Review Special Issues

A review of ocean energy converters, with an Australian focus

  • Received: 10 March 2014 Accepted: 18 August 2014 Published: 25 August 2014
  • The requirement to move away from carbon based fossil fuels has led to a renewed interest in unconventional energy sources. Of interest in this article are ocean waves and current and tidal flows. This paper reviews the numerous options for ocean energy conversion systems that are currently available. A basic nomenclature for the variety of systems is utilized to classify the devices. A variety of issues including competing use, boating, fishing, commercial shipping and tourism are discussed with respect to impacts on and from ocean renewable energy.

    Citation: Chris Knight, Scott McGarry, Jennifer Hayward, Peter Osman, Sam Behrens. A review of ocean energy converters, with an Australian focus[J]. AIMS Energy, 2014, 2(3): 295-320. doi: 10.3934/energy.2014.3.295

    Related Papers:

    [1] Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky . Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Mathematical Biosciences and Engineering, 2006, 3(3): 527-544. doi: 10.3934/mbe.2006.3.527
    [2] Qingling Zeng, Kamran Khan, Jianhong Wu, Huaiping Zhu . The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season. Mathematical Biosciences and Engineering, 2007, 4(4): 739-754. doi: 10.3934/mbe.2007.4.739
    [3] Abba B. Gumel, C. Connell McCluskey, James Watmough . An sveir model for assessing potential impact of an imperfect anti-SARS vaccine. Mathematical Biosciences and Engineering, 2006, 3(3): 485-512. doi: 10.3934/mbe.2006.3.485
    [4] A. M. Elaiw, Raghad S. Alsulami, A. D. Hobiny . Global dynamics of IAV/SARS-CoV-2 coinfection model with eclipse phase and antibody immunity. Mathematical Biosciences and Engineering, 2023, 20(2): 3873-3917. doi: 10.3934/mbe.2023182
    [5] Chenxi Dai, Jing Yang, Kaifa Wang . Evaluation of prevention and control interventions and its impact on the epidemic of coronavirus disease 2019 in Chongqing and Guizhou Provinces. Mathematical Biosciences and Engineering, 2020, 17(4): 2781-2791. doi: 10.3934/mbe.2020152
    [6] Abba Gumel, James Watmough . From the guest editors. Mathematical Biosciences and Engineering, 2006, 3(3): i-ii. doi: 10.3934/mbe.2006.3.3i
    [7] A. D. Al Agha, A. M. Elaiw . Global dynamics of SARS-CoV-2/malaria model with antibody immune response. Mathematical Biosciences and Engineering, 2022, 19(8): 8380-8410. doi: 10.3934/mbe.2022390
    [8] Wenhan Guo, Yixin Xie, Alan E Lopez-Hernandez, Shengjie Sun, Lin Li . Electrostatic features for nucleocapsid proteins of SARS-CoV and SARS-CoV-2. Mathematical Biosciences and Engineering, 2021, 18(3): 2372-2383. doi: 10.3934/mbe.2021120
    [9] Darrak Moin Quddusi, Sandesh Athni Hiremath, Naim Bajcinca . Mutation prediction in the SARS-CoV-2 genome using attention-based neural machine translation. Mathematical Biosciences and Engineering, 2024, 21(5): 5996-6018. doi: 10.3934/mbe.2024264
    [10] Junyuan Yang, Guoqiang Wang, Shuo Zhang . Impact of household quarantine on SARS-Cov-2 infection in mainland China: A mean-field modelling approach. Mathematical Biosciences and Engineering, 2020, 17(5): 4500-4512. doi: 10.3934/mbe.2020248
  • The requirement to move away from carbon based fossil fuels has led to a renewed interest in unconventional energy sources. Of interest in this article are ocean waves and current and tidal flows. This paper reviews the numerous options for ocean energy conversion systems that are currently available. A basic nomenclature for the variety of systems is utilized to classify the devices. A variety of issues including competing use, boating, fishing, commercial shipping and tourism are discussed with respect to impacts on and from ocean renewable energy.


    [1] Osman P, Behrens S, Griffin D, et al. Ocean Renewable Energy: 2015-2050. Commonwealth Scientific and Industrial Research Organisation (CSIRO), 2011. Available from: http://www.csiro.au/Organisation-Structure/Flagships/Energy-Flagship/Ocean-renewable-energy.aspx.
    [2] Behrens S, Hayward J, Hemer M, et al. (2012) Assessing the wave energy converter potential for Australian coastal regions. Renew Energ 43: 210-217. doi: 10.1016/j.renene.2011.11.031
    [3] Hemer M, Griffin D (2010) The wave energy resource along Australia's southern margin. J Renew Sust Energ 2: 043108. doi: 10.1063/1.3464753
    [4] Hayward J, Behrens S, McGarry S, et al. (2012) Economic modelling of the potential of wave energy. Renew Energ 48: 238-250. doi: 10.1016/j.renene.2012.05.007
    [5] Jones A, Finley W. Recent development in salinity gradient power; 2003 12 April 2004; San Francisco, USA. pp. 3.
    [6] Polinder H, Scuotto M. Wave Energy Converters and their Impact on power systems; 2005 18 November 2005; Amsterdam, Netherland. pp. 9.
    [7] Harris R, Johanning L, Wolfram J. Mooring systems for wave energy converters: A review of design issues and choices; 2004; Blyth, UK.
    [8] Drew B, Plummer A, Sahinkaya M (2009) A review of wave energy converter technology. Proc IMechE 223: 15. doi: 10.1243/09544097JRRT174
    [9] Falcao A (2010) Wave energy utilization: A review of the technologies Renew Sust Energ Rev 14: 19.
    [10] Muetze A, Vining J. Ocean Wave Energy Conversion - A Survey, 2006 8-12 October 2006; Tempa, USA. pp.1410-1417.
    [11] López I, Andreu J, Ceballos S, et al. (2013) Review of wave energy technologies and the necessary power-equipment. Renew Sust Energ Rev 27: 413-434. doi: 10.1016/j.rser.2013.07.009
    [12] Czech B, Bauer P (2012) Wave Energy Converter Concepts Design Challenges and Classification. Ieee Ind Electr Mag 6: 4-16.
    [13] Pelamis. Pelamis Brochure, 2010. Available from:
    http://www.pelamiswave.com/pelamis-technology.
    [14] Soerensen H, Friis-Madsen E, Panhauser W, et al. Development of Wave Dragon from Scale 1:50 to Prototype; 2003; Cork, Ireland.
    [15] IEA IEA Ocean Energy Systems Links. International Energy Agency (IEA). pp. International overview.
    [16] Wave Star Energy, The commercial 500 kW Wave Star machine. Wave Star Energy, 2014. Available from: http://www.wavestarenergy.com.
    [17] Previsic M, Bedard R, Hagerman G, et al. System Level Design, Performance and Costs for San Francisco California Pelamis Offshore Wave Power Plant. 2004. Available from:
    http://oceanenergy.epri.com/attachments/wave/reports/006_San_Francisco_Pelamis_Conceptual_Design_12-11-04.pdf.
    [18] Sea Generation The SeaGen Project. Sea Generation Ltd.
    [19] Atlantis Resources (2010) Atlantis Resources Corporation AK turbine illustration.
    [20] BioPower Systems. Technologies - BioSTREAM, 2010. Available from:
    http://www.biopowersystems.com/biostream.html.
    [21] Newcastle City Council, Newcastle City Council - Water. 2009. Available from:
    http://www.newcastle.nsw.gov.au/environment/flooding_and_waterways/urban_water_cycle.
    [22] Fane T (2011). Personal communication: UNESCO Centre for Membrane Science and Technology.
    [23] watertechnology.net, Tuas seawater desalination plant -, Singapore. Available from:
    http://www.water-technology.net/projects/tuas-seawater-desalination/.
    [24] watertechnology.net, Perth seawater desalination plant, Australia. Available from:
    http://www.water-technology.net/projects/perth/.
    [25] Tewari P, Hanra M, Ramani M (1987) Relative technoeconomics of multistage flash distillation and reverse osmosis for seawater desalination - a case study. Desalination 64: 203-210. doi: 10.1016/0011-9164(87)90096-8
    [26] Narmine H, El-Fiqi A (2003). Mechanical vapour compression desalination systems - a case study Desalination Malta 143-150.
    [27] Tsai CF, Tzong TJ, Wu FHY (1993) Wave powered desalination apparatus with turbine-driven pressurization. Google Patents.
    [28] watertechnology.net, Hadera desalination plant, Israel. Available from:
    http://www.water-technology.net/projects/hadera-desalination/.
    [29] watertechnology.net, Tampa Bay seawater desalinatin plant, United States of America. Available from: http://www.water-technology.net/projects/tampa/.
    [30] Folley M, Whittaker T (2009) The cost of water from an autonomous wave-powered desalination plant. Renew Energ 34: 6.
    [31] Sharmila N, Jalihal P, Swamy A, et al. (2004) Wave powered desalination system. Energ 29: 3.
    [32] Hicks D, Pleass C, Mitcheson G. DELBUOY: wave-powered seawater desalination system; 1988 31 Octpber-2 November 1988; Baltimore, USA. pp. 1049-1054.
    [33] O'Grady J, McInnes K (2010) Extreme wind waves and their relationship to storm surges in northeastern Bass Strait. Aust Meteorol Oceanogr J 60: 265-275.
    [34] Uppsala University Wave Power Project - Lysekil. Uppsala University. Available from:
    http://www.el.angstrom.uu.se/forskningsprojekt/WavePower/Lysekilsprojektet_E.html.
    [35] Clean Development Mechanism, Project 0349: Sihwa Tidal Power Plant. UNFCCC, 2004. Available from:
    http://cdm.unfccc.int/Projects/DB/DNV-CUK1143710269.08.
    [36] Langhamer O, Haikonen K, Sundberg J (2010) Wave power - sustainable energy or environmentally costly? A review with special emphasis on linear wave energy converters. Renew Sust Energ Rev 14: 1329-1335.
    [37] Boehlert G, Gill A (2010) Environmental and ecological effects of ocean renewable energy development: a current synthesis. Oceanography 23: 68-81. doi: 10.5670/oceanog.2010.46
    [38] Thorpe T, Picken M (1993) Wave energy devices and the marine environment. Sci Meas Tech 140: 63-70.
    [39] Hammons T (1993) Tidal power. P IEEE 81: 419-433. doi: 10.1109/5.241486
    [40] Pelc R, Fujita R (2002) Renewable energy from the ocean. Marine Policy 26: 471-479. doi: 10.1016/S0308-597X(02)00045-3
    [41] Dadswell M, Rulifson R (1994) Macrotidal estuaries: a region of collision between migratory marine animals and tidal power development. Biol J Linn Soc 51: 93-113. doi: 10.1111/j.1095-8312.1994.tb00947.x
    [42] Soerensen H, Naef S (2008) Report and technical specificatin of reference technologies (wave and tidal power plant). NEEDS Project Rep.
    [43] Hammar L, Andersson S, Eggertsen L, et al. (2013) Hydrokinetic Turbine Effects on Fish Swimming Behaviour. PLoS ONE 8: e84141. doi: 10.1371/journal.pone.0084141
    [44] Jacobson P, Amaral S, Castro-Santas T, et al. (2012) Environmental effects of hydrokinetic turbines on fish: desktop and laboratory flume studies. Electric Power Research Institute.
    [45] Vega L (1995) The 210 kW open cycle OTEC experimental apparatus: status report; 1995 9-12 October 1995; San Diego, USA. pp. 1110-1115.
    [46] Wilde P (2010) Environmental Monitoring and Assessment Program at Potential OTEC Sites. 6th Annual Ocean Thermal Energy Conversion Conference. Lawrence Berkley National Laboratory.
    [47] Myers E, Hoss D, Matsumoto W, et al. (1986) The potential impact of ocean thermal energy conversion (OTEC) on fisheries. NOAA Technical Report NMFS 40 1986.
    [48] Vega L, OTEC overview. OTEC News, 2011. Available from:
    http://www.otecnews.org/portal/otec-articles/ocean-thermal-energy-conversion-otec-by-l-a-vega-ph-d/.
    [49] Australian Fisheries Management Authority, 2014. Available from:
    http://www.afma.gov.au/managing-our-fisheries/environment-and-sustainability/marine-protected-areas/.
    [50] (IUCN) IUfCoN, Sustainable Fisheries Management, 2014. Available from:
    http://www.iucn.org/about/union/secretariat/offices/rowa/iucnwame_ourwork/iucnwame_marineprogramme/iucn_m_drosos/.
    [51] Dähne M, Gilles A, Lucke K, et al. (2013) Effects of pile-driving on harbour porpoises (Phocoena phocoena) at the first offshore wind farm in Germany. Environ Res Lett 8: 1-16.
    [52] Robinson S, Theobald P, Lepper P. Underwater noise generated from marine piling; 2014; Edinburgh, Scotland. pp. 070080.
    [53] Haikonen K, Sundberg J, Leijon M (2013) Characteristics of the operational noise from full scale wave energy converters in the Lyskil Project: estimation of potential environmental impacts. Energies 6: 2562-2582. doi: 10.3390/en6052562
    [54] Copping A, Battey H, Brown-Saracino J, et al. (2014) An international assessment of the environmental effects of marine energy development. Ocean Coast Manage: 1-11.
    [55] Bolin K, Almgren M, Ohlsson E, et al. (2014) Long term estimations of low frequency noise levels over water from an off-shore wind farm. J Acoust Soc Am 135: 1106-1114. doi: 10.1121/1.4863302
    [56] Hampton T, Hofford A (2011) West Coast Wave Energy Planning and Assessment Framework: Assessment of Information and Approaches for Ocean Renewable Energy Siting and Planning. Oregon Wave Energy Trust: Pacific Energy Ventures.
    [57] oregon.gov, Oregon Territorial Sea Plan (Part 5). Use of the Territorial Sea for the Development of Renewable Energy Faciliteis or Other Related Structures, Equipment or Facilites. 2014. Available at: http://wwworegongov/LCD/OCMP/Pages/Ocean_TSP.aspx.
    [58] Gonzalez-Santamaria R, Zou Q, Pan S (2013) Impacts of a wave farm on waves, currents and coastal morphology in South West England. Estuaries Coasts 1: 1-14.
    [59] Veigas M, Ramos V, Iglesias G (2014) A wave arm for an island: detailed effects on the nearshore wave climate. Energy In press.
    [60] Bento A, Rusu E, Martinho P, et al. (2014) Assessment of the changes induced by a wave energy farm in the nearshore wave conditions. Comput Geosci In press.
    [61] Copping A, Hanna L, Van Cleve B, et al. (2014) Environmental risk evaluation system - an approach to ranking risk of oean energy development on coastal and estuarine environments. Estuaries Coasts: 1-16.
  • This article has been cited by:

    1. Xiaotian Wu, Venkata R. Duvvuri, Yijun Lou, Nicholas H. Ogden, Yann Pelcat, Jianhong Wu, Developing a temperature-driven map of the basic reproductive number of the emerging tick vector of Lyme disease Ixodes scapularis in Canada, 2013, 319, 00225193, 50, 10.1016/j.jtbi.2012.11.014
    2. Anuj Kumar Sharma, Amit Sharma, Kulbhushan Agnihotri, Bifurcation behaviors analysis of a plankton model with multiple delays, 2016, 09, 1793-5245, 1650086, 10.1142/S1793524516500868
    3. Mohammad A. Safi, Abba B. Gumel, The effect of incidence functions on the dynamics of a quarantine/isolation model with time delay, 2011, 12, 14681218, 215, 10.1016/j.nonrwa.2010.06.009
    4. Martin J. Blaser, Studying microbiology with Glenn F. Webb, 2015, 12, 1551-0018, xvii, 10.3934/mbe.2015.12.4xvii
    5. Wenjuan Guo, Qimin Zhang, Xining Li, Weiming Wang, Dynamic behavior of a stochastic SIRS epidemic model with media coverage, 2018, 41, 01704214, 5506, 10.1002/mma.5094
    6. Xiaodong Wang, Chunxia Wang, Kai Wang, Global dynamics of a novel deterministic and stochastic SIR epidemic model with vertical transmission and media coverage, 2020, 2020, 1687-1847, 10.1186/s13662-020-03145-3
    7. Wei-Ming Wang, Hou-Ye Liu, Yong-Li Cai, Zhen-Qing Li, Turing pattern selection in a reaction-diffusion epidemic model, 2011, 20, 1674-1056, 074702, 10.1088/1674-1056/20/7/074702
    8. Kimberly M. Thompson, Dominika A. Kalkowska, Kamran Badizadegan, Hypothetical emergence of poliovirus in 2020: Part 1. Consequences of policy decisions to respond using nonpharmaceutical interventions, 2021, 1476-0584, 10.1080/14760584.2021.1891888
    9. Fred Brauer, Carlos Castillo-Chavez, Zhilan Feng, 2019, Chapter 16, 978-1-4939-9826-5, 507, 10.1007/978-1-4939-9828-9_16
    10. Mohammad A. Safi, Abba B. Gumel, Dynamics of a model with quarantine-adjusted incidence and quarantine of susceptible individuals, 2013, 399, 0022247X, 565, 10.1016/j.jmaa.2012.10.015
    11. Fred Brauer, Some Simple Nosocomial Disease Transmission Models, 2015, 77, 0092-8240, 460, 10.1007/s11538-015-0061-0
    12. Jennifer B. Nuzzo, Diane Meyer, Michael Snyder, Sanjana J. Ravi, Ana Lapascu, Jon Souleles, Carolina I. Andrada, David Bishai, What makes health systems resilient against infectious disease outbreaks and natural hazards? Results from a scoping review, 2019, 19, 1471-2458, 10.1186/s12889-019-7707-z
    13. Ying-Hen Hsieh, Junli Liu, Yun-Huei Tzeng, Jianhong Wu, Impact of visitors and hospital staff on nosocomial transmission and spread to community, 2014, 356, 00225193, 20, 10.1016/j.jtbi.2014.04.003
    14. A. B. Gumel, Global dynamics of a two-strain avian influenza model, 2009, 86, 0020-7160, 85, 10.1080/00207160701769625
    15. Lin Hu, Lin‐Fei Nie, Dynamic modeling and analysis of COVID‐19 in different transmission process and control strategies, 2021, 44, 0170-4214, 1409, 10.1002/mma.6839
    16. Martin J. Blaser, Studying microbiology with Glenn F. Webb, 2015, 12, 1551-0018, xvii, 10.3934/mbe.2015.12.4xvii
    17. Fred Brauer, Mathematical epidemiology: Past, present, and future, 2017, 2, 24680427, 113, 10.1016/j.idm.2017.02.001
    18. Rania Assab, Narimane Nekkab, Pascal Crépey, Pascal Astagneau, Didier Guillemot, Lulla Opatowski, Laura Temime, Mathematical models of infection transmission in healthcare settings, 2017, 30, 0951-7375, 410, 10.1097/QCO.0000000000000390
    19. Khalid Hussain Al-Ahmadi, Mohammed Hussain Alahmadi, Ali Saeed Al-Zahrani, Maged Gomaa Hemida, Spatial variability of Middle East respiratory syndrome coronavirus survival rates and mortality hazard in Saudi Arabia, 2012–2019, 2020, 8, 2167-8359, e9783, 10.7717/peerj.9783
    20. O. A. Perevesentsev, T. O. Cholodnaya, A. E. Samsonov, D. V. Burtsev, Methods of specific laboratory testing of new coronavirus infection, 2020, 11, 2618-7876, 27, 10.21886/2219-8075-2020-11-3-27-33
    21. Matthew P. Cheng, Jesse Papenburg, Michaël Desjardins, Sanjat Kanjilal, Caroline Quach, Michael Libman, Sabine Dittrich, Cedric P. Yansouni, Diagnostic Testing for Severe Acute Respiratory Syndrome–Related Coronavirus 2, 2020, 172, 0003-4819, 726, 10.7326/M20-1301
    22. Saskia Popescu, Hospital biopreparedness in the Looming Presence of SARS‐CoV‐2/COVID‐19, 2020, 3, 2398-8835, 10.1002/hsr2.149
    23. Supatcha Siriprapaiwan, Elvin J. Moore, Sanoe Koonprasert, Generalized reproduction numbers, sensitivity analysis and critical immunity levels of an SEQIJR disease model with immunization and varying total population size, 2018, 146, 03784754, 70, 10.1016/j.matcom.2017.10.006
    24. Kin On Kwok, Gabriel M Leung, Wai Yee Lam, Steven Riley, Using models to identify routes of nosocomial infection: a large hospital outbreak of SARS in Hong Kong, 2007, 274, 0962-8452, 611, 10.1098/rspb.2006.0026
    25. A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. van den Driessche, D. Gabrielson, C. Bowman, M. E. Alexander, S. Ardal, J. Wu, B. M. Sahai, Modelling strategies for controlling SARS outbreaks, 2004, 271, 0962-8452, 2223, 10.1098/rspb.2004.2800
    26. Dong-Wei Huang, Hong-Li Wang, Jian-Feng Feng, Zhi-Wen Zhu, Modelling algal densities in harmful algal blooms (HAB) with stochastic dynamics, 2008, 32, 0307904X, 1318, 10.1016/j.apm.2007.04.006
    27. Govind Prasad Sahu, Joydip Dhar, Dynamics of an SEQIHRS epidemic model with media coverage, quarantine and isolation in a community with pre-existing immunity, 2015, 421, 0022247X, 1651, 10.1016/j.jmaa.2014.08.019
    28. Mohammad A. Safi, Mudassar Imran, Abba B. Gumel, Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation, 2012, 131, 1431-7613, 19, 10.1007/s12064-011-0148-6
    29. Ayako Fukutome, Koichi Watashi, Norito Kawakami, Hirofumi Ishikawa, Mathematical Modeling of Severe Acute Respiratory Syndrome Nosocomial Transmission in Japan: The Dynamics of Incident Cases and Prevalent Cases, 2007, 51, 03855600, 823, 10.1111/j.1348-0421.2007.tb03978.x
    30. Michael Small, C.K. Tse, Clustering model for transmission of the SARS virus: application to epidemic control and risk assessment, 2005, 351, 03784371, 499, 10.1016/j.physa.2005.01.009
    31. Ying-Hen Hsieh, Chwan-Chuan King, Cathy W.S Chen, Mei-Shang Ho, Sze-Bi Hsu, Yi-Chun Wu, Impact of quarantine on the 2003 SARS outbreak: A retrospective modeling study, 2007, 244, 00225193, 729, 10.1016/j.jtbi.2006.09.015
    32. Jing-An Cui, Xin Tao, Huaiping Zhu, An SIS Infection Model Incorporating Media Coverage, 2008, 38, 0035-7596, 10.1216/RMJ-2008-38-5-1323
    33. Chunqing Wu, The Optimal Vaccination Rate Based on Structured SI Model, 2012, 29, 18777058, 1713, 10.1016/j.proeng.2012.01.200
    34. Wenjuan Guo, Yongli Cai, Qimin Zhang, Weiming Wang, Stochastic persistence and stationary distribution in an SIS epidemic model with media coverage, 2018, 492, 03784371, 2220, 10.1016/j.physa.2017.11.137
    35. Dongwei Huang, Hongli Wang, Jianfeng Feng, Zhi-wen Zhu, Hopf bifurcation of the stochastic model on HAB nonlinear stochastic dynamics, 2006, 27, 09600779, 1072, 10.1016/j.chaos.2005.04.086
    36. Jason Bintz, Suzanne Lenhart, Cristina Lanzas, Antimicrobial Stewardship and Environmental Decontamination for the Control of Clostridium difficile Transmission in Healthcare Settings, 2017, 79, 0092-8240, 36, 10.1007/s11538-016-0224-7
    37. Jianping Sha, Yuan Li, Xiaowen Chen, Yan Hu, Yajin Ren, Xingyi Geng, Zhiruo Zhang, Shelan Liu, Fatality risks for nosocomial outbreaks of Middle East respiratory syndrome coronavirus in the Middle East and South Korea, 2017, 162, 0304-8608, 33, 10.1007/s00705-016-3062-x
    38. Juan Zhang, Jie Lou, Zhien Ma, Jianhong Wu, A compartmental model for the analysis of SARS transmission patterns and outbreak control measures in China, 2005, 162, 00963003, 909, 10.1016/j.amc.2003.12.131
    39. Anatoliy V. Swishchuk, Nikolaos Limnios, Mariya Svishchuk, Averaging, Merging and Diffusion Approximation of Stochastic SARS Models, 2012, 1556-5068, 10.2139/ssrn.2201765
    40. Mohammad A. Safi, Global Stability Analysis of Two-Stage Quarantine-Isolation Model with Holling Type II Incidence Function, 2019, 7, 2227-7390, 350, 10.3390/math7040350
    41. YIPING LIU, JING-AN CUI, THE IMPACT OF MEDIA COVERAGE ON THE DYNAMICS OF INFECTIOUS DISEASE, 2008, 01, 1793-5245, 65, 10.1142/S1793524508000023
    42. Nadin Younes, Duaa W. Al-Sadeq, Hadeel AL-Jighefee, Salma Younes, Ola Al-Jamal, Hanin I. Daas, Hadi. M. Yassine, Gheyath K. Nasrallah, Challenges in Laboratory Diagnosis of the Novel Coronavirus SARS-CoV-2, 2020, 12, 1999-4915, 582, 10.3390/v12060582
    43. Yun Kang, Carlos Castillo-Chavez, Multiscale analysis of compartment models with dispersal, 2012, 6, 1751-3758, 50, 10.1080/17513758.2012.713125
    44. Christopher M. Kribs-Zaleta, Jean-François Jusot, Philippe Vanhems, Sandrine Charles, Modeling Nosocomial Transmission of Rotavirus in Pediatric Wards, 2011, 73, 0092-8240, 1413, 10.1007/s11538-010-9570-z
    45. M. H. Ling, S. Y. Wong, K. L. Tsui, Efficient heterogeneous sampling for stochastic simulation with an illustration in health care applications, 2017, 46, 0361-0918, 631, 10.1080/03610918.2014.977914
    46. Mohammad A. Safi, Abba B. Gumel, Qualitative study of a quarantine/isolation model with multiple disease stages, 2011, 218, 00963003, 1941, 10.1016/j.amc.2011.07.007
    47. Georges F. Vles, Stijn Ghijselings, Iris De Ryck, Geert Meyfroidt, Nicola A. Sweeney, Wouter Oosterlinck, Minne Casteels, Lieven Moke, Returning to Elective Orthopedic Surgery During the COVID-19 Pandemic: A Multidisciplinary and Pragmatic Strategy for Initial Patient Selection, 2020, 16, 1549-8425, e292, 10.1097/PTS.0000000000000755
    48. BiBi Fatima, Manar A. Alqudah, Gul Zaman, Fahd Jarad, Thabet Abdeljawad, Modeling the Transmission Dynamics of Middle Eastern Respiratory Syndrome Coronavirus with the Impact of Media Coverage, 2021, 22113797, 104053, 10.1016/j.rinp.2021.104053
    49. Martin J. Blaser, Studying microbiology with Glenn F. Webb, 2015, 12, 1551-0018, 10.3934/mbe.2015.12.xvii
    50. Rajasekar S. P., Pitchaimani M., Quanxin Zhu, Higher order stochastically perturbed SIRS epidemic model with relapse and media impact, 2022, 45, 0170-4214, 843, 10.1002/mma.7817
    51. Tingting Zheng, Huaiping Zhu, Zhidong Teng, Linfei Nie, Yantao Luo, Patch model for border reopening and control to prevent new outbreaks of COVID-19, 2023, 20, 1551-0018, 7171, 10.3934/mbe.2023310
    52. Prathap Somu, Sonali Mohanty, Srishti Chakraborty, Subhankar Paul, 2021, Chapter 11, 978-3-030-85108-8, 173, 10.1007/978-3-030-85109-5_11
    53. O.A. Perevesentsev, T.O. Cholodnaya, D.V. Burtsev, Foreign experience in molecular genetic and immunological diagnostics of SARS-CoV-2 (review), 2021, 10, 2305-2198, 47, 10.17116/labs20211004147
    54. Vijay Pal Bajiya, Jai Prakash Tripathi, Vipul Kakkar, Yun Kang, Modeling the impacts of awareness and limited medical resources on the epidemic size of a multi-group SIR epidemic model, 2022, 15, 1793-5245, 10.1142/S1793524522500450
    55. Emily Clayton, Mohammed A. Rohaim, Mahmoud Bayoumi, Muhammad Munir, 2021, Chapter 2, 978-3-030-85108-8, 15, 10.1007/978-3-030-85109-5_2
    56. Nikolaos Limnios, Anatoliy Swishchuk, 2023, Chapter 7, 978-3-031-33428-3, 139, 10.1007/978-3-031-33429-0_7
    57. Jummy David, Gabrielle Brankston, Idriss Sekkak, Sungju Moon, Xiaoyan Li, Sana Jahedi, Zahra Mohammadi, Ao Li, Martin Grunnil, Pengfei Song, Woldegebriel Assefa, Nicola Bragazzi, Jianhong Wu, 2023, Chapter 1, 978-3-031-40804-5, 1, 10.1007/978-3-031-40805-2_1
    58. Glenn Webb, Xinyue Evelyn Zhao, An Epidemic Model with Infection Age and Vaccination Age Structure, 2024, 16, 2036-7449, 35, 10.3390/idr16010004
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(10343) PDF downloads(1203) Cited by(12)

Article outline

Figures and Tables

Figures(11)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog