In this paper, we propose a two-grid algorithm for nonlinear time fractional parabolic equations by H1-Galerkin mixed finite element discreitzation. First, we use linear finite elements and Raviart-Thomas mixed finite elements for spatial discretization, and L1 scheme on graded mesh for temporal discretization to construct a fully discrete approximation scheme. Second, we derive the stability and error estimates of the discrete scheme. Third, we present a two-grid method to linearize the nonlinear system and discuss its stability and convergence. Finally, we confirm our theoretical results by some numerical examples.
Citation: Jun Pan, Yuelong Tang. Two-grid H1-Galerkin mixed finite elements combined with L1 scheme for nonlinear time fractional parabolic equations[J]. Electronic Research Archive, 2023, 31(12): 7207-7223. doi: 10.3934/era.2023365
[1] | Lisa Bigler, Malgorzata Peszynska, Naren Vohra . Heterogeneous Stefan problem and permafrost models with P0-P0 finite elements and fully implicit monolithic solver. Electronic Research Archive, 2022, 30(4): 1477-1531. doi: 10.3934/era.2022078 |
[2] | Jianxia He, Qingyan Li . On the global well-posedness and exponential stability of 3D heat conducting incompressible Navier-Stokes equations with temperature-dependent coefficients and vacuum. Electronic Research Archive, 2024, 32(9): 5451-5477. doi: 10.3934/era.2024253 |
[3] | Dandan Song, Xiaokui Zhao . Large time behavior of strong solution to the magnetohydrodynamics system with temperature-dependent viscosity, heat-conductivity, and resistivity. Electronic Research Archive, 2025, 33(2): 938-972. doi: 10.3934/era.2025043 |
[4] | Lanfang Zhang, Jijun Ao, Na Zhang . Eigenvalue properties of Sturm-Liouville problems with transmission conditions dependent on the eigenparameter. Electronic Research Archive, 2024, 32(3): 1844-1863. doi: 10.3934/era.2024084 |
[5] | Qingcong Song, Xinan Hao . Positive solutions for fractional iterative functional differential equation with a convection term. Electronic Research Archive, 2023, 31(4): 1863-1875. doi: 10.3934/era.2023096 |
[6] | Hami Gündoğdu . RETRACTED ARTICLE: Impact of damping coefficients on nonlinear wave dynamics in shallow water with dual damping mechanisms. Electronic Research Archive, 2025, 33(4): 2567-2576. doi: 10.3934/era.2025114 |
[7] | Ismail T. Huseynov, Arzu Ahmadova, Nazim I. Mahmudov . Perturbation properties of fractional strongly continuous cosine and sine family operators. Electronic Research Archive, 2022, 30(8): 2911-2940. doi: 10.3934/era.2022148 |
[8] | Xi Liu, Huaning Liu . Arithmetic autocorrelation and pattern distribution of binary sequences. Electronic Research Archive, 2025, 33(2): 849-866. doi: 10.3934/era.2025038 |
[9] | Rong Chen, Shihang Pan, Baoshuai Zhang . Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29(1): 1691-1708. doi: 10.3934/era.2020087 |
[10] | Yixin Sun, Lei Wu, Peng Chen, Feng Zhang, Lifeng Xu . Using deep learning in pathology image analysis: A novel active learning strategy based on latent representation. Electronic Research Archive, 2023, 31(9): 5340-5361. doi: 10.3934/era.2023271 |
In this paper, we propose a two-grid algorithm for nonlinear time fractional parabolic equations by H1-Galerkin mixed finite element discreitzation. First, we use linear finite elements and Raviart-Thomas mixed finite elements for spatial discretization, and L1 scheme on graded mesh for temporal discretization to construct a fully discrete approximation scheme. Second, we derive the stability and error estimates of the discrete scheme. Third, we present a two-grid method to linearize the nonlinear system and discuss its stability and convergence. Finally, we confirm our theoretical results by some numerical examples.
Since Hirsch and Smale[1] proposed the necessity of structural stability, this topic has received sufficient attention from scholars. This type of research focuses on whether small disturbances in the coefficients, initial data, and geometric models in the equations will cause significant disturbances in the solutions. At the beginning, people were mainly keen on dealing with the continuous dependence and convergence of fluid in porous media defined in two-dimensional or three-dimensional bounded regions. Freitas et al. [2] studied the long-term behavior of porous-elastic systems and proved that solutions depend continuously on the initial data. Payne and Straughan[3] established a prior bounds and maximum principles for the solutions and obtained the structural stability of Darcy fluid in porous media, where they assumed that the temperature satisfies Newton's cooling conditions at the boundary. Scott[4] considered the situation where Darcy fluid undergoes exothermic reactions at the boundary and obtained the continuous dependence of the solutions on the boundary parameters. Li et al.[5] studied the interface connection between Brinkman–Forchheimer fluid and Darcy fluid in a bounded region, and obtained the continuous dependence on the heat source and Forchheimer coefficient. For more papers, on can see [6,7,8,9,10].
With the continuous development of technology and progress in the field of engineering, the necessity of studying the structural stability of fluid equations on a semi-infinite cylinder is even more urgent. The semi-infinite cylinder refers to a cylinder whose generatrix is parallel to the coordinate axis and its base is located on the coordinate plane, i.e.,
R={(x1,x2,x3)|(x1,x2)∈D, x3≥0}, |
where D is a bounded domain on x1Ox2.
Li et al. have already done some work on this topic. Li and Lin[11] proved the continuous dependence on the Forchheimer coefficient of the Brinkman–Forchheimer equations in R. Papers [12] and [13] obtained structural stability for Forchheimer fluid and temperature-dependent bidispersive flow in R, respectively.
In this paper, we introduce a new cylinder with a disturbed base, which has been considered in [14]. Let D(f) represent the disturbed base, i.e.,
D(f)={(x1,x2,x3)|x3=f(x1,x2)≥0, (x1,x2)∈D}, |
where the given function f satisfies
|f(x1,x2)|<ϵ, ϵ>0. |
ϵ is called the perturbation parameter. The cylinder with a disturbed base is defined as
R(f)={(x1,x2,x3)|(x1,x2)∈D, x3≥f(x1,x2)≥0}. |
Different from [14], we study the heat conduction equation applicable to the study of layered composite materials in binary mixtures[15]
b1ut=k1△u−γ(u−v), in R×{t>0}, | (1.1) |
b2vt=k2△v+γ(u−v), in R×{t>0}, | (1.2) |
u=v=0, on ∂D×{x3>0}×{t>0}, | (1.3) |
u=v=0, in R×{t=0}, | (1.4) |
where k1,k2,b1,b2 and γ are positive constants. u and v are the temperature fields in each constituent. Papers [16,17,18] further discussed and generalized the application of Eqs (1.1) and (1.2).
In this paper, we shall also use the notations
R(z)={(x1,x2,x3)|(x1,x2)∈D,x3≥z≥0}, |
D(z)={(x1,x2,x3)|(x1,x2)∈D,x3=z≥0}. |
The main work of this article investigates the continuous dependence of solutions to Eqs (1.1)–(1.4) on perturbation parameters and base data. Due to many practical constraints, it is very common for the base of the cylinder to experience minor disturbance. Therefore, studying the effects of these disturbances is essential. To this end, we assume that u∗ and v∗ are perturbed solutions of Eqs (1.1)–(1.4) on R(f), and then prove that the difference between the unperturbed solutions and the perturbed solutions satisfies a first-order differential inequality. By solving this inequality, we can obtain the continuous dependence of the solution.
On the finite end D, we assume that the solutions to (1.1)–(1.4) satisfy
u(t,x)=L11(t,x1,x2), v(t,x)=L12(t,x1,x2),t>0, x3=0, (x1,x2)∈D(0), | (2.1) |
u∗(t,x)=L21(t,x1,x2), v∗(t,x)=L22(t,x1,x2),t>0, x3=f(x1,x2), (x1,x2)∈D(0). | (2.2) |
In (2.1) and (2.2), the known functions Lij(i,j=1,2) satisfy the compatibility conditions on ∂D.
We let that H1(t,x) and H2(t,x) are specific functions who have the same boundary conditions as u∗ and v∗, respectively. That is
H1(t,x)=L21(t,x1,x2)exp{−σ(x3−f)}, H2(t,x)=L22(t,x1,x2)exp{−σ(x3−f)}, | (2.3) |
where σ>0.
We now derive some lemmas.
Lemma 2.1. If L21,L22∈H1([0,∞)×D(f)), then
∫t0exp{−η1τ}[k1||∇u∗(τ)||2L2(R(f))+k2||∇v∗(τ)||2L2(R(f))]dτ≤d1(t), |
where
d1(t)=∫t0exp{−η1τ}[k1||∇H1||2L2(R(f))+k2||∇H2||2L2(R(f))]dτ+exp{−η1t}[b1||H1(t)||2L2(R(f))+b2||H2(t)||2L2(R(f))]+12∫t0exp{−η1τ}[b1η1||H1,τ(τ)||2L2(R(f))+b2η1||H2,τ(τ)||2L2(R(f))]dτ+12γ∫t0exp{−η1τ}||(H1−H2)(τ)||2L2(R(f))dτ. | (2.4) |
Proof. Using (1.1)–(1.4), we begin with
∫t0∫R(f)exp{−η1τ}[b1u∗τ−k1△u∗+γ(u∗−v∗)]u∗dxdτ=0,∫t0∫R(f)exp{−η1τ}[b2v∗τ−k2△v∗−γ(u∗−v∗)]v∗dxdτ=0. |
We compute
12exp{−η1t}[b1||u∗(t)||2L2(R(f))+b2||v∗(t)||2L2(R(f))]+∫t0exp{−η1τ}[b1η1||u∗(τ)||2L2(R(f))+b2η1||v∗(τ)||2L2(R(f))]dτ+∫t0exp{−η1τ}[k1||∇u∗(τ)||2L2(R(f))+k2||∇v∗(τ)||2L2(R(f))]dτ+γ∫t0exp{−η1τ}||(u∗−v∗)(τ)||2L2(R(f))dτ=−∫t0∫D(f)exp{−η1τ}[k1∂u∗∂x3u∗+k2∂v∗∂x3v∗]dAdτ. | (2.5) |
On the other hand, we use (2.3) to compute
−∫t0∫D(f)exp{−η1τ}[k1∂u∗∂x3u∗+k2∂v∗∂x3v∗]dAdτ=−∫t0∫D(f)exp{−η1τ}[k1∂u∗∂x3H1+k2∂v∗∂x3H2]dAdτ=∫t0∫R(f)exp{−η1τ}[k1∇⋅(∇u∗H1)+k2∇⋅(∇v∗H2)dxdτ=∫t0∫R(f)exp{−η1τ}[k1∇u∗⋅∇H1+k2∇v∗⋅∇H2]dxdτ+exp{−η1t}∫R(f)[b1u∗H1+b2v∗H2]dx+η1∫t0∫R(f)exp{−η1τ}[b1u∗H1,τ+b2v∗H2,τ]dxdτ+γ∫t0∫R(f)exp{−η1τ}(u∗−v∗)(H1−H2)dxdτ≐F1+F2+F3+F4. | (2.6) |
An application of the Schwarz inequality leads to
F1≤12∫t0exp{−η1τ}[k1||∇u∗(τ)||2L2(R(f))+k2||∇v∗(τ)||2L2(R(f))]dτ+12∫t0exp{−η1τ}[k1||∇H1||2L2(R(f))+k2||∇H2||2L2(R(f))]dτ, | (2.7) |
F2≤12exp{−η1t}[b1||u∗(t)||2L2(R(f))+b2||v∗(t)||2L2(R(f))]+12exp{−η1t}[b1||H1(t)||2L2(R(f))+b2||H2(t)||2L2(R(f))], | (2.8) |
F3≤∫t0exp{−η1τ}[b1η1||u∗(τ)||2L2(R(f))+b2η1||v∗(τ)||2L2(R(f))]dτ+14∫t0exp{−η1τ}[b1η1||H1,τ(τ)||2L2(R(f))+b2η1||H2,τ(τ)||2L2(R(f))]dτ, | (2.9) |
F4≤γ∫t0exp{−η1τ}||(u∗−v∗)(τ)||2L2(R(f))dτ+14γ∫t0exp{−η1τ}||(H1−H2)(τ)||2L2(R(f))dτ. | (2.10) |
Inserting Eqs (2.7)–(2.10) into (2.6) and combining (2.5), it can be obtained
∫t0exp{−η1τ}[k1||∇u∗(τ)||2L2(R(f))+k2||∇v∗(τ)||2L2(R(f))]dτ≤∫t0exp{−η1τ}[k1||∇H1||2L2(R(f))+k2||∇H2||2L2(R(f))]dτ+exp{−η1t}[b1||H1(t)||2L2(R(f))+b2||H2(t)||2L2(R(f))]+12∫t0exp{−η1τ}[b1η1||H1,τ(τ)||2L2(R(f))+b2η1||H2,τ(τ)||2L2(R(f))]dτ+12γ∫t0exp{−η1τ}||(H1−H2)(τ)||2L2(R(f))dτ. | (2.11) |
From (2.11), we can conclude that Lemma 2.1 holds.
We not only need a prior bounds for v and v∗, but also for u and u∗. Since u and u∗ are undisturbed solutions of Eqs (1.1)–(1.4), in Lemma 2.1 we only need to set f=0 and replace L21 and L22 with L11 and L12, respectively, and then we can obtain the a prior bounds for u and u∗.
Lemma 2.2. If L11,L12∈H1([0,∞)×D), then
∫t0exp{−η1τ}[k1||∇u(τ)||L2(R)+k2||∇v(τ)||L2(R)]dτ≤d2(t), |
where
d2(t)=∫t0exp{−η1τ}[k1||∇H3||2L2(R)+k2||∇H4||2L2(R)]dτ+exp{−η1t}[b1||H3(t)||2L2(R)+b2||H4(t)||2L2(R)]+12∫t0exp{−η1τ}[b1η1||H3,τ(τ)||2L2(R)+b2η1||H4,τ(τ)||2L2(R)]dτ+12γ∫t0exp{−η1τ}||(H3−H4)(τ)||2L2(R)dτ |
and
H3(t,x)=L11(t,x1,x2)exp{−σx3}, H4(t,x)=L12(t,x1,x2)exp{−σx3}. |
Remark 2.1. Lemmas 2.1 and 2.2 will provide a priori estimates for the proof of the lemmas in the next section.
Let w and s represent the difference between the perturbed solutions and the unperturbed solutions, i.e.,
w=u−u∗, s=v−v∗, | (3.1) |
then w and s satisfy
b1wt=k1△w−γ(w−s), in R(ϵ)×{t>0}, | (3.2) |
b2st=k2△s+γ(w−s), in R(ϵ)×{t>0}, | (3.3) |
w=s=0, on ∂D×{x3>ϵ}×{t>0}, | (3.4) |
w=s=0, in R(ϵ)×{t=0}. | (3.5) |
To obtain the continuous dependence of the solution on the perturbation parameter, we establish a new energy function
V(t,x3)=∫t0[||w(τ)||2L2(R(x3))+||s(τ)||2L2(R(x3))]dτ, x3≥ϵ. | (3.6) |
Noting the definition of R(x3), we can obtain the derivative of V(t,x3) as follows:
−∂∂x3V(t,x3)=∫t0[||w(τ)||2L2(D(x3))+||s(τ)||2L2(D(x3))]dτ. |
We introduce two auxiliary functions φ and ψ such that
b1φτ+k1△φ=−w, b2ψτ+k2△ψ=−s, in R(x3),0<τ<t, | (3.7) |
φ(τ,x1,x2,x3)=ψ(τ,x1,x2,x3)=0, on ∂D×{x3},0<τ<t, | (3.8) |
φ(τ,x1,x2,x3)=ψ(τ,x1,x2,x3)=0, (x1,x2)∈D,0<τ<t, | (3.9) |
φ(t,x)=ψ(t,x)=0, in R(x3), | (3.10) |
φ,∇φ,ψ,∇ψ→0(uniformly in x1,x2,τ) as x3→∞, | (3.11) |
where x3>ϵ.
Next, we will derive some necessary properties of the auxiliary functions, which will play a crucial role in proving the continuous dependence of the solutions.
Lemma 3.1. If φ,ψ∈H1([0,t]×R(x3)), then
∫t0[b1||φτ(τ)||2L2(R(x3))+b2||ψτ(τ)||2L2(R(x3))]dτ≤a1V(t,x3), x3≥ϵ, |
where a1=max{b−11,b−12}.
Proof. We begin with
∫t0∫R(x3)φτ[b1φτ+k1△φ+w]dxdτ=0,∫t0∫R(x3)ψτ[b2ψτ+k2△ψ+s]dxdτ=0. |
Using the divergence theorem ∮∂R(x3)Fds=∫R(x3)divFdx and (3.8)–(3.11), we have
b1∫t0||φτ(τ)||2L2(R(x3))dτ=−12k1||∇φ(0)||2L2(R(x3))+∫t0∫R(x3)wφτdxdτ≤[∫t0||φτ(τ)||2L2(R(x3))dτ∫t0||w(τ)||2L2(R(x3))dτ]12, | (3.12) |
and
b2∫t0||ψτ(τ)||2L2(R(x3))dτ≤[∫t0||ψτ(τ)||2L2(R(x3))dτ∫t0||s(τ)||2L2(R(x3))dτ]12. | (3.13) |
Using the Schwarz inequality, (3.12) and (3.13), Lemma 3.1 can be obtained.
Lemma 3.2. If φ,ψ∈H1(R(x3)), then
∫t0[k1||∇φ(τ)||2L2(R(x3))+k2||∇ψ(τ)||2L2(R(x3))]dτ≤a2V(t,x3), |
where a2=1λmax{k−11,k−12}.
Proof. We begin with
∫t0∫R(x3)φ[b1φτ+k1△φ+w]dxdτ=0,∫t0∫R(x3)φ[b2ψτ+k2△ψ+s]dxdτ=0. |
Using the divergence theorem and Lemma 2.2, we have
k1∫t0||∇φ(τ)||2L2(R(x3))dτ=−12b1||φ(0)||2L2(R(x3))+∫t0∫R(x3)wφdxdτ≤[∫t0||φ(τ)||2L2(R(x3))dτ∫t0||w(τ)||2L2(R(x3))dτ]12≤1√λ[∫t0||∇2φ(τ)||2L2(R(x3))dτ∫t0||w(τ)||2L2(R(x3))dτ]12 | (3.14) |
and
k2∫t0||∇ψ(τ)||2L2(R(x3))dτ≤1√λ[∫t0||∇2ψ(τ)||2L2(R(x3))dτ∫t0||s(τ)||2L2(R(x3))dτ]12. | (3.15) |
Using the following inequality
√ab+√cd≤√(a+c)(b+d), for a,b,c,d>0, | (3.16) |
the Young inequality and Lemma 3.1, we can have from (3.14) and (3.15)
∫t0[k1||∇φ(τ)||2L2(R(x3))+k2||∇ψ(τ)||2L2(R(x3))]dτ≤1√λ{∫t0[k1||∇2φ(τ)||2L2(R(x3))+k2||∇2ψ(τ)||2L2(R(x3))]dτ⋅∫t0[k−11||w(τ)||2L2(R(x3))+k−12||s(τ)||2L2(R(x3))]dτ}12. | (3.17) |
From (3.17) we can obtain Lemma 3.2.
Lemma 3.3. If φ,ψ∈H1(R(x3)), then
k1∫t0||∂φ∂x3(τ)||2L2(D(x3))dτ+k2∫t0||∂ψ∂x3(τ)||2L2(D(x3))dτ≤a3V(t,x3), |
where a3 is a positive constant.
Proof. Letting δ be a positive constant. We compute
∫t0∫R(x3)[∂φ∂x3−δφτ][b1φτ+k1△φ+w]dxdτ=0, | (3.18) |
∫t0∫R(x3)[∂ψ∂x3−δψτ][b2ψτ+k2△ψ+s]dxdτ=0. | (3.19) |
Using the divergence theorem and (3.8)–(3.10) in (3.18) and (3.19), we obtain
12k1δ||∇φ(0)||2L2(R(x3))dτ+b1δ∫t0||φτ(τ)||2L2(R(x3))dτ+12k1∫t0||∂φ∂x3(τ)||2L2(D(x3))dτ=∫t0∫R(x3)∂φ∂x3φτdxdτ+∫t0∫R(x3)[∂φ∂x3−δφτ]wdxdτ. | (3.20) |
Using the Schwarz inequality, we obtain
∫t0∫R(x3)∂φ∂x3φτdxdτ≤[∫t0||∂φ∂x3(τ)||2L2(R(x3))dτ∫t0||φτ(τ)||2L2(R(x3))dτ]12, | (3.21) |
∫t0∫R(x3)∂φ∂x3wdxdτ≤[∫t0||∂φ∂x3(τ)||2L2(R(x3))dτ∫t0||w(τ)||2L2(R(x3))dτ]12, | (3.22) |
−δ∫t0∫R(x3)φτwdxdτ≤δ[∫t0||φτ(τ)||2L2(R(x3))dτ∫t0||w(τ)||2L2(R(x3))dτ]12. | (3.23) |
Inserting (3.21)–(3.23) into (3.20) and dropping the first two terms in the left of (3.20), we have
12k1∫t0||∂φ∂x3(τ)||2L2(D(x3))dτ≤[∫t0||∂φ∂x3(τ)||2L2(R(x3))dτ∫t0||φτ(τ)||2L2(R(x3))dτ]12+[∫t0||∂φ∂x3(τ)||2L2(R(x3))dτ∫t0||w(τ)||2L2(R(x3))dτ]12+δ[∫t0||φτ(τ)||2L2(R(x3))dτ∫t0||w(τ)||2L2(R(x3))dτ]12. | (3.24) |
Similar, we can also have from (3.19)
12k2∫t0||∂ψ∂x3(τ)||2L2(D(x3))dτ≤[∫t0||∂ψ∂x3(τ)||2L2(R(x3))dτ∫t0||ψτ(τ)||2L2(R(x3))dτ]12+[∫t0||∂ψ∂x3(τ)||2L2(R(x3))dτ∫t0||s(τ)||2L2(R(x3))dτ]12+δ[∫t0||ψτ(τ)||2L2(R(x3))dτ∫t0||s(τ)||2L2(R(x3))dτ]12. | (3.25) |
Using (3.16) and Lemmas 3.1 and 3.2, we obtain
k1∫t0||∂φ∂x3(τ)||2L2(D(x3))dτ+k2∫t0||∂ψ∂x3(τ)||2L2(D(x3))dτ≤2a1a2{∫t0[b1||∂φ∂x3(τ)||2L2(R(x3))+b2||∂ψ∂x3(τ)||2L2(R(x3))]dτ⋅∫t0[k1||φτ(τ)||2L2(R(x3))+k2||ψτ(τ)||2L2(R(x3))]dτ}12+2a2{∫t0[b1||∂φ∂x3(τ)||2L2(R(x3))+b2||∂ψ∂x3(τ)||2L2(R(x3))]dτ⋅∫t0[||w(τ)||2L2(R(x3))+||s(τ)||2L2(R(x3))]dτ}12+2a1δ{∫t0[k1||φτ(τ)||2L2(R(x3))+k2||ψτ(τ)||2L2(R(x3))]dτ⋅∫t0[||w(τ)||2L2(R(x3))+||s(τ)||2L2(R(x3))]dτ}12≤a3V(t,x3), | (3.26) |
where a3=2a21a22+2a22+2a21.
In the next section, we will use Lemma 3.3 to derive the continuous dependence of the solutions.
In this section, we first derive a bound for V(t,ϵ). To do this, we define
u(t,x)=L11(t,x1,x2), v(t,x)=L12(t,x1,x2), −ϵ≤x3≤0,(x1,x2)∈D,t∈[0,+∞), | (4.1) |
u∗(t,x)=L21(t,x1,x2), v∗(t,x)=L22(t,x1,x2), −ϵ≤x3≤f(x1,x2),(x1,x2)∈D,t∈[0,+∞). | (4.2) |
When −ϵ≤x3≤ϵ, we let
w(t,x)=u(t,x)−u∗(t,x), s(t,x)=v(t,x)−v∗(t,x),(x1,x2)∈D,t∈[0,+∞). | (4.3) |
In view of (3.1) and (4.3), using the triangle inequality, it can be obtained that
k1∫t0∫R(−ϵ)(∂w∂x3)2dxdτ+k2∫t0∫R(−ϵ)(∂s∂x3)2dxdτ≤∫t0∫R(−ϵ)[k1(∂u∂x3)2+k2(∂v∂x3)2]dxdτ+∫t0∫R(−ϵ)[k1(∂u∗∂x3)2+k2(∂v∗∂x3)2]dxdτ. | (4.4) |
Using Lemmas 2.1 and 2.2, (4.1) and (4.2), from (4.4), we obtain
k1∫t0∫R(−ϵ)(∂w∂x3)2dxdτ+k2∫t0∫R(−ϵ)(∂s∂x3)2dxdτ≤∫t0∫R[k1(∂u∂x3)2+k2(∂v∂x3)2]dxdτ+∫t0∫R(f)[k1(∂u∗∂x3)2+k2(∂v∗∂x3)2]dxdτ.≤eη1t[d1(t)+d2(t)]≐d3(t). | (4.5) |
Now, we write the main theorem as:
Theorem 4.1. If L11,L12∈H1([0,∞)×R),L21,L22∈H1([0,∞)×R(f)) and t<π4a1γ, then
V(t,x3)≤exp{−d4(x3−ϵ)}{32d4πmax{1k1,1k2}d3(t)ϵ+d5∫t0[||(L11−L21)(τ)||2L2(D)+||(L12−L22)(τ)||2L2(D)]dτ},x3≥ϵ |
holds, where d4=a−13max{k1,k2}−1 and d5=d4π2+2d4.
Proof. Let x3≥ϵ be a fixed point on the coordinate axis x3. Using (3.7)–(3.11) and the divergence theorem, we can have
V(x3,t)=−∫t0∫R(x3)w[b1φτ+k1△φ]dxdτ−∫t0∫R(x3)s[b2ψτ+k2△ψ]dxdτ=−∫t0∫R(x3)[b1φτw+b2ψτs]dxdτ+∫t0∫R(x3)[k1∇w⋅∇φ+k2∇s⋅∇ψ]dxdτ+∫t0∫D(x3)[k1w∂φ∂x3+k2s∂ψ∂x3]dAdτ=−∫t0∫R(x3)[b1φτw+b2ψτs]dxdτ−∫t0∫R(x3)[k1△wφ+k2△sψ]dxdτ+∫t0∫D(x3)[k1w∂φ∂x3+k2s∂ψ∂x3]dAdτ=−∫t0∫R(x3)[b1φτw+b2ψτs]dxdτ−∫t0∫R(x3)[b1φwτ+b2ψsτ]dxdτ+∫t0∫D(x3)[k1w∂φ∂x3+k2s∂ψ∂x3]dAdτ−γ∫t0∫R(x3)(φ−ψ)(w−s)dxdτ. | (4.6) |
In light of (1.4) and (3.10), it is clear that
∫t0∫R(x3)[b1φτw+b1φwτ]dxdτ=0, ∫t0∫R(x3)[b2ψτs+b2ψsτ]dxdτ=0. | (4.7) |
A combination of the Hölder inequality, (3.16) and Lemma 3.3 leads to
∫t0∫D(x3)[k1w∂φ∂x3+k2s∂ψ∂x3]dAdτ≤k1[∫t0||∂φ∂x3(τ)||2L2(D(x3))dτ∫t0||w(τ)||2L2(D(x3))dτ]12+k2[∫t0||∂ψ∂x3(τ)||2L2(D(x3))dτ∫t0||s(τ)||2L2(D(x3))dτ]12≤max{√k1,√k2}[∫t0(k1||∂φ∂x3(τ)||2L2(D(x3))+k2||∂ψ∂x3(τ)||2L2(D(x3)))dτ]12⋅[∫t0(||w(τ)||2L2(D(x3))+||s(τ)||2L2(D(x3)))dτ]12≤√a3max{√k1,√k2}√V(t,x3)[−∂∂x3V(t,x3)]12. | (4.8) |
For the fourth term in the right of (4.6), we compute
−γ∫t0∫R(x3)(φ−ψ)(w−s)dxdτ≤γ[∫t0(||φ(τ)||2L2(R(x3))+||ψ(τ)||2L2(R(x3)))dτ⋅∫t0(||w(τ)||2L2(R(x3))+||s(τ)||2L2(R(x3)))dτ]12. | (4.9) |
Using the inequality (see p182 in [19])
∫10ϕ2dx≤4π2∫10(ϕ′)2dx, for ϕ(0)=0, | (4.10) |
we have from (4.9)
−γ∫t0∫R(x3)(φ−ψ)(w−s)dxdτ≤γ2tπ[∫t0(||φτ(τ)||2L2(R(x3))+||ψτ(τ)||2L2(R(x3)))dτV(t,x3)]12≤γ2tπa1V(t,x3), | (4.11) |
where we have also used Lemma 3.1. Combining (4.6), (4.7), (4.8) and (4.11) and choosing t<π4a1γ, we can have
V(t,x3)≤−1d4∂∂x3V(t,x3),x3>ϵ. | (4.12) |
Integrating (4.12) from ϵ to x3, we have
V(t,x3)≤V(t,ϵ)exp{−d4(x3−ϵ)},x3≥ϵ. | (4.13) |
Equation (4.13) only indicates that the solutions to (1.1)–(1.4) decay exponentially as x3→∞. This decay result is not rigorous because we do not yet know whether V(t,ϵ) depends on the perturbation parameter ϵ. Therefore, we derive the explicit bound of V(t,ϵ) in terms of ϵ and Lij(ij=1,2).
After letting x3=ϵ in (4.12), we have
V(ϵ,t)≤1d4∫t0[||w(τ)||2L2(D(ϵ))+||s(τ)||2L2(D(ϵ))]dAdτ=2d4∫t0∫ϵ−ϵ∫D(x3)[w∂w∂x3+s∂s∂x3]dxdτ+2d4∫t0[||(L11−L21)(τ)||2L2(D)+||(L12−L22)(τ)||2L2(D)]dτ≤2d4[∫t0||w(τ)||2L2(D(x3)×[−ϵ,ϵ])dτ∫t0||∂w∂x3(τ)||2L2(D(x3)×[−ϵ,ϵ])dτ]12+2d4[∫t0||s(τ)||2L2(D(x3)×[−ϵ,ϵ])dτ∫t0||∂s∂x3(τ)||2L2(D(x3)×[−ϵ,ϵ])dτ]12+2d4∫t0[||(L11−L21)(τ)||2L2(D)+||(L12−L22)(τ)||2L2(D)]dτ. | (4.14) |
Using (4.10) again, we have
∫t0||w(τ)||2L2(D(x3)×[−ϵ,ϵ])dτ≤16ϵ2π2∫t0||∂w∂x3(τ)||2L2(D(x3)×[−ϵ,ϵ])dτ+2ϵ∫t0||(L11−L21)(τ)||2L2(D)dτ, | (4.15) |
∫t0||s(τ)||2L2(D(x3)×[−ϵ,ϵ])dτ≤16ϵ2π2∫t0||∂s∂x3(τ)||2L2(D(x3)×[−ϵ,ϵ])dτ+2ϵ∫t0||(L12−L22)(τ)||2L2(D)dτ. | (4.16) |
Inserting (4.15) into (4.16) and combining the Schwarz inequality, we obtain
V(ϵ,t)≤32d4πϵ∫t0[||∂w∂x3(τ)||2L2(D(x3)×[−ϵ,ϵ])+||∂s∂x3(τ)||2L2(D(x3)×[−ϵ,ϵ])]dτ+[d4π2+2d4]∫t0[||(L11−L21)(τ)||2L2(D)+||(L12−L22)(τ)||2L2(D)]dτ≤32d4πmax{1k1,1k2}ϵ∫t0[k1||∂w∂x3(τ)||2L2(R(−ϵ))+k2||∂s∂x3(τ)||2L2(R(−ϵ))]dτ+[d4π2+2d4]∫t0[||(L11−L21)(τ)||2L2(D)+||(L12−L22)(τ)||2L2(D)]dτ. | (4.17) |
In view of (4.5) and (4.13), from (4.17) we have Theorem 4.1.
Remark 4.1. Theorem 4.1 indicates that V(t,x3) continuously depends on ϵ and the base data. That is, when ϵ approaches 0, then u(t,x3) and v(t,x3) approach 0. If ϵ=0, Theorem 4.1 is the Saint-Venant's principle type decay result.
Remark 4.2. In any cross-section of R, the continuous dependence result can still be obtained. We compute
∫t0[||w(τ)||2L2(D(x3))+||s(τ)||2L2(D(x3))]dτ=−2∫t0∫R(x3)[w∂w∂x3+s∂s∂x3]dxdτ≤2√V(x3)[∫t0[k1||∂w∂x3(τ)||2L2(R(−ϵ))+k2||∂s∂x3(τ)||2L2(R(−ϵ))]dτ]12. | (4.18) |
Using (4.18) and Theorem 4.1, we can obtain the continuous dependence result.
This article adopts the methods of the a prior estimates and energy estimate to obtain the continuous dependence of the solution on the base. This method can be further extended to other linear partial differential equation systems, such as pseudo-parabolic equation
ut=Δu+δΔut, |
where δ is a positive constant. However, for nonlinear equations (e.g., the Darcy equations), due to the inability to control nonlinear terms and derive a prior bounds for nonlinear terms, Lemma 3.3 will be difficult to obtain. This is a difficult problem we need to solve next.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work is supported by the Research Team Project of Guangzhou Huashang College (2021HSKT01).
The author declares there is no conflict of interest.
[1] | I. Podlubny, Fractional differential equations, in Mathematics in Science and Engineering, Academic Press, San Diego, 1999. |
[2] | Z. Sun, G. Gao, The Finite Difference Methods for Fractional Differential Equations, Science Press, Beijing, 2015. |
[3] | C. Li, F. Zeng, Numerical Methods for Fractional Calculas, Chapman and Hall/CRC Press, Boca Raton, 2015. https://doi.org/10.1201/b18503 |
[4] | F. Liu, P. Zhuang, Q. Liu, Numerical Methods for Fractional Partial Differential Equations and Their Applications, Science Press, Beijing, 2015. |
[5] |
Y. Lin, C. Xu, Finite difference/spectral approximation for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
![]() |
[6] |
M. Stynes, E. O'riordan, J. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057–1079. https://doi.org/10.1137/16M1082329 doi: 10.1137/16M1082329
![]() |
[7] |
X. Li, Y. Chen, C. Chen, An improved two-grid technique for the nonlinear time-fractional parabolic equation based on the block-centered finite difference method, J. Comput. Math., 40 (2022), 455–473. https://doi.org/10.4208/jcm.2011-m2020-0124 doi: 10.4208/jcm.2011-m2020-0124
![]() |
[8] | X. Peng, D. Xu, W. Qiu, Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burgers' equation, Math. Comput. Simulat., 208 (2023, ) 702–726. https://doi.org/10.1016/j.matcom.2023.02.004 |
[9] | H. Wang, Y. Chen, Y. Huang, W. Mao, A posteriori error estimates of the Galerkin spectral methods for space-time fractional diffusion equations, Adv. Appl. Math. Mech., 12 (2020), 87–100. |
[10] |
X. Li, C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), 2108–2131. https://doi.org/10.1137/080718942 doi: 10.1137/080718942
![]() |
[11] |
F. Liu, P. Zhuang, I. Turner, K. Burrage, V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 38 (2014), 3871–3878. https://doi.org/10.1016/j.apm.2013.10.007 doi: 10.1016/j.apm.2013.10.007
![]() |
[12] |
C. Huang, M. Stynes, Superconvergence of a finite element method for the multi-term time-fractional diffusion problem, J. Sci. Comput., 82 (2020), 10. https://doi.org/10.1007/s10915-019-01115-w doi: 10.1007/s10915-019-01115-w
![]() |
[13] |
B. Tang, Y. Chen, X. Lin, A posteriori error error estimates of spectral Galerkin methods for multi-term time fractional diffusion equations, Appl. Math. Lett., 120 (2021), 107259. https://doi.org/10.1016/j.aml.2021.107259 doi: 10.1016/j.aml.2021.107259
![]() |
[14] |
H. Liu, X. Zheng, C. Chen, H. Wang, A characteristic finite element method for the time-fractional mobile/immobile advection diffusion model, Adv. Comput. Math., 47 (2021), 41. https://doi.org/10.1007/s10444-021-09867-6 doi: 10.1007/s10444-021-09867-6
![]() |
[15] |
S. Toprakseven, A weak Galerkin finite element method for time fractional reaction-diffusion-convection problems with variable coefficients, Appl. Numer. Math., 168 (2021), 1–12. https://doi.org/10.1016/j.apnum.2021.05.021 doi: 10.1016/j.apnum.2021.05.021
![]() |
[16] |
Y. Zhao, P. Chen, W. Bu, X. Liu, Y. Tang, Two mixed finite element methods for time-fractional diffusion equations, J. Sci. Comput., 70 (2017), 407–428. https://doi.org/10.1007/s10915-015-0152-y doi: 10.1007/s10915-015-0152-y
![]() |
[17] |
Z. Shi, Y. Zhao, F. Liu, Y. Tang, F. Wang, Y. Shi, High accuracy analysis of an H1-Galerkin mixed finite element method for two-dimensional time fractional diffusion equations, Comput. Math. Appl., 74 (2017), 1903–1914. https://doi.org/10.1016/j.camwa.2017.06.057 doi: 10.1016/j.camwa.2017.06.057
![]() |
[18] |
M. Abbaszadeh, M. Dehghan, Analysis of mixed finite element method (MFEM) for solving the generalized fractional reaction-diffusion equation on nonrectangular domains, Comput. Math. Appl., 78 (2019), 1531–1547. https://doi.org/10.1016/j.camwa.2019.03.040 doi: 10.1016/j.camwa.2019.03.040
![]() |
[19] |
X. Li, Y. Tang, Interpolated coefficient mixed finite elements for semilinear time fractional diffusion equations, Fractal Fract., 7 (2023), 482. https://doi.org/10.3390/fractalfract7060482 doi: 10.3390/fractalfract7060482
![]() |
[20] |
M. Li, J. Zhao, C. Huang, S. Chen, Nonconforming virtual element method for the time fractional reaction-subdiffusion equation with non-smooth data, J. Sci. Comput., 81 (2019), 1823–1859. https://doi.org/10.1007/s10915-019-01064-4 doi: 10.1007/s10915-019-01064-4
![]() |
[21] |
S. Jiang, J. Zhang, Q. Zhang, Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21 (2017), 650–678. https://doi.org/10.4208/cicp.OA-2016-0136 doi: 10.4208/cicp.OA-2016-0136
![]() |
[22] | J. Shen, Z. Sun, R. Du, Fast finite difference schemes for time-fractional diffusion equations with a weak singularity at initial time, East Asian J. Appl. Math., 8 (2018), 834–858. |
[23] |
X. Gu, H. Sun, Y. Zhang, Y. Zhao, Fast implicit difference schemes for time-space fractional diffusion equations with the integral fractional Laplacian, Math. Methods Appl. Sci., 44 (2021), 441–463. https://doi.org/10.1002/mma.6746 doi: 10.1002/mma.6746
![]() |
[24] |
G. Gao, Z. Sun, H. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259 (2014), 33–50. https://doi.org/10.1016/j.jcp.2013.11.017 doi: 10.1016/j.jcp.2013.11.017
![]() |
[25] |
A. Alikhanov, C. Huang, A high-order L2 type difference scheme for the time-fractional diffusion equation, Appl. Meth. Comput., 411 (2021), 126545. https://doi.org/10.1016/j.amc.2021.126545 doi: 10.1016/j.amc.2021.126545
![]() |
[26] |
J. Ren, H. Liao, J. Zhang, Z. Zhang, Sharp H1-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems, J. Comput. Appl. Math., 389 (2021), 113352. https://doi.org/10.1016/j.cam.2020.113352 doi: 10.1016/j.cam.2020.113352
![]() |
[27] |
R. Feng, Y. Liu, Y. Hou, H. Li, Z. Fang, Mixed element algorithm based on a second-order time approximation scheme for a two-dimensional nonlinear time fractional coupled sub-diffusion model, Eng. Comput., 38 (2022), 51–68. https://doi.org/10.1007/s00366-020-01032-9 doi: 10.1007/s00366-020-01032-9
![]() |
[28] |
X. Zheng, H. Wang, A hidden-memory variable-order time-fractional optimal control model: Analysis and approximation, SIAM J. Control Optim., 59 (2021), 1851–1880. https://doi.org/10.1137/20M1344962 doi: 10.1137/20M1344962
![]() |
[29] |
C. Li, Z. Zhao, Y. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl., 62 (2011), 855–875. https://doi.org/10.1016/j.camwa.2011.02.045 doi: 10.1016/j.camwa.2011.02.045
![]() |
[30] |
D. Li, C. Wu, Z. Zhang, Linearized Galerkin fems for nonlinear time fractional parabolic problems with non-smooth solutions in time direction, J. Sci. Comput., 80 (2019), 403–419. https://doi.org/10.1007/s10915-019-00943-0 doi: 10.1007/s10915-019-00943-0
![]() |
[31] |
J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33 (1996), 1759–1777. https://doi.org/10.1137/S0036142992232949 doi: 10.1137/S0036142992232949
![]() |
[32] |
Q. Li, Y. Chen, Y. Huang, Y. Wang, Two-grid methods for semilinear time fractional reaction diffusion equations by expanded mixed finite element method, Appl. Numer. Math., 157 (2020), 38–54. https://doi.org/10.1016/j.apnum.2020.05.024 doi: 10.1016/j.apnum.2020.05.024
![]() |
[33] |
Y. Zeng, Z. Tan, Two-grid finite element methods for nonlinear time fractional variable coefficient diffusion equations, Appl. Math. Comput., 434 (2022), 127408. https://doi.org/10.1016/j.amc.2022.127408 doi: 10.1016/j.amc.2022.127408
![]() |
[34] |
H. Fu, B. Zhang, X. Zheng, A high-order two-grid difference method for nonlinear time-fractional Biharmonic problems and its unconditional α-robust error estimates, J. Sci. Comput., 96 (2023), 54. https://doi.org/10.1007/s10915-023-02282-7 doi: 10.1007/s10915-023-02282-7
![]() |
[35] |
W. Qiu, D. Xu, J. Guo, J. Zhou, A time two-grid algorithm based on finite difference method for the two-dimensional nonlinear time-fractional mobile/immobile transport model, Numer. Algor., 85 (2020), 39–58. https://doi.org/10.1007/s11075-019-00801-y doi: 10.1007/s11075-019-00801-y
![]() |
[36] |
A. Pehlivanov, G. Carey, R. Lazarov, Least-squares mixed finite elements for second-order elliptic problems, SIAM J. Numer. Anal., 31 (1994), 1368–1377. https://doi.org/10.1137/0731071 doi: 10.1137/0731071
![]() |
[37] |
A. Pani, An H1-Galerkin mixed finite element methods for parabolic partial differential equations, SIAM J. Numer. Anal., 35 (1998), 712–727. https://doi.org/10.1137/S0036142995280808 doi: 10.1137/S0036142995280808
![]() |
[38] |
D. Yang, A splitting positive definite mixed finite element method for miscible displacement of compressible flow in porous media, Numer. Methods Partial Differ. Equation, 17 (2001), 229–249. https://doi.org/10.1002/num.3 doi: 10.1002/num.3
![]() |
[39] |
Y. Liu, Y. Du, H. Li, J. Wang, An H1-Galerkin mixed finite element method for time fractional reaction-diffusion equation, J. Appl. Math. Comput., 47 (2015), 103–117. https://doi.org/10.1007/s12190-014-0764-7 doi: 10.1007/s12190-014-0764-7
![]() |
[40] |
J. Wang, T. Liu, H. Li, Y. Liu, S. He, Second-order approximation scheme combined with H1-Galerkin MFE method for nonlinear time fractional convection-diffusion equation, Comput. Math. Appl., 73 (2017), 1182–1196. https://doi.org/10.1016/j.camwa.2016.07.037 doi: 10.1016/j.camwa.2016.07.037
![]() |
[41] |
T. Hou, C. Liu, C. Dai, L. Chen, Y. Yang, Two-grid algorithm of H1-Galerkin mixed finite element methods for semilinear parabolic integro-differential equations, J. Comput. Math., 40 (2022), 667–685. https://doi.org/10.4208/jcm.2101-m2019-0159 doi: 10.4208/jcm.2101-m2019-0159
![]() |
[42] |
M. Tripathy, R. Sinha, Superconvergence of H1-Galerkin mixed finite element methods for parabolic problems, Appl. Anal., 88 (2009), 1213–1231. https://doi.org/10.1080/00036810903208163 doi: 10.1080/00036810903208163
![]() |
[43] | F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991. https:doi.org//10.1007/978-1-4612-3172-1 |
[44] |
R. Ewing, M. Liu, J. Wang, Superconvergence of mixed finite element approximations over quadrilaterals, SIAM J. Numer. Anal., 36 (1999), 772–787. https://doi.org/10.1137/S0036142997322801 doi: 10.1137/S0036142997322801
![]() |
[45] |
C. Huang, M. Stynes, Optimal H1 sptial convergence of a fully discrete finite element method for the time-fractional Allen-Cahn equation, Adv. Comput. Math., 46 (2020), 63. https://doi.org/10.1007/s10444-020-09805-y doi: 10.1007/s10444-020-09805-y
![]() |
[46] | R. Li, W. Liu, The AFEPack Handbook, 2006. Available from: http://dsec.pku.edu.cn/rli/software.php |
1. | Aliya Fahmi, Rehan Ahmed, Muhammad Aslam, Thabet Abdeljawad, Aziz Khan, Disaster decision-making with a mixing regret philosophy DDAS method in Fermatean fuzzy number, 2023, 8, 2473-6988, 3860, 10.3934/math.2023192 | |
2. | Dongmei Jing, Mohsen Imeni, Seyyed Ahmad Edalatpanah, Alhanouf Alburaikan, Hamiden Abd El-Wahed Khalifa, Optimal Selection of Stock Portfolios Using Multi-Criteria Decision-Making Methods, 2023, 11, 2227-7390, 415, 10.3390/math11020415 | |
3. | Aliya Fahmi, Fazli Amin, Sayed M Eldin, Meshal Shutaywi, Wejdan Deebani, Saleh Al Sulaie, Multiple attribute decision-making based on Fermatean fuzzy number, 2023, 8, 2473-6988, 10835, 10.3934/math.2023550 | |
4. | Ruijuan Geng, Ying Ji, Shaojian Qu, Zheng Wang, Data-driven product ranking: A hybrid ranking approach, 2023, 10641246, 1, 10.3233/JIFS-223095 | |
5. | Revathy Aruchsamy, Inthumathi Velusamy, Prasantha Bharathi Dhandapani, Suleman Nasiru, Christophe Chesneau, Ghous Ali, Modern Approach in Pattern Recognition Using Circular Fermatean Fuzzy Similarity Measure for Decision Making with Practical Applications, 2024, 2024, 2314-4785, 1, 10.1155/2024/6503747 | |
6. | Tarun Kumar, M. K. Sharma, 2024, Chapter 30, 978-981-97-2052-1, 403, 10.1007/978-981-97-2053-8_30 | |
7. | S. Niroomand, A. Mahmoodirad, A. Ghaffaripour, T. Allahviranloo, A. Amirteimoori, M. Shahriari, A bi-objective carton box production planning problem with benefit and wastage objectives under belief degree-based uncertainty, 2024, 9, 2364-4966, 10.1007/s41066-023-00423-9 | |
8. | Yanfeng Miao, Xuefei Gao, Weiye Jiang, Wei Xu, Ateya Megahed Ibrahim El-eglany, An evaluation model for interactive gaming furniture design based on parent-child behavior, 2024, 19, 1932-6203, e0302713, 10.1371/journal.pone.0302713 | |
9. | Noppasorn Sutthibutr, Navee Chiadamrong, Kunihiko Hiraishi, Suttipong Thajchayapong, A five-phase combinatorial approach for solving a fuzzy linear programming supply chain production planning problem, 2024, 11, 2331-1916, 10.1080/23311916.2024.2334566 | |
10. | Awdhesh Kumar Bind, Deepika Rani, Ali Ebrahimnejad, J.L. Verdegay, New strategy for solving multi-objective green four dimensional transportation problems under normal type-2 uncertain environment, 2024, 137, 09521976, 109084, 10.1016/j.engappai.2024.109084 | |
11. | Nilima Akhtar, Sahidul Islam, Linear fractional transportation problem in bipolar fuzzy environment, 2024, 17, 26667207, 100482, 10.1016/j.rico.2024.100482 | |
12. | Qianwei Zhang, Zhihua Yang, Binwei Gui, Two-stage network data envelopment analysis production games, 2024, 9, 2473-6988, 4925, 10.3934/math.2024240 | |
13. | Gourav Gupta, Deepika Rani, Neutrosophic goal programming approach for multi-objective fixed-charge transportation problem with neutrosophic parameters, 2024, 61, 0030-3887, 1274, 10.1007/s12597-024-00747-3 | |
14. | Ali N. A. Koam, Ali Ahmad, Ibtisam Masmali, Muhammad Azeem, Mehwish Sarfraz, Naeem Jan, Several intuitionistic fuzzy hamy mean operators with complex interval values and their application in assessing the quality of tourism services, 2024, 19, 1932-6203, e0305319, 10.1371/journal.pone.0305319 | |
15. | Muhammad Akram, Sundas Shahzadi, Syed Muhammad Umer Shah, Tofigh Allahviranloo, An extended multi-objective transportation model based on Fermatean fuzzy sets, 2023, 1432-7643, 10.1007/s00500-023-08117-9 | |
16. | Daud Ahmad, Kiran Naz, Mariyam Ehsan Buttar, Pompei C. Darab, Mohammed Sallah, Extremal Solutions for Surface Energy Minimization: Bicubically Blended Coons Patches, 2023, 15, 2073-8994, 1237, 10.3390/sym15061237 | |
17. | Nurdan Kara, Fatma Tiryaki, SOLVING THE MULTI-OBJECTIVE FRACTIONAL SOLID TRANSPORTATION PROBLEM BY USING DIFFERENT OPERATORS, 2024, 1072-3374, 10.1007/s10958-024-07140-x | |
18. | Muhammad Kamran, Manal Elzain Mohamed Abdalla, Muhammad Nadeem, Anns Uzair, Muhammad Farman, Lakhdar Ragoub, Ismail Naci Cangul, A Systematic Formulation into Neutrosophic Z Methodologies for Symmetrical and Asymmetrical Transportation Problem Challenges, 2024, 16, 2073-8994, 615, 10.3390/sym16050615 | |
19. | Aayushi Chachra, Akshay Kumar, Mangey Ram, A Markovian approach to reliability estimation of series-parallel system with Fermatean fuzzy sets, 2024, 190, 03608352, 110081, 10.1016/j.cie.2024.110081 | |
20. | R. Venugopal, C. Veeramani, V. T. Dhanaraj, E. Kungumaraj, 2024, Chapter 6, 978-981-97-6971-1, 125, 10.1007/978-981-97-6972-8_6 | |
21. | Muhammad Akram, Sundas Shahzadi, Syed Muhammad Umer Shah, Tofigh Allahviranloo, A fully Fermatean fuzzy multi-objective transportation model using an extended DEA technique, 2023, 8, 2364-4966, 1173, 10.1007/s41066-023-00399-6 | |
22. | Aakanksha Singh, Ritu Arora, Shalini Arora, A new Fermatean fuzzy multi‐objective indefinite quadratic transportation problem with an application to sustainable transportation, 2024, 0969-6016, 10.1111/itor.13513 | |
23. | Gülçin Büyüközkan, Deniz Uztürk, Öykü Ilıcak, Fermatean fuzzy sets and its extensions: a systematic literature review, 2024, 57, 1573-7462, 10.1007/s10462-024-10761-y | |
24. | Thiziri Sifaoui, Méziane Aïder, Beyond green borders: an innovative model for sustainable transportation in supply chains, 2024, 58, 0399-0559, 2185, 10.1051/ro/2024053 | |
25. | Tarun Kumar, Mukesh Kumar Sharma, Neutrosophic decision-making for allocations in solid transportation problems, 2024, 0030-3887, 10.1007/s12597-024-00819-4 | |
26. | Muhammad Waheed Rasheed, Abid Mahboob, Anfal Nabeel Mustafa, Israa Badi, Zainab Abdulkhaleq Ahmed Ali, Zainb H. Feza, Enhancing breast cancer treatment selection through 2TLIVq-ROFS-based multi-attribute group decision making, 2024, 7, 2624-8212, 10.3389/frai.2024.1402719 | |
27. | Ömer Faruk Görçün, Sarfaraz Hashemkhani Zolfani, Hande Küçükönder, Jurgita Antucheviciene, Miroslavas Pavlovskis, 3D Printer Selection for the Sustainable Manufacturing Industry Using an Integrated Decision-Making Model Based on Dombi Operators in the Fermatean Fuzzy Environment, 2023, 12, 2075-1702, 5, 10.3390/machines12010005 | |
28. | Jayanta Pratihar, Arindam Dey, Abhinandan Khan, Pritha Banerjee, Rajat Kumar Pal, Computing with words for solving the fuzzy transportation problem, 2023, 1432-7643, 10.1007/s00500-023-08958-4 | |
29. | Arunodaya Raj Mishra, Pratibha Rani, Dragan Pamucar, Abhijit Saha, An integrated Pythagorean fuzzy fairly operator-based MARCOS method for solving the sustainable circular supplier selection problem, 2024, 342, 0254-5330, 523, 10.1007/s10479-023-05453-9 | |
30. | Kshitish Kumar Mohanta, Deena Sunil Sharanappa, A novel method for solving neutrosophic data envelopment analysis models based on single-valued trapezoidal neutrosophic numbers, 2023, 27, 1432-7643, 17103, 10.1007/s00500-023-08872-9 | |
31. | Kshitish Kumar Mohanta, Deena Sunil Sharanappa, Development of the neutrosophic two-stage network data envelopment analysis to measure the performance of the insurance industry, 2023, 1432-7643, 10.1007/s00500-023-09294-3 | |
32. | Li Ji, Dalei Zhang, Zhijia Wang, Mingling Liu, Meiling Sun, Hong Zhang, Naoufel Kraiem, Mohd Anjum, Paradigm shift in implementing smart technologies for machinery optimisation in manufacturing using decision support system, 2025, 114, 11100168, 526, 10.1016/j.aej.2024.11.106 | |
33. | Peng Liu, Tieyan Zhang, Furui Tian, Yun Teng, Miaodong Yang, Hybrid Decision Support Framework for Energy Scheduling Using Stochastic Optimization and Cooperative Game Theory, 2024, 17, 1996-1073, 6386, 10.3390/en17246386 | |
34. | Pholoso Lebepe, Tebello N. D. Mathaba, Enhancing energy resilience in enterprises: a multi-criteria approach, 2025, 12, 2731-9237, 10.1186/s40807-025-00148-0 | |
35. | Wajahat Ali, Shakeel Javaid, A solution of mathematical multi-objective transportation problems using the fermatean fuzzy programming approach, 2025, 0975-6809, 10.1007/s13198-025-02716-5 | |
36. | Tarishi Baranwal, A. Akilbasha, Economical heuristics for fully interval integer multi-objective fuzzy and non-fuzzy transportation problems, 2024, 34, 0354-0243, 743, 10.2298/YJOR240115035B | |
37. | Monika Bisht, Ali Ebrahimnejad, Four-dimensional green transportation problem considering multiple objectives and product blending in Fermatean fuzzy environment, 2025, 11, 2199-4536, 10.1007/s40747-025-01829-5 | |
38. | P. Anukokila, R. Nisanthini, B. Radhakrishnan, An application of multi-objective transportation problem in type-2 Fermatean fuzzy number incorporating the RS-MABAC technique, 2025, 27731863, 100264, 10.1016/j.fraope.2025.100264 | |
39. | Ziyan Xiang, Xiuzhen Zhang, An integrated decision support system for supplier selection and performance evaluation in global supply chains, 2025, 15684946, 113325, 10.1016/j.asoc.2025.113325 | |
40. | Asghar Khan, Saeed Islam, Muhammad Ismail, Abdulaziz Alotaibi, Development of a triangular Fermatean fuzzy EDAS model for remote patient monitoring applications, 2025, 15, 2045-2322, 10.1038/s41598-025-00914-6 |