
| [19] |
S. Kumar, R. Kumar, C. Cattani, B. Samet, Chaotic behaviour of fractional predator-prey dynamical system, Chaos, Solitons & Fractals, 135 (2020), 109811. https://doi.org/10.1016/j.chaos.2020.109811 doi: 10.1016/j.chaos.2020.109811
|
| [20] |
H. M. Ali, F. L. Pereira, S. M. A. Gama, A new approach to the Pontryagin maximum principle for nonlinear fractional optimal control problems, Math. Methods Appl. Sci., 39 (2016), 3640–3649. https://doi.org/10.1002/mma.3811 doi: 10.1002/mma.3811
|
| [21] |
H. Kheiri, M. Jafari, Fractional optimal control of an HIV/AIDS epidemic model with random testing and contact tracing, J. Appl. Math. Comput., 60 (2019), 387–411. https://doi.org/10.1007/s12190-018-01219-w doi: 10.1007/s12190-018-01219-w
|
| [22] | S. Rosa, D. F. M. Torres, Optimal control and sensitivity analysis of a fractional order TB model, preprint, arXiv: 1812.04507. |
| [23] |
T. A. Yildız, S. Arshad, D. Baleanu, Optimal chemotherapy and immunotherapy schedules for a cancer‐obesity model with Caputo time fractional derivative, Math. Methods Appl. Sci., 41 (2018), 9390–9407. https://doi.org/10.1002/mma.5298 doi: 10.1002/mma.5298
|
| [24] |
H. M. Ali, I. G. Ameen, Save the pine forests of wilt disease using a fractional optimal control strategy, Chaos, Solitons & Fractals, 132 (2020), 109554. https://doi.org/10.1016/j.chaos.2019.109554 doi: 10.1016/j.chaos.2019.109554
|
| [25] |
D. Chalishajar, D. Kasinathan, R. Kasinathan, R. Kasinathan, Viscoelastic Kelvin-Voigt model on Ulam-Hyer's stability and T-controllability for a coupled integro fractional stochastic systems with integral boundary conditions via integral contractors, Chaos, Solitons & Fractals, 191 (2025), 115785. https://doi.org/10.1016/j.chaos.2024.115785 doi: 10.1016/j.chaos.2024.115785
|
| [26] |
D. Kasinathan, D. Chalishajar, R. Kasinathan, R. Kasinathan, Exponential stability of non-instantaneous impulsive second-order fractional neutral stochastic differential equations with state-dependent delay, J. Comput. Appl. Math., 451 (2024), 116012. https://doi.org/10.1016/j.cam.2024.116012 doi: 10.1016/j.cam.2024.116012
|
| [27] |
D. Kumar, J. Singh, M. A. Qurashi, D. Baleanu, A new fractional SIRS-SI malaria disease model with application of vaccines, antimalarial drugs, and spraying, Adv. Differ. Equ., 2019 (2019). https://doi.org/10.1186/s13662-019-2199-9 doi: 10.1186/s13662-019-2199-9
|
| [28] |
S. Suganya, V. Parthiban, L. Shangerganesh, S. Hariharan, Transmission dynamics of fractional order SVEIR model for African swine fever virus with optimal control analysis, Sci. Rep., 14 (2024). https://doi.org/10.1038/s41598-024-78140-9 doi: 10.1038/s41598-024-78140-9
|
| [29] |
M. Aakash, C. Gunasundari, M. Qasem, Al-Mdallal, Mathematical modeling and simulation of SEIR model for COVID-19 outbreak: A case study of Trivandrum, Front. Appl. Math. Stat., 9 (2023). http://dx.doi.org/10.3389/fams.2023.1124897 doi: 10.3389/fams.2023.1124897
|
| [30] |
M. Awais, F. S. Alshammari, S. Ullah, M. A. Khan, S. Islam, Modeling and simulation of the novel coronavirus in Caputo derivative, Results Phys., 19 (2020), https://doi.org/10.1016/j.rinp.2020.103588 doi: 10.1016/j.rinp.2020.103588
|
| [31] |
P. Kumar, V. S. Erturk, The analysis of a time delay fractional COVID‐19 model via Caputo type fractional derivative, Math. Methods Appl. Sci., 46 (2023), 7618–7631. https://doi.org/10.1002/mma.6935 doi: 10.1002/mma.6935
|
| [32] |
K. Rajagopal, N. Hasanzadeh, F. Parastesh, I. I. Hamarash, S. Jafari, I. Hussain, A fractional-order model for the novel coronavirus (COVID-19) outbreak, Nonlinear Dyn., 101 (2020), 711–718. https://doi.org/10.1007/s11071-020-05757-6 doi: 10.1007/s11071-020-05757-6
|
| [33] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, 2006. |
| [34] |
I. Ameen, D. Baleanu, H. M. Ali, An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment, Chaos, Solitons & Fractals, 137 (2020), 109892. https://doi.org/10.1016/j.chaos.2020.109892 doi: 10.1016/j.chaos.2020.109892
|
| [35] | Y. Zhou, Basic Theory of Fractional Differential Equations, World scientific, 2023. |
| [36] |
P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
|
| [37] |
D. Chalishajar, D. Kasinathan, R. Kasinathan, R. Kasinathan, Exponential stability, T-controllability and optimal controllability of higher-order fractional neutral stochastic differential equation via integral contractor, Chaos, Solitons & Fractals, 186 (2024), 115278. https://doi.org/10.1016/j.chaos.2024.115278 doi: 10.1016/j.chaos.2024.115278
|
| [38] |
R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problem, Math. Methods Appl. Sci., 37 (2014), 1668–1686. https://doi.org/10.1002/mma.2928 doi: 10.1002/mma.2928
|
| [39] | S. Lenhart, J. T. Workman, Optimal Control Applied to Biological Models, Chapman and Hall/CRC, 2007. |
| [40] |
K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002), 3–22. https://doi.org/10.1023/A:1016592219341 doi: 10.1023/A:1016592219341
|
| [41] |
K. Diethelm, N. J. Ford, A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31–52. https://doi.org/10.1023/B:NUMA.0000027736.85078.be doi: 10.1023/B:NUMA.0000027736.85078.be
|
| [42] |
M. Aakash, C. Gunasundari, Effect of partially and fully vaccinated individuals in some regions of India: A mathematical study on COVID-19 outbreak, Commun. Math. Biol. Neurosci., 2023 (2023). https://doi.org/10.28919/cmbn/7825 doi: 10.28919/cmbn/7825
|