In this paper, we present a hybrid algorithm based on parareal and Schwarz waveform relaxation (SWR) for solving time dependent partial differential equations. The parallelism can be simultaneously realized in the time direction by using a parareal and in the space direction via SWR. We give a convergence analysis for the hybrid algorithm for a 1D model problem, the reaction-diffusion equation. Weak scaling of the algorithm in terms of both the number of space subdomains and the number of paralleled time intervals were investigated via theoretical analysis and numerical experiments.
Citation: Liping Yang, Hu Li. A hybrid algorithm based on parareal and Schwarz waveform relaxation[J]. Electronic Research Archive, 2022, 30(11): 4086-4107. doi: 10.3934/era.2022207
[1] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322 |
[2] | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024 |
[3] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[4] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[5] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[6] | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially $tgs$-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392 |
[7] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[8] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
[9] | Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258 |
[10] | Baoli Feng, Mamoona Ghafoor, Yu Ming Chu, Muhammad Imran Qureshi, Xue Feng, Chuang Yao, Xing Qiao . Hermite-Hadamard and Jensen’s type inequalities for modified (p, h)-convex functions. AIMS Mathematics, 2020, 5(6): 6959-6971. doi: 10.3934/math.2020446 |
In this paper, we present a hybrid algorithm based on parareal and Schwarz waveform relaxation (SWR) for solving time dependent partial differential equations. The parallelism can be simultaneously realized in the time direction by using a parareal and in the space direction via SWR. We give a convergence analysis for the hybrid algorithm for a 1D model problem, the reaction-diffusion equation. Weak scaling of the algorithm in terms of both the number of space subdomains and the number of paralleled time intervals were investigated via theoretical analysis and numerical experiments.
A real-valued function h:I→R is said to be a convex (concave) function of the interval I⊆R if the inequality
h(λκ1+(1−λ)κ2)≤(≥)λh(κ1)+(1−λ)h(κ2) |
takes place whenever κ1,κ2∈I and λ∈[0,1].
It is well known that convex (concave) function plays an important role in mathematics due to convexity (concavity) is widely used in all branches of pure and applied mathematics [1,2,3,4,5,6,7]. Recently, the generalizations, extensions and invariants for the convex (concave) function have attracted the attention of many researchers, for instance, the quasi-convex function [8], harmonic convex function [9,10], strongly convex function [11,12,13], two-parameter Hölder mean convex function [14,15], exponentially convex function [16,17], GG and GA convex functions [18], and s-convex function [19,20]. In particular, many inequalities can be found in the literature [21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36] by use of properties of the convex (concave) function.
Let h:I→R be a convex (concave) function. Then the well known HH (Hermite-Hadamard) inequality [37,38,39] states that the double inequality
h(κ1+κ22)≤(≥)1κ2−κ1∫κ2κ1h(x)dx≤(≥)h(κ1)+h(κ2)2 | (1.1) |
is valid for all κ1,κ2∈I with κ1≠κ2.
Fejér generalized the HH inequality (1.1) to the Hermite-Hadamard-Fejér inequality (1.2) as follows:
h(κ1)+h(κ2)2∫κ2κ1g(x)dx≥(≤)1κ2−κ1∫κ2κ1g(x)h(x)dx≥(≤)h(κ1+κ22)∫κ2κ1g(x)dx | (1.2) |
if h:[κ1,κ2]→R is a convex (concave) function and g:[κ1,κ2]→R+ is symmetric with respect to (κ1+κ2)/2.
The following definition for the η-convex function was introduced by Eshaghi Gordji et al. in [40].
Definition 1.1. (See [40]) Let κ1,κ2∈R with κ1<κ2, h:[κ1,κ2]→R be a real-valued function and η:h([κ1,κ2])×h([κ1,κ2])→R be a two bivariate real-valued function. Then h is said to be η-convex (or convex with respect to η) if the inequality
h[sμ1+(1−s)μ2]≤h(μ2)+sη[h(μ1),h(μ2)] | (1.3) |
holds for all μ1,μ2∈[κ1,κ2] and s∈[0,1].
Let η(μ1,μ2)=μ1−μ2 in (1.3). Then Definition 1.1 reduces to the definition of usual convex function.
Eshaghi Gordji et al. [40] established a HH type inequality for the η-convex function.
Theorem 1.1. (See [40]) Let κ1,κ2∈R with κ1<κ2, h:[κ1,κ2]→R be a real-valued function and η:h([κ1,κ2])×h([κ1,κ2])→R be a two bivariate bounded real-valued function. Then one has
h(κ1+κ22)−Mη2≤1κ2−κ1κ2∫κ1h(x)dx |
≤h(κ1)+h(κ2)2+η(h(κ1),h(κ2))+η(h(κ2),h(κ1))4 |
≤h(κ1)+h(κ2)2+Mη2 | (1.4) |
if h is η-convex, where Mη is the upper bound of η on h([κ1,κ2])×h([κ1,κ2]).
Let 0<β≤1, r>0 and g:[0,∞)→R be a real-valued function. Then the conformable derivative Dβ(g)(r) of order β is defined by
Dβ(g)(r)=dβg(r)dβr=limϵ→0g(r+ϵr1−β)−g(r)ϵ, | (1.5) |
g is said to be conformable differentiable at r if the limit of (1.5) exists and is finite. The conformal derivative at 0 is defined by Dβ(g)(0)=limr→0+Dβ(g)(r).
Let κ1,κ2,λ,c∈R be the constants, and h1 and h2 be differentiable at r>0. Then the following formulas can be found in the literature [41]
dβdβr(rλ)=λrλ−β,dβdβr(c)=0, |
dβdβr(κ1h1(r)+κ2h2(r))=κ1dβdβr(h1(r))+κ2dβdβr(h2(r)), |
dβdβr(h1(r)h2(r))=h1(r)dβdβr(h2(r))+h2(r)dβdβr(h1(r)), |
dβdβr(h1(r)h2(r))=h2(r)dβdβr(h1(r))−h1(r)dβdβr(h2(r))(h2(r))2, |
dβdβr(h1(h2(r)))=h′1(h2(r))dβdβr(h2(r)) |
if h1 differentiable at h2(r). In addition,
dβdβr(h1(r))=r1−βddr(h1(r)) |
if h1 is differentiable.
Let β∈(0,1] and 0≤κ1<κ2. Then the function g:[κ1,κ2]→R is said to be conformable integrable if
∫κ2κ1g(x)dβx=∫κ2κ1g(x)xβ−1dx |
exists and is finite. The set of all conformable integrable functions on [κ1,κ2] is denoted by Lβ([κ1,κ2]). Note that
Iκ1β(h1)(r)=Iκ11(rβ−1h1)=∫rκ1h1(x)x1−βdx |
for all β∈(0,1], where the integral is the usual Riemann improper integral.
For the theory and applications of the conformable integrals and derivatives we recommend the readers to refer the literature [42,43,44,45,46,47,48,49,50].
Anderson [51] established the conformable integral version of the HH type inequality
βκβ2−κβ1∫κ2κ1h(x)dβx≤h(κ1)+h(κ2)2 |
if β∈(0,1] and h:[κ1,κ2]→R is conformable differentiable such that Dβ(h) is increasing. Moreover, if h is decreasing on [κ1,κ2], then
h(κ1+κ22)≤βκβ2−κβ1∫κ2κ1h(x)dβx. |
It is the aim of the article to establish new Hermite-Hadamard-Fejér type inequalities for the η-convex functions via conformable integrals.
Theorem 2.1. Let κ1,κ2∈R+ with κ1<κ2, h:[κ1,κ2]→R be an η-convex function and symmetric with respect to κ1+κ22, ξ:[κ1,κ2]→R be a nonnegative integrable function. Then the inequality
h(κ1+κ22)κ2∫κ1ξ(x)dβx−Mη2κ2∫κ1ξ(x)dβx≤κ2∫κ1h(x)ξ(x)dβx |
≤h(κ1)+h(κ2)2κ2∫κ1ξ(x)dβx+η(h(κ1),h(κ2))+η(h(κ2),h(κ1))4κ2∫κ1ξ(x)dβx |
≤h(κ1)+h(κ2)2κ2∫κ1ξ(x)dβx+Mη2κ2∫κ1ξ(x)dβx | (2.1) |
holds for any β∈(0,1] if η is bounded on h([κ1,κ2])×h([κ1,κ2]), where Mη is the upper bound of η on h([κ1,κ2])×h([κ1,κ2]).
Proof. Let s∈[0,1]. Then it follows from the η-convexity and symmetry of h that
h(κ1+κ22)=h(sκ1−sκ1+κ1+κ2+sκ2−sκ22) |
=h(sκ1+(1−s)κ2+sκ2+(1−s)κ12) |
≤h(sκ2+(1−s)κ1)+12η(h(sκ1+(1−s)κ2)),h(sκ2+(1−s)κ1) |
≤h(sκ2+(1−s)κ1)+12Mη. |
Let x=sκ2+(1−s)κ1. Then we get
h(κ1+κ22)κ2∫κ1ξ(x)dβx=(κ2−κ1)h(κ1+κ22)1∫0ξ(sκ2+(1−s)κ1)(sκ2+(1−s)κ1)β−1ds |
≤1∫0h(sκ2+(1−s)κ1)ξ(sκ2+(1−s)κ1)(κ2−κ1)(sκ2+(1−s)κ1)β−1ds |
+Mη21∫0ξ(sκ2+(1−s)κ1)(κ2−κ1)(sκ2+(1−s)κ1)β−1ds |
=κ2∫κ1h(x)ξ(x)dβx+Mη2κ2∫κ1ξ(x)dβx, |
which gives the proof of the first inequality of (2.1).
Next, we prove the second and third inequalities of (2.1). From the η-convexity of h we know that
h(sκ1+(1−s)κ2)≤h(κ2)+sη(h(κ1),h(κ2)) | (2.2) |
and
h(sκ2+(1−s)κ1)≤h(κ1)+sη(h(κ2),h(κ1)). | (2.3) |
Let x=sκ1+(1−s)κ2. Then from the symmetry of h, inequalities (2.2) and (2.3) lead to
κ2∫κ1h(x)ξ(x)xβ−1dx=(κ2−κ1)1∫0h(sκ1+(1−s)κ2)ξ(sκ1+(1−s)κ2)(sκ1+(1−s)κ2)β−1ds |
≤(κ2−κ1)[h(κ2)+12η(h(κ1),h(κ2))]1∫0ξ(sκ1+(1−s)κ2)(sκ1+(1−s)κ2)β−1ds | (2.4) |
and
κ2∫κ1h(x)ξ(x)xβ−1dx=(κ2−κ1)1∫0h(sκ1+(1−s)κ2)ξ(sκ1+(1−s)κ2)(sκ1+(1−s)κ2)β−1ds |
=(κ2−κ1)1∫0h(sκ2+(1−s)κ1)ξ(sκ1+(1−s)κ2)(sκ1+(1−s)κ2)β−1ds |
≤(κ2−κ1)[h(κ1)+12η(h(κ2),h(κ1))]1∫0ξ(sκ1+(1−s)κ2)(sκ1+(1−s)κ2)β−1ds | (2.5) |
Adding (2.4) and (2.5), and letting x=sκ1+(1−s)κ2, we obtain
2κ2∫κ1h(x)ξ(x)dβx≤(κ2−κ1)(h(κ1)+h(κ2))1∫0ξ(sκ1+(1−s)κ2)(sκ1+(1−s)κ2)β−1ds |
+(κ2−κ1)(η(h(κ1),h(κ2))+η(h(κ2),h(κ1)))21∫0ξ(sκ1+(1−s)κ2)(sκ1+(1−s)κ2)β−1ds |
and
κ2∫κ1h(x)ξ(x)dβx≤h(κ1)+h(κ2)2κ2∫κ1ξ(x)dβx+η(h(κ1),h(κ2))+η(h(κ2),h(κ1))4κ2∫κ1ξ(x)dβx |
≤h(κ1)+h(κ2)2κ2∫κ1ξ(x)dβx+Mη2κ2∫κ1ξ(x)dβx. |
Corollary 2.1. Let ξ(x)=1. Then inequality (2.1) becomes
h(κ1+κ22)−Mη2≤βκβ2−κβ1κ2∫κ1h(x)dβx |
≤h(κ1)+h(κ2)2+η(h(κ1),h(κ2))+η(h(κ2),h(κ1))4 |
≤h(κ1)+h(κ2)2+Mη2. |
In order to establish our main results, we need a key lemma which we present in this section.
Lemma 3.1. Let κ1,κ2∈R+ with κ1<κ2, and h:[κ1,κ2]→R be a differentiable function on (κ1,κ2) such that Dβ(h)∈Lβ([κ1,κ2]). Then the identity
h(κ1)+h(κ2)2−βκβ2−κβ1∫κ2κ1h(x)dβx |
=(κ2−κ1)2(κβ2−κβ1)[∫10(((1−s)κ1+sκ2)2β−1−κβ1((1−s)κ1+sκ2)β−1) |
×Dβ(h)((1−s)κ1+sκ2)s1−βdβs+∫10(((1−s)κ2+sκ1)2β−1−aβ2((1−s)κ2+sκ1)β−1) |
×Dβ(h)((1−s)κ2+sκ1)s1−βdβs]. |
holds for β∈(0,1].
Proof. Integration by parts, we have
∫10(((1−s)κ1+sκ2)2β−1−κβ1((1−s)κ1+sκ2)β−1)Dβ(h)((1−s)κ1+sκ2)ds |
+∫10(((1−s)κ2+sκ1)2β−1−κβ2((1−s)κ2+sκ1)β−1)Dβ(h)((1−s)κ2+sκ1)ds |
=∫10(((1−s)κ1+sκ2)β−κβ1)h′((1−s)κ1+sκ2)ds |
+∫10(((1−s)κ2+sκ1)β−κβ2)h′((1−s)κ2+sκ1)ds |
=[(((1−s)κ1+sκ2)β−κβ1)h((1−s)κ1+sκ2)κ2−κ1|10 |
−∫10β((1−s)κ1+κ2)β−1(κ2−a1)h((1−s)κ1+sκ2)κ2−κ1ds] |
+[(((1−s)κ2+sκ1)β−κβ2)h((1−s)κ2+sκ1)κ1−κ2|10 |
−∫10β((1−s)κ2+sκ1)β−1(κ1−κ2)h((1−s)κ2+sκ1)κ1−κ2ds] |
=[κβ2−κβ1κ2−κ1h(κ2)−βκ2−κ1∫κ2κ1h(x)dβx] |
+[κβ2−κβ1κ2−κ1h(κ1)−βκ2−κ1∫κ2κ1h(x)dβx] |
=κβ2−κβ1κ2−κ1(h(κ1)+h(κ2))−2βκβ2−κβ1∫κ2κ1h(x)dβx. |
Theorem 3.1. Let κ1,κ2∈R+ with κ1<κ2, and h:[κ1,κ2]→R be a differentiable function on (κ1,κ2) such that Dβ(h)∈Lβ([κ1,κ2]). Then the inequality
|h(κ1)+h(κ2)2−βκβ2−κβ1∫κ2κ1h(x)dβx| |
≤(κ2−κ1)2(κβ2−κβ1)[(κβ−11κ2+κβ−12κ1+2κβ2−4κβ16)|h′(κ1)|+η(|h′(κ2)|,|h′(κ1)|) |
×(κβ−11κ2+κβ−12κ1+3κβ2−5κβ112)+|h′(κ2)|(κβ2−κβ12)+η(|h′(κ1)|,|h′(κ2)|)(κβ2−κβ16)] | (3.1) |
holds for β∈(0,1] if |h′| is η-convex.
Proof. Let y>0, φ1(y)=yβ−1 and φ2(y)=−yβ. Then we clearly see that both the functions φ1 and φ2 are convex. It follows from Lemma 3.1 and the convexity of φ1 and φ2 together with the η-convexity of |h′| that
|h(κ1)+h(κ2)2−βκβ2−κβ1∫κ2κ1h(x)dβx| |
≤(κ2−κ1)2(κβ2−κβ1)[∫10(((1−s)κ1+sκ2)β−κβ1)|h′((1−s)κ1+sκ2)|ds |
+∫10(((1−s)κ2+sκ1)β−κβ2)|h′((1−s)κ2+sκ1)|ds] |
=(κ2−κ1)2(κβ2−κβ1)[∫10(((1−s)κ1+sκ2)β+1−1−κβ1)|h′((1−s)κ1+sκ2)|ds |
+∫10(κβ2−((1−s)κ2+sκ1)β)|h′((1−s)κ2+sκ1)|ds] |
≤(κ2−κ1)2(κβ2−κβ1)[∫10(((1−s)κ1+sκ2)β−1((1−s)κ1+sκ2)−κβ1)|h′((1−s)κ1+sκ2)|ds |
+∫10(κβ2−((1−s)κβ2+sκβ1))|h′((1−s)κ2+sκ1)|ds] |
≤(κ2−κ1)2(κβ2−κβ1)[∫10(((1−s)κβ−11+sκβ−12)((1−s)κ1+sκ2)−κβ1)|h′((1−s)κ1+sκ2)|ds |
+∫10(κβ2−((1−s)κβ2+sκβ1))|h′((1−s)κ2+sκ1)|ds] |
≤(κ2−κ1)2(κβ2−κβ1)[∫10(((1−s)κβ−11+sκβ−12)((1−s)κ1+sκ2)−κβ1) |
×[|h′(κ1)|+sη(|h′(κ2)|,|h′(κ1)|)]ds+∫10(κβ2−((1−s)κβ2+sκβ1)) |
×[|h′(κ2)|+sη(|h′(κ1)|,|h′(κ2)|)]ds] |
and
|h(κ1)+h(κ2)2−βκβ2−κβ1∫κ2κ1h(x)dβx| |
≤(κ2−κ1)2(κβ2−κβ1)[(κβ−11κ2+κβ−12κ1+2κβ2−4κβ16)|h′(κ1)| |
+η(|h′(κ2)|,|h′(κ1)|)(κβ−11κ2+κβ−12κ1+3κβ2−5κβ112) |
+|h′(κ2)|(κβ2−κβ12)+η(|h′(κ1)|,|h′(κ2)|)(κβ2−κβ16)]. |
Corollary 3.1. Let η(κ2,κ1)=κ2−κ1. Then inequality (3.1) reduces to
|h(κ1)+h(κ2)2−βκβ2−κβ1∫κ2κ1h(x)dβx| |
≤(κ2−κ1)2(κβ2−κβ1)[(κβ−11κ2+κβ−12κ1+3aβ2−5κβ16)|h′(κ1)| |
+|h′(κ2)|(7κβ2−9κβ1+κβ−11κ2+κβ−12κ112)]. |
Theorem 3.2. Let q>1, κ1,κ2∈R+ with κ1<κ2, and h:[κ1,κ2]→R be a differentiable function on (κ1,κ2) such that Dβ(h)∈Lβ([κ1,κ2]). Then the inequality
|h(κ1)+h(κ2)2−βκβ2−κβ1∫κ2κ1h(x)dβx| |
≤(κ2−κ1)2(κβ2−κβ1)[(A1(β))1−1q(|h′(κ1)|q(κβ−11κ2+κβ−12κ1+2κβ2−4κβ16) |
+η(|h′(κ2)|q,|h′(κ1)|q)(κβ−11κ2+κβ−12κ1+3κβ2−5κβ112))+(B1(β))1−1q |
×(|h′(κ2)|q(κβ2−κβ12)+η(|h′(κ1)|q,|h′(κ2)|q)(κβ2−κβ13))] |
takes place for β∈(0,1] if |h′|q is η-convex, where
A1(β)=2κβ1+κβ−11κ2+κβ−12κ1+2κβ2−6κβ16,B1(β)=κβ2−κβ12. |
Proof. We clearly see that
|h(κ1)+h(κ2)2−βκβ2−κβ1∫κ2κ1h(x)dβx| |
≤(κ2−κ1)2(κβ2−κβ1)[∫10(((1−s)κ1+sκ2)β−1((1−s)κ1+sκ2)−κβ1)|h′((1−s)κ1+sκ2)|ds |
+∫10(κβ2−((1−s)κβ2+sκβ1))|h′((1−s)κ2+sκ1)|ds]. |
It follows from the power-mean inequality that
∫10(((1−s)κβ−11+sκβ−12)((1−s)κ1+sκ2)−κβ1)|h′((1−s)κ1+sκ2)|ds |
≤(∫10(((1−s)κβ−11+sκβ−12)((1−s)κ1+sκ2)−κβ1)ds)1−1q |
×(∫10(((1−s)κβ−11+sκβ−12)((1−s)κ1+sκ2)−κβ1)|h′((1−s)κ1+sκ2)|qds)1q |
and
∫10(κβ2((1−s)κβ2+sκβ1))|h′((1−s)κ2+sκ1)|ds |
≤(∫10(κβ2−((1−s)κβ2+sκβ1))ds)1−1q |
×(∫10(κβ2−((1−s)κβ2+sκβ1))|h′((1−s)κ2+sκ1)|qds)1q. |
Making use of the η-convexity of |h′|q and the facts that
∫10(((1−s)κβ−11+sκβ−12)((1−s)κ1+sκ2)−κβ1)dt |
=A1(β)=2κβ1+κβ−11κ2+κβ−12κ1+2κβ2−6κβ16 |
and
∫10(κβ2−((1−s)κβ2+sκβ1))ds=B1(β)=κβ2−κβ12, |
we get
∫10(((1−s)κβ−11+sκβ−12)((1−s)κ1+sκ2)−κβ1)|h′((1−s)κ1+sκ2)|qds |
≤∫10(((1−s)κβ−11+sκβ−12)((1−s)κ1+sκ2)−κβ1)[|h′(κ1)|q+sη(|h′(κ2)|q,|h′(κ1)|q)]ds |
=|h′(κ1)|q∫10(((1−s)κβ−11+sκβ−12)((1−s)κ1+sκ2)−κβ1)ds |
+η(|h′(κ2)|q,|h′(κ1)|q)∫10(((1−s)κβ−11+sκβ−12)((1−s)κ1+sκ2)−κβ1)sds |
=|h′(κ1)|q(κβ−11κ2+κβ−12κ1+2κβ2−4κβ16)+η(|h′(κ2)|q,|h′(κ1)|q) |
×(κβ−11κ2+κβ−12κ1+3κβ2−5κβ112) |
and
∫10(κβ2−((1−s)κβ2+sκβ1))|h′((1−s)κ2+sκ1)|qds |
≤∫10(κβ2−((1−s)κβ2+sκβ1))[|h′(κ2)|q+sη(|h′(κ1)|q,|h′(κ2)|q)]ds |
=|h′(κ2)|q(κβ2−κβ12)+η(|h′(κ1)|q,|h′(κ2)|q)(κβ2−κβ13), |
which completes the proof of Theorem 3.2.
Corollary 3.2. Let η(κ2,κ1)=κ2−κ1. Then Theorem 3.2 leads to the conclusion that
|h(κ1)+h(κ2)2−βκβ2−κβ1∫κ2κ1h(x)dβx| |
≤(κ2−κ1)2(κβ2−κβ1)[(A1(β))1−1q(|h′(κ1)|q(κβ−11κ2+κβ−12κ1+κβ2−3κβ16)+|h′(κ2)|q |
×(κβ−11κ2+κβ−12κ1+3κβ2−5κβ112))+(B1(β))1−1q(|h′(κ2)|q(κβ2−κβ16)+|h′(κ1)|q(κβ2−κβ13))]. |
Theorem 3.3. Let p,q>1 with 1/p+1/q=1, κ1,κ2∈R+ with κ1<κ2, and h:[κ1,κ2]→R be a differentiable function on (κ1,κ2) such that Dβ(h)∈Lβ([κ1,κ2]). Then the inequality
|h(κ1)+h(κ2)2−βκβ2−κβ1∫κ2κ1h(x)dβx| |
≤(κ2−κ1)2(κβ2−κβ1)[(A1(β,p))1p(2|h′(κ1)|q+η(|h′(κ2)|q,|h′(κ1)|q)2)1q |
+(A2(β,p))1p(2|h′(κ2)|q+η(|h′(κ1)|q,|h′(κ2)|q)2)1q] |
is valid for β∈(0,1] if |h′|q is η-convex, where
A1(β,p)=∫10(((1−s)κβ−11+sκβ−12)((1−s)κ1+sκ2)−κβ1)pds |
and
A2(β,p)=∫10(κβ2−((1−s)κβ2+sκβ1))pds. |
Proof. We clearly see that
|h(κ1)+h(κ2)2−βκβ2−κβ1∫κ2κ1h(x)dβx| |
≤(κ2−κ1)2(κβ2−κβ1)[∫10(((1−s)κ1+sκ2)β−1((1−s)κ1+sκ2)−κβ1)|h′((1−s)κ1+sκ2)|ds |
+∫10(κβ2−((1−s)κβ2+sκβ1))|h′((1−s)κ2+sκ1)|ds]. |
Making use of Hölder inequality, we have
∫10(((1−s)κβ−11+sκβ−12)((1−s)κ1+sκ2)−κβ1)|h′((1−s)κ1+sκ2)|ds |
≤(∫10(((1−s)κβ−11+sκβ−12)((1−s)κ1+sκ2)−κβ1)pds)1p |
×(∫10|h′((1−s)κ1+sκ2)|qds)1q |
≤(∫10(((1−s)κβ−11+sκβ−12)((1−s)κ1+sκ2)−κβ1)pds)1p |
×(∫10|h′(κ1)|q+sη(|h′(κ2)|q,|h′(κ1)|q)ds)1q |
=(A1(β,p))1p(2|h′(κ1)|q+η(|h′(κ2)|q,|h′(κ1)|q)2)1q |
and
∫10(κβ2−((1−s)κβ2+sκβ1))|h′((1−s)κ2+sκ1)|ds |
≤(∫10(κβ2−((1−s)κβ2+sκβ1))pds)1p(|h′((1−s)κ2+sκ1)|qds)1q |
≤(∫10(κβ2−((1−s)κβ2+sκβ1))pds)1p(∫10(|h′(κ2)|q+sη(|h′(κ1)|q,|h′(κ2)|q))ds)1q |
=(A2(β,p))1p(2|h′(κ2)|q+η(|h′(κ1)|q,|h′(κ2)|q)2)1q. |
Corollary 3.3. Let η(κ2,κ1)=κ2−κ1. Then Theorem 3.3 leads to
|h(κ1)+h(κ2)2−βκβ2−κβ1∫κ2κ1h(x)dβx| |
≤(κ2−κ1)2(κβ2−κβ1)[(A1(β,p))1p(|h′(κ1)|q+|h′(κ2)|q2)1q+(A2(β,p))1p(|h′(κ2)|q+|h′(κ1)|q2)1q]. |
We have generalized the Hermite-Hadamard and Hermite-Hadamard-Fejér inequalities for convex functions to the -convex functions via the conformable integral. Our obtained results are the improvements and generalizations of some previous known results, our ideas and approach may lead to a lot of follow-up research.
The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.
The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11971142, 11701176, 11626101, 11601485).
The authors declare no conflict of interest.
[1] | A. Toselli, O. Widlund, Domain Decomposition Methods: Algorithms and Theory, Springer, Berlin, 2005. |
[2] | T. P. A. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations, Springer-Verlag, Berlin, 2008. |
[3] |
X. C. Cai, Additive Schwarz algorithms for parabolic convection-diffusion equations, Numer. Math., 60 (1991), 41-61. https://doi.org/10.1007/BF01385713 doi: 10.1007/BF01385713
![]() |
[4] |
X. C. Cai, Multiplicative Schwarz methods for parabolic problems, SIAM J. Sci. Comput., 15 (1994), 587-603. https://doi.org/10.1137/0915039 doi: 10.1137/0915039
![]() |
[5] |
L. Qin, X. J. Xu, Optimized Schwarz methods with Robin transmission conditions for parabolic problems, SIAM J. Sci. Comput., 31 (2008), 608-623. https://doi.org/10.1137/070682149 doi: 10.1137/070682149
![]() |
[6] |
M. Al-Khaleel, S. L. Wu, Quasi-overlapping semi-discrete Schwarz waveform relaxation algorithms: The hyperbolic problem, Comput. Methods Appl. Math., 20 (2020), 397-417. https://doi.org/10.1515/cmam-2018-0188 doi: 10.1515/cmam-2018-0188
![]() |
[7] |
D. Bennequin, M. J. Gander, L. Gouarin, L. Halpern, Optimized Schwarz waveform relaxation for advection reaction diffusion equations in two dimensions, Numer. Math., 134 (2016), 513-567. https://doi.org/10.1007/s00211-015-0784-8 doi: 10.1007/s00211-015-0784-8
![]() |
[8] |
D. Bennequin, M. J. Gander, L. Halpern, A homographic best approximation problem with application to optimized Schwarz waveform relaxation, Math. Comput., 78 (2009), 185-223. https://doi.org/10.1090/S0025-5718-08-02145-5 doi: 10.1090/S0025-5718-08-02145-5
![]() |
[9] |
M. J. Gander, L. Halpern, Optimized Schwarz waveform relaxation for advection reaction diffusion problems, SIAM J. Numer. Anal., 45 (2007), 666-697. https://doi.org/10.1007/s00211-015-0784-8 doi: 10.1007/s00211-015-0784-8
![]() |
[10] |
M. J. Gander, A. M. Stuart, Space-time continuous analysis of waveform relaxation for the heat equation, SIAM J. Sci. Comput., 19 (1998), 2014-2031. https://doi.org/10.1137/S1064827596305337 doi: 10.1137/S1064827596305337
![]() |
[11] |
E. Giladi, H. B. Keller, Space-time domain decomposition for parabolic problems, Numer. Math., 93 (2002), 279-313. https://doi.org/10.1007/s002110100345 doi: 10.1007/s002110100345
![]() |
[12] |
S. L. Wu, M. D. Al-Khaleel, Semi-discrete Schwarz waveform relaxation algorithms for reaction diffusion equations, BIT Numer. Math., 54 (2014), 831-866. https://doi.org/10.1007/s10543-014-0475-3 doi: 10.1007/s10543-014-0475-3
![]() |
[13] |
S. L. Wu, M. D. Al-Khaleel, Convergence analysis of the Neumann-Neumann waveform relaxation method for time-fractional RC circuits, Simul. Model. Pract. Theory, 64 (2016), 43-56. https://doi.org/10.1016/j.simpat.2016.01.002 doi: 10.1016/j.simpat.2016.01.002
![]() |
[14] |
J. L. Lions, Y. Maday, G. Turinici, Résolution d'EDP par un schéma en temps pararéel, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), 661-668. https://doi.org/10.1016/S0764-4442(00)01793-6 doi: 10.1016/S0764-4442(00)01793-6
![]() |
[15] |
M. Cai, J. Mahseredjian, I. Kocar, X. Fu, A. Haddadi, A parallelization-in-time approach for accelerating EMT simulations, Electr. Power Syst. Res., 197 (2021), 107346. https://doi.org/10.1016/j.epsr.2021.107346 doi: 10.1016/j.epsr.2021.107346
![]() |
[16] | T. Cheng, N. Lin, V. Dinavahi, Hybrid parallel-in-time-and-space transient stability simulation of large-ccale AC/DC grids, IEEE Trans. Power Syst., in press, 2022. https://doi.org/10.1109/TPWRS.2022.3153450 |
[17] |
I. C. Garcia, I. Kulchytska-Ruchka, S. Schops, Parareal for index two differential algebraic equations, Numer. Alg., 91 (2022), 389-412. https://doi.org/10.1007/s11075-022-01267-1 doi: 10.1007/s11075-022-01267-1
![]() |
[18] |
E. Celledoni, T. Kvamsdal, Parallelization in time for thermo-viscoplastic problems in extrusion of aluminium, Int. J. Numer. Methods Eng., 79 (2009), 576-598. https://doi.org/10.1002/nme.2585 doi: 10.1002/nme.2585
![]() |
[19] |
D. Max, M. Marc, D. Stéphane, Parareal operator splitting techniques for multi-scale reaction waves: numerical analysis and strategies, ESAIM Math. Model. Numer. Anal., 45 (2011), 825-852. https://doi.org/10.1051/m2an/2010104 doi: 10.1051/m2an/2010104
![]() |
[20] |
L. Fang, S. Vandewalle, J. Meyers, A parallel-in-time multiple shooting algorithm for large-scale PDE-constrained optimal control problems, J. Comput. Phys., 452 (2021), 110926. https://doi.org/10.1016/j.jcp.2021.110926 doi: 10.1016/j.jcp.2021.110926
![]() |
[21] |
M. J. Gander, F. Kwok, J. Salomon, PARAOPT: a parareal algorithm for optimality systems, SIAM J. Sci. Comput., 42 (2020), A2773-A2802. https://doi.org/10.1137/19M1292291 doi: 10.1137/19M1292291
![]() |
[22] | Y. Maday, M. K. Riahi, J. Salomon, Parareal in time intermediate targets methods for optimal control problems, in Control and Optimization with PDE Constraints, Birkhäuser, Basel, 164 (2013), 79-92. https://doi.org/10.1007/978-3-0348-0631-2_5 |
[23] |
M. K. Riahi, J. Salomon, S. J. Glaser, D. Sugny, Fully efficient time-parallelized quantum optimal control algorithm, Phys. Rev. A, 93 (2016), 043410. https://doi.org/10.1103/PhysRevA.93.043410 doi: 10.1103/PhysRevA.93.043410
![]() |
[24] |
X. M. Gu, S. L. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. https://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576
![]() |
[25] |
X. M. Gu, Y. L. Zhao, X. L. Zhao, B. Carpentieri, Y. Y. Huang, A note on parallel preconditioning for the all-at-once solution of Riesz fractional diffusion equations, Numer. Math. Theor. Meth. Appl., 14 (2021), 893-919. https://doi.org/10.4208/nmtma.OA-2020-0020 doi: 10.4208/nmtma.OA-2020-0020
![]() |
[26] |
Y. L. Zhao, P. Y. Zhu, X. M. Gu, X. L. Zhao, H. Y. Jian, A preconditioning technique for all-at-once system from the nonlinear tempered fractional diffusion equation, J. Sci. Comput., 83 (2020), 10. https://doi.org/10.1007/s10915-020-01193-1 doi: 10.1007/s10915-020-01193-1
![]() |
[27] |
M. J. Gander, S. Vandewalle, Analysis of the parareal time-parallel time-integration method, SIAM J. Sci. Comput., 29 (2007), 556-578. https://doi.org/10.1137/05064607X doi: 10.1137/05064607X
![]() |
[28] |
M. J. Gander, S. L. Wu, A diagonalization-based parareal algorithm for dissipative and wave propagation problems, SIAM J. Numer. Anal., 58 (2020), 2981-3009. https://doi.org/10.1137/19M1271683 doi: 10.1137/19M1271683
![]() |
[29] |
S. L. Wu, Toward parallel coarse grid correction for the parareal algorithm, SIAM J. Sci. Comput., 40 (2018), A1446-A1472. https://doi.org/10.1137/17M1141102 doi: 10.1137/17M1141102
![]() |
[30] |
S. L. Wu, T. Zhou, Convergence analysis for three parareal solvers, SIAM J. Sci. Comput., 37 (2015), A970-A992. https://doi.org/10.1137/140970756 doi: 10.1137/140970756
![]() |
[31] | T. Cadeau, F. Mafoules, Coupling the parareal algorithm with the waveform relaxation method for the solution of differential algebraic equations, in 10th International Symposium on Distributed Computing and Applications to Business, Engineering and Science, (2011), 15-19. https://doi.org/10.1109/DCABES.2011.34 |
[32] | Y. L. Jiang, B. Song, Coupling parareal and Dirichlet-Neumann/Neumann-Neumann waveform relaxation methods for the heat equation, in International Conference on Domain Decomposition Methods, Springer, Cham, 125 (2018), 405-413. https://doi.org/10.1007/978-3-319-93873-8_38 |
[33] | T. Cadeau, F. Magoulès, Coupling parareal and waveform relaxation methods for power systems, in IEEE International Conference on Electrical and Control Engineering, (2011), 2947-2950. https://doi.org/10.1109/ICECENG.2011.6057305 |
[34] |
J. Li, Y. L. Jiang, Z. Miao, A parareal approach of semi-linear parabolic equations based on general waveform relaxation, Numer. Methods Partial Differ. Equations, 35 (2019), 2017-2043. https://doi.org/10.1002/num.22390 doi: 10.1002/num.22390
![]() |
[35] | J. Liu, Y. L. Jiang, A parareal algorithm based on waveform relaxation, Math. Comput. Simul. 82 (2012), 2167-2181. https://doi.org/10.1016/j.matcom.2012.05.017 |
[36] |
J. Liu, Y. L. Jiang, A parareal waveform relaxation algorithm for semi-linear parabolic partial differential equations, J. Comput. Appl. Math., 236 (2012), 4245-4263. https://doi.org/10.1016/j.cam.2012.05.014 doi: 10.1016/j.cam.2012.05.014
![]() |
[37] |
B. Song, Y. L. Jiang, Analysis of a new parareal algorithm based on waveform relaxation method for time-periodic problems, Numer. Algorithms, 67 (2014), 599-622. https://doi.org/10.1007/s11075-013-9810-z doi: 10.1007/s11075-013-9810-z
![]() |
[38] |
B. Song, Y. L. Jiang, A new parareal waveform relaxation algorithm for time-periodic problems, Int. J. Comput. Math., 92 (2015), 377-393. https://doi.org/10.1080/00207160.2014.891734 doi: 10.1080/00207160.2014.891734
![]() |
[39] |
B. Song, Y. L. Jiang, X. Wang, Analysis of two new parareal algorithms based on the Dirichlet-Neumann/Neumann-Neumann waveform relaxation method for the heat equation, Numer. Algorithms, 6 (2021), 1685-1703. https://doi.org/10.1007/s11075-020-00949-y doi: 10.1007/s11075-020-00949-y
![]() |
[40] |
E. Lelarasmee, A. E. Ruehli, A. L. Sangiovanni-Vincentelli, The waveform relaxation methods for time-domain analysis of large scale integrated circuits, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 1 (1982), 131-145. https://doi.org/10.1109/TCAD.1982.1270004 doi: 10.1109/TCAD.1982.1270004
![]() |
[41] |
D. Q. Bui, C. Japhet, Y. Maday, P. Omnes, Coupling parareal with optimized Schwarz waveform relaxation for parabolic problems, SIAM J. Numer. Anal., 60 (2022), 913-9399. https://doi.org/10.1137/21M1419428 doi: 10.1137/21M1419428
![]() |
[42] | M. J. Gander, Y. Jiang, R. Li, Parareal Schwarz waveform relaxation methods, in Domain Decomposition Methods in Science and Engineering XX, Springer, Berlin, Heidelberg, 91 (2012), 451-458. https://doi.org/10.1007/978-3-642-35275-1_53 |
[43] |
M. Gander, Y. Jiang, B. Song, A superlinear convergence estimate for the parareal Schwarz waveform relaxation algorithm, SIAM J. Sci. Comput., 41 (2019), A1148-A1169. https://doi.org/10.1137/18M1177226 doi: 10.1137/18M1177226
![]() |
[44] |
M. J. Gander, M. Al-Khaleel, A. Ruehli, Optimized waveform relaxation methods for the longitudinal partitioning of transmission lines, IEEE Trans. Circuits Syst. I Regul. Pap., 56 (2009), 1732-1743. https://doi.org/10.1109/TCSI.2008.2008286 doi: 10.1109/TCSI.2008.2008286
![]() |
[45] | R. S. Varga, Matrix Iterative Analysis, 2 edition, Spring-Verlag, Berlin Heidelberg, 2000. |
1. | Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New $(p_1p_2,q_1q_2)$-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456 | |
2. | Choonkil Park, Yu-Ming Chu, Muhammad Shoaib Saleem, Sana Mukhtar, Nasir Rehman, Hermite–Hadamard-type inequalities for $\eta _{h}$-convex functions via ψ-Riemann–Liouville fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03068-z | |
3. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451 | |
4. | Ming-Bao Sun, Yu-Ming Chu, Inequalities for the generalized weighted mean values of g-convex functions with applications, 2020, 114, 1578-7303, 10.1007/s13398-020-00908-1 | |
5. | Ming-Bao Sun, Xin-Ping Li, Sheng-Fang Tang, Zai-Yun Zhang, Schur Convexity and Inequalities for a Multivariate Symmetric Function, 2020, 2020, 2314-8896, 1, 10.1155/2020/9676231 | |
6. | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441 | |
7. | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453 | |
8. | Yu-Ming Chu, Muhammad Uzair Awan, Muhammad Zakria Javad, Awais Gul Khan, Bounds for the Remainder in Simpson’s Inequality via n-Polynomial Convex Functions of Higher Order Using Katugampola Fractional Integrals, 2020, 2020, 2314-4629, 1, 10.1155/2020/4189036 | |
9. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7 | |
10. | Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, 2020, 5, 2473-6988, 6404, 10.3934/math.2020412 | |
11. | Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y | |
12. | Eze R. Nwaeze, Muhammad Adil Khan, Yu-Ming Chu, Fractional inclusions of the Hermite–Hadamard type for m-polynomial convex interval-valued functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-02977-3 | |
13. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu, Estimates of quantum bounds pertaining to new q-integral identity with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02878-5 | |
14. | Yu-Ming Chu, Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Khalida Inayat Noor, New post quantum analogues of Ostrowski-type inequalities using new definitions of left–right $(p,q)$-derivatives and definite integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03094-x | |
15. | Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, 2020, 5, 2473-6988, 6479, 10.3934/math.2020418 | |
16. | Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Yu-Ming Chu, Khalida Inayat Noor, Some Trapezium-Like Inequalities Involving Functions Having Strongly n-Polynomial Preinvexity Property of Higher Order, 2020, 2020, 2314-8896, 1, 10.1155/2020/9154139 | |
17. | Thabet Abdeljawad, Saima Rashid, A. A. El-Deeb, Zakia Hammouch, Yu-Ming Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, 2020, 2020, 1687-1847, 10.1186/s13662-020-02935-z | |
18. | Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9 | |
19. | Slavko Simić, Bandar Bin-Mohsin, Some generalizations of the Hermite–Hadamard integral inequality, 2021, 2021, 1029-242X, 10.1186/s13660-021-02605-y | |
20. | Chahn Yong Jung, Ghulam Farid, Hafsa Yasmeen, Yu-Pei Lv, Josip Pečarić, Refinements of some fractional integral inequalities for refined $(\alpha ,h-m)$-convex function, 2021, 2021, 1687-1847, 10.1186/s13662-021-03544-0 | |
21. | Weerawat Sudsutad, Nantapat Jarasthitikulchai, Chatthai Thaiprayoon, Jutarat Kongson, Jehad Alzabut, Novel Generalized Proportional Fractional Integral Inequalities on Probabilistic Random Variables and Their Applications, 2022, 10, 2227-7390, 573, 10.3390/math10040573 | |
22. | Miguel Vivas-Cortez, Muhammad Shoaib Saleem, Sana Sajid, Muhammad Sajid Zahoor, Artion Kashuri, Hermite–Jensen–Mercer-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Convex Function, 2021, 5, 2504-3110, 269, 10.3390/fractalfract5040269 | |
23. | Muhammad Adil Khan, Saeed Anwar, Sadia Khalid, Zaid Mohammed Mohammed Mahdi Sayed, Erhan Set, Inequalities of the Type Hermite–Hadamard–Jensen–Mercer for Strong Convexity, 2021, 2021, 1563-5147, 1, 10.1155/2021/5386488 | |
24. | Zehui Shao, Saeed Kosari, Milad Yadollahzadeh, Generalized Fejér-Divergence in Information Theory, 2022, 46, 1028-6276, 1241, 10.1007/s40995-022-01331-4 | |
25. | Musa Çakmak, Mevlüt Tunç, Generalizations of Hermite-Hadamard, Bullen and Simpson inequalities via h−convexity, 2022, 30, 1584-3289, 77, 10.2478/gm-2022-0006 | |
26. | Hanlar MAMEDOV (RESIDOGLU), Ilknur YESILCE ISIK, On the Fractional Integral Inequalities for p-convex Functions, 2023, 1016-2526, 185, 10.52280/pujm.2023.55(5-6)01 |