The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season

  • Received: 01 November 2006 Accepted: 29 June 2018 Published: 01 August 2007
  • MSC : 92D30.

  • During flu season, respiratory infections can cause non-specific influenza-like-illnesses (ILIs) in up to one-half of the general population. If a future SARS outbreak were to coincide with flu season, it would become exceptionally difficult to distinguish SARS rapidly and accurately from other ILIs, given the non-specific clinical presentation of SARS and the current lack of a widely available, rapid, diagnostic test. We construct a deterministic compartmental model to examine the potential impact of preemptive mass influenza vaccination on SARS containment during a hypothetical SARS outbreak coinciding with a peak flu season. Our model was developed based upon the events of the 2003 SARS outbreak in Toronto, Canada. The relationship of different vaccination rates for influenza and the corresponding required quarantine rates for individuals who are exposed to SARS was analyzed and simulated under different assumptions. The study revealed that a campaign of mass influenza vaccination prior to the onset of flu season could aid the containment of a future SARS outbreak by decreasing the total number of persons with ILIs presenting to the health-care system, and consequently decreasing nosocomial transmission of SARS in persons under investigation for the disease.

    Citation: Qingling Zeng, Kamran Khan, Jianhong Wu, Huaiping Zhu. The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season[J]. Mathematical Biosciences and Engineering, 2007, 4(4): 739-754. doi: 10.3934/mbe.2007.4.739

    Related Papers:

  • During flu season, respiratory infections can cause non-specific influenza-like-illnesses (ILIs) in up to one-half of the general population. If a future SARS outbreak were to coincide with flu season, it would become exceptionally difficult to distinguish SARS rapidly and accurately from other ILIs, given the non-specific clinical presentation of SARS and the current lack of a widely available, rapid, diagnostic test. We construct a deterministic compartmental model to examine the potential impact of preemptive mass influenza vaccination on SARS containment during a hypothetical SARS outbreak coinciding with a peak flu season. Our model was developed based upon the events of the 2003 SARS outbreak in Toronto, Canada. The relationship of different vaccination rates for influenza and the corresponding required quarantine rates for individuals who are exposed to SARS was analyzed and simulated under different assumptions. The study revealed that a campaign of mass influenza vaccination prior to the onset of flu season could aid the containment of a future SARS outbreak by decreasing the total number of persons with ILIs presenting to the health-care system, and consequently decreasing nosocomial transmission of SARS in persons under investigation for the disease.


    加载中
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1774) PDF downloads(586) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog