The global well-posedness theory and viscosity vanishing limit of the initial-boundary value problem on two/three-dimensional (2D/3D) incompressible Navier-Stokes (NS) equations and/or Boussinesq equations with nonlinear boundary conditions are studied. The global existence of weak solution to the initial boundary value problem for 2D/3D incompressible NS equation with one kind of boundary of pressure-velocity's relation and the global existence and uniqueness of the smooth solution to the corresponding problem in 2D case for large smooth initial data are proven. The viscosity vanishing limit of the corresponding initial-boundary value problem for 2D/3D incompressible NS equations in the bounded domain is also established. And the corresponding results are extended to the 2D/3D incompressible Boussinesq equations.
Citation: Shu Wang. Global well-posedness and viscosity vanishing limit of a new initial-boundary value problem on two/three-dimensional incompressible Navier-Stokes equations and/or Boussinesq equations[J]. Communications in Analysis and Mechanics, 2025, 17(2): 582-605. doi: 10.3934/cam.2025023
[1] | Ye Yue, Ghulam Farid, Ayșe Kübra Demirel, Waqas Nazeer, Yinghui Zhao . Hadamard and Fejér-Hadamard inequalities for generalized $ k $-fractional integrals involving further extension of Mittag-Leffler function. AIMS Mathematics, 2022, 7(1): 681-703. doi: 10.3934/math.2022043 |
[2] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[3] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[4] | Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379 |
[5] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[6] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[7] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[8] | Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469 |
[9] | Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407 |
[10] | Sabir Hussain, Rida Khaliq, Sobia Rafeeq, Azhar Ali, Jongsuk Ro . Some fractional integral inequalities involving extended Mittag-Leffler function with applications. AIMS Mathematics, 2024, 9(12): 35599-35625. doi: 10.3934/math.20241689 |
The global well-posedness theory and viscosity vanishing limit of the initial-boundary value problem on two/three-dimensional (2D/3D) incompressible Navier-Stokes (NS) equations and/or Boussinesq equations with nonlinear boundary conditions are studied. The global existence of weak solution to the initial boundary value problem for 2D/3D incompressible NS equation with one kind of boundary of pressure-velocity's relation and the global existence and uniqueness of the smooth solution to the corresponding problem in 2D case for large smooth initial data are proven. The viscosity vanishing limit of the corresponding initial-boundary value problem for 2D/3D incompressible NS equations in the bounded domain is also established. And the corresponding results are extended to the 2D/3D incompressible Boussinesq equations.
Convexity is very important in the field of mathematical analysis and optimization theory. It is a basic concept in mathematics which has been extended and generalized in different ways by using various techniques. For example one of the generalizations is exponentially (α,h−m)-convexity, that contains (α,h−m)-convexity, exponentially (h−m)-convexity, (h−m)-convexity, exponentially (α,m)-convexity, (α,m)-convexity and several related convexities.
Definition 1. [1] Let J⊆R be an interval containing (0,1) and let h:J→R be a non-negative function. Then a function η:I→R (where I⊆R is an interval) is said to be exponentially (α,h−m)-convex, if inequality (1.1) must holds for all α,m∈[0,1], a1,a2∈I, τ∈(0,1) and ς∈R:
η(τa1+m(1−τ)a2)≤h(τα)η(a1)eςa1+mh(1−τα)η(a2)eςa2. | (1.1) |
If we put α=1 in (1.1), then we get the following definition of exponentially (h−m)-convex functions:
Definition 2. Let J⊆R be an interval containing (0,1) and let h:J→R be a non-negative function. Then a function η:I→R (where I⊆R is an interval) is said to be exponentially (h−m)-convex, if inequality (1.2) must holds for all m∈[0,1], a1,a2∈I, τ∈(0,1) and ς∈R:
η(τa1+m(1−τ)a2)≤h(τ)η(a1)eςa1+mh(1−τ)η(a2)eςa2. | (1.2) |
If we put h(τ)=τ in (1.1), then we get the following definition of exponentially (α,m)-convex functions:
Definition 3. A function η:I→R (where I⊆R is an interval) is said to be exponentially (α,m)-convex, if inequality (1.3) must holds for all α,m∈[0,1], a1,a2∈I, τ∈(0,1) and ς∈R:
η(τa1+m(1−τ)a2)≤ταη(a1)eςa1+m(1−τα)η(a2)eςa2. | (1.3) |
Remark 1. 1. If we fix α=1 and h(τ)=τs in (1.1), we recover the definition of exponentially (s,m)-convexity defined by Qiang et al. in [2].
2. If we fix α=m=1 and h(τ)=τs in (1.1), we recover the definition of exponentially s-convexity defined by Mehreen et al. in [3].
3. If we fix α=m=1 and h(τ)=τ in (1.1), we recover the definition of exponentially convexity defined by Awan et al. in [4].
4. If we fix ς=0 in (1.1), we recover the definition of (α,h−m)-convexity defined by Farid et al. in [5].
5. If we fix ς=α=0 and α=1 in (1.1), we recover the definition of (h−m)-convexity defined by Özdemir et al. in [6].
6. If we fix ς=0 and h(τ)=τ in (1.1), we recover the definition of (α,m)-convexity defined by Mihesan in [7].
7. If we fix ς=0, α=1 and h(τ)=τs in (1.1), we recover the definition of (s,m)-convexity defined by Efthekhari in [8].
8. If we fix ς=0, α=m=1 and h(τ)=τs in (1.1), we recover the definition of s-convexity defined by Hudzik and Maligranda in [9].
9. If we fix ς=0, α=1 and h(τ)=τ in (1.1), we recover the definition of m-convexity defined by Toader in [10].
10. If we fix ς=0 and α=m=1in (1.1), we recover the definition of h-convexity defined by Varosanec in [11].
11. If we fix ς=0, α=m=1 and h(τ)=τ in (1.1), we recover the definition of convexity.
A convex function is elegantly interpreted in the coordinate plane by the well known Hermite-Hadamard inequality [12], stated as follows:
Theorem 1.1. Let η:[a1,a2]→R be a convex function such that a1<a2. Then following inequality holds:
η(a1+a22)≤1a2−a1∫a2a1η(τ)dτ≤η(a1)+η(a2)2. |
The Hermite-Hadamard inequality is generalized in various ways by using different fractional integral operators (see, for example [3,4,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30]). In this paper we will further generalize this inequality by using a new generalized convexity and fractional integral operators containing an extended generalized Mittag-Leffler function. The results of this paper also generalize results of [17,18,19,20,22,24,25,29,30].
In [31], Andrić et al. defined the generalized fractional integral operators containing generalized Mittag-Leffler function as follows:
Definition 4. Let κ,θ,δ,l,ω,c∈C, ℜ(θ),ℜ(δ),ℜ(l)>0, ℜ(c)>ℜ(ω)>0 with p≥0, r>0 and 0<q≤r+ℜ(θ). Let η∈L1[a1,a2] and ψ∈[a1,a2]. Then the generalized fractional integral operators Υω,r,q,cθ,δ,l,κ,a1+η and Υω,r,q,cθ,δ,l,κ,a2−η are defined by:
(Υω,r,q,cθ,δ,l,κ,a1+η)(ψ;p)=∫ψa1(ψ−τ)δ−1Eω,r,q,cθ,δ,l(κ(ψ−τ)θ;p)η(τ)dτ, | (1.4) |
(Υω,r,q,cθ,δ,l,κ,a2−η)(ψ;p)=∫a2ψ(τ−ψ)δ−1Eω,r,q,cθ,δ,l(κ(τ−ψ)θ;p)η(τ)dτ, | (1.5) |
where Eω,r,q,cθ,δ,l(τ;p) is the generalized Mittag-Leffler function defined as follows:
Eω,r,q,cθ,δ,l(τ;p)=∞∑n=0βp(ς+nq,c−ς)β(ς,c−ς)(c)nqΓ(θn+δ)τn(l)nr. |
In [32], Farid defined the following unified integral operators:
Definition 5. Let η,μ:[a1,a2]→R, (with 0<a1<a2) be two functions such that η is positive and integrable on [a1,a2] and μ is differentiable and strictly increasing on [a1,a2]. Also, let γψ be an increasing function on [a1,∞) and κ,δ,l,ω,c∈C, ℜ(δ),ℜ(l)>0, ℜ(c)>ℜ(ω)>0 with p≥0, θ,r>0 and 0<q≤r+θ. Then for ψ∈[a1,a2] the integral operators μΥγ,ω,r,q,cθ,δ,l,a1+η and μΥγ,ω,r,q,cθ,δ,l,a2−η are defined by:
(μΥγ,ω,r,q,cθ,δ,l,a1+η)(ψ;p)=∫ψa1γ(μ(ψ)−μ(τ))μ(ψ)−μ(τ)Eω,r,q,cθ,δ,l(κ(μ(ψ)−μ(τ))θ;p)η(τ)d(μ(τ)), | (1.6) |
(μΥγ,ω,r,q,cθ,δ,l,a2−η)(ψ;p)=∫a2ψγ(μ(τ)−μ(ψ))μ(τ)−μ(ψ)Eω,r,q,cθ,δ,l(κ(μ(τ)−μ(ψ))θ;p)η(τ)d(μ(τ)). | (1.7) |
If we put γ(ψ)=ψδ in (1.6) and (1.7), then we get the following generalized fractional integral operators containing Mittag-Leffler function:
Definition 6. Let η,μ:[a1,a2]→R, (with 0<a1<a2) be two functions such that η is positive and integrable on [a1,a2] and μ is differentiable and strictly increasing on [a1,a2]. Also, let κ,δ,l,ω,c∈C, ℜ(δ),ℜ(l)>0, ℜ(c)>ℜ(ω)>0 with p≥0, θ,r>0 and 0<q≤r+θ. Then for ψ∈[a1,a2] the integral operators μΥω,r,q,cθ,δ,l,κ,a1+η and μΥω,r,q,cθ,δ,l,κ,a2−η are defined by:
(μΥω,r,q,cθ,δ,l,κ,a1+η)(ψ;p)=∫ψa1(μ(ψ)−μ(τ))δ−1Eω,r,q,cθ,δ,l(κ(μ(ψ)−μ(τ))θ;p)η(τ)d(μ(τ)), | (1.8) |
(μΥω,r,q,cθ,δ,l,κ,a2−η)(ψ;p)=∫a2ψ(μ(τ)−μ(ψ))δ−1Eω,r,q,cθ,δ,l(κ(μ(τ)−μ(ψ))θ;p)η(τ)d(μ(τ)). | (1.9) |
Remark 2. Operators (1.8) and (1.9) are the generalizations of the following fractional integral operators:
1. Choosing μ(ψ)=ψ, we recover the fractional integral operators defined in (1.4) and (1.5).
2. Choosing μ(ψ)=ψ and p=0, we recover the fractional integral operators defined by Salim-Faraj in [33].
3. Choosing μ(ψ)=ψ and l=r=1, we recover the fractional integral operators defined by Rahman et al. in [34].
4. Choosing μ(ψ)=ψ, p=0 and l=r=1, we recover the fractional integral operators defined by Srivastava-Tomovski in [35].
5. Choosing μ(ψ)=ψ, p=0 and l=r=q=1, we recover the fractional integral operators defined by Prabhakar in [36].
6. Choosing μ(ψ)=ψ and κ=p=0, we recover the Riemann-Liouville fractional integral operators.
In [26], Mehmood et al. given the following formulas which we will use frequently:
(μΥω,r,q,cθ,δ,l,κ,a1+1)(ψ;p)=(μ(ψ)−μ(a1))δEω,r,q,cθ,δ+1,l(κ(μ(ψ)−μ(a1))θ;p):=μχδκ,a1+(ψ;p), | (1.10) |
(μΥω,r,q,cθ,δ,l,κ,a2−1)(ψ;p)=(μ(a2)−μ(ψ))δEω,r,q,cθ,δ+1,l(κ(μ(a2)−μ(ψ))θ;p):=μχδκ,a2−(ψ;p). | (1.11) |
The aim of this paper is to establish the generalized Hermite-Hadamard inequalities for exponentially (α,h−m)-convex functions, exponentially (h−m)-convex functions and exponentially (α,m)-convex functions. These inequalities are produced by using the generalized fractional integral operators (1.8) and (1.9) containing Mittag-Leffler function via a monotone increasing function. These inequalities lead to produce the Hermite-Hadamard inequalities for various kinds of convexities (see Remark 1) and well-known fractional integral operators (see Remark 2).
In the upcoming section we prove the Hermite-Hadamard inequalities for generalized fractional integral operators (1.8) and (1.9) via exponentially (α,h−m)-convex functions. Further we present them for generalized fractional integral operators (1.8) and (1.9) via exponentially (h−m)-convex functions. Also we give these inequalities for exponentially (α,m)-convex functions.
First we give the following Hermite-Hadamard inequality for exponentially (α,h−m)-convex functions via further generalized fractional integral operators.
Theorem 2.1. Let η:[a1,ma2]⊂[0,∞)→R, 0<a1<ma2 be a positive, integrable and exponentially (α,h−m)-convex function. Let μ:[a1,ma2]→R be differentiable and strictly increasing. Then for generalized fractional integral operators, the following inequalities hold:
η(μ(a1)+mμ(a2)2)D(ς)μχδˉκ,a1+(μ−1(mμ(a2));p)≤h(12α)(μΥω,r,q,cθ,δ,l,ˉκ,a1+η∘μ)(μ−1(mμ(a2));p)+mδ+1h(2α−12α)(μΥω,r,q,cθ,δ,l,ˉκmθ,a2−η∘μ)(μ−1(μ(a1)m);p)≤(mμ(a2)−μ(a1))δ[(h(12α)η(μ(a1))eςμ(a1)+mh(2α−12α)η(μ(a2))eςμ(a2))×∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(τα)dτ+m(h(12α)η(μ(a2))eςμ(a2)+mh(2α−12α)η(μ(a1)m2)eςμ(a1)m2)×∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(1−τα)dτ],ˉκ=κ(mμ(a2)−μ(a1))θ, | (2.1) |
where D(ς)=eςμ(a2) for ς<0, D(ς)=eςμ(a1) for ς≥0.
Proof. From exponentially (α,h−m)-convexity of η, we have
η(μ(a1)+mμ(a2)2)≤h(12α)η(τμ(a1)+m(1−τ)μ(a2))eς(τμ(a1)+m(1−τ)μ(a2))+mh(2α−12α)η((1−τ)μ(a1)m+τμ(a2))eς((1−τ)μ(a1)m+τμ(a2)). | (2.2) |
Multiplying (2.2) by τδ−1Eω,r,q,cθ,δ,l(κτθ;p) and integrating over [0,1], we have
η(μ(a1)+mμ(a2)2)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)dτ≤h(12α)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)η(τμ(a1)+m(1−τ)μ(a2))eς(τμ(a1)+m(1−τ)μ(a2))dτ+mh(2α−12α)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)η((1−τ)μ(a1)m+τμ(a2))eς((1−τ)μ(a1)m+τμ(a2))dτ. | (2.3) |
Putting μ(ψ)=τμ(a1)+m(1−τ)μ(a2) and μ(ϕ)=(1−τ)μ(a1)m+τμ(a2) in (2.3), then by using (1.8), (1.9) and (1.10), the first inequality of (2.1) can be achieved.
Again from exponentially (α,h−m)-convexity of η, we have the following inequalities:
η(τμ(a1)+m(1−τ)μ(a2))≤h(τα)η(μ(a1))eςμ(a1)+mh(1−τα)η(μ(a2))eςμ(a2), | (2.4) |
η((1−τ)μ(a1)m+τμ(a2))≤mh(1−τα)η(μ(a1)m2)eςμ(a1)m2+h(τα)η(μ(a2))eςμ(a2). | (2.5) |
Multiplying (2.4) by h(12α) and (2.5) by mh(2α−12α), then adding resulting inequalities, we have
h(12α)η(τμ(a1)+m(1−τ)μ(a2))+mh(2α−12α)η((1−τ)μ(a1)m+τμ(a2))≤(h(12α)η(μ(a1))eςμ(a1)+mh(2α−12α)η(μ(a2))eςμ(a2))h(τα)+m(h(12α)η(μ(a2))eςμ(a2)+mh(2α−12α)η(μ(a1)m2)eςμ(a1)m2)h(1−τα). | (2.6) |
Now multiplying (2.6) by τδ−1Eω,r,q,cθ,δ,l(κτθ;p) and integrating over [0,1], we have
h(12α)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)η(τμ(a1)+m(1−τ)μ(a2))dτ+mh(2α−12α)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)η((1−τ)μ(a1)m+τμ(a2))dτ≤(h(12α)η(μ(a1))eςμ(a1)+mh(2α−12α)η(μ(a2))eςμ(a2))∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(τα)dτ+m(h(12α)η(μ(a2))eςμ(a2)+mh(2α−12α)η(μ(a1)m2)eςμ(a1)m2)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(1−τα)dτ. | (2.7) |
Putting μ(ψ)=τμ(a1)+m(1−τ)μ(a2) and μ(ϕ)=(1−τ)μ(a1)m+τμ(a2) in (2.7), then by using (1.8) and (1.9), the second inequality of (2.1) can be achieved.
If we choose α=1 in (2.1), then we get following Hermite-Hadamard inequality for exponentially (h−m)-convex functions.
Corollary 2.2. Let η:[a1,ma2]⊂[0,∞)→R, 0<a1<ma2 be a positive, integrable and exponentially (h−m)-convex functions. Let μ:[a1,ma2]→R be differentiable and strictly increasing. Then for generalized fractional integral operators, the following inequalities hold:
η(μ(a1)+mμ(a2)2)D(ς)μχδˉκ,a1+(μ−1(mμ(a2));p)≤h(12)[(μΥω,r,q,cθ,δ,l,ˉκ,a1+η∘μ)(μ−1(mμ(a2));p)+mδ+1(μΥω,r,q,cθ,δ,l,ˉκmθ,a2−η∘μ)(μ−1(μ(a1)m);p)]≤(mμ(a2)−μ(a1))δh(12)[(η(μ(a1))eςμ(a1)+mη(μ(a2))eςμ(a2))∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(τ)dτ+m(η(μ(a2))eςμ(a2)+mη(μ(a1)m2)eςμ(a1)m2)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(1−τ)dτ],ˉκ=κ(mμ(a2)−μ(a1))θ, | (2.8) |
where D(ς)=eςμ(a2) for ς<0, D(ς)=eςμ(a1) for ς≥0.
If we choose h(τ)=τ in (2.1), then we get following Hermite-Hadamard inequality for exponentially (α,m)-convex functions.
Corollary 2.3. Let η:[a1,ma2]⊂[0,∞)→R, 0<a1<ma2, be a positive, integrable and exponentially (α,m)-convex function. Let μ:[a1,ma2]→R be differentiable and strictly increasing. Then for generalized fractional integral operators, the following inequalities hold:
η(μ(a1)+mμ(a2)2)D(ς)μχδˉκ,a1+(μ−1(mμ(a2));p)≤12α[(μΥω,r,q,cθ,δ,l,ˉκ,a1+η∘μ)(μ−1(mμ(a2));p)+mδ+1(2α−1)(μΥω,r,q,cθ,δ,l,ˉκmθ,a2−η∘μ)(μ−1(μ(a1)m);p)]≤(mμ(a2)−μ(a1))δ2α[(η(μ(a1))eςμ(a1)+m(2α−1)η(μ(a2))eςμ(a2))×∫10τδ+α−1Eω,r,q,cθ,δ,l(κτθ;p)dτ+m(η(μ(a2))eςμ(a2)+m(2α−1)η(μ(a1)m2)eςμ(a1)m2)×∫10τδ−1(1−τα)Eω,r,q,cθ,δ,l(κτθ;p)dτ],ˉκ=κ(mμ(a2)−μ(a1))θ, | (2.9) |
where D(ς)=eςμ(a2) for ς<0, D(ς)=eςμ(a1) for ς≥0.
Remark 3. 1. If we choose ς=p=0, α=m=1, μ(ψ)=ψ and h(τ)=τ in (2.1), we recover the result in [17,Theorem 2.1].
2. If we choose ς=p=0, α=1, μ(ψ)=ψ and h(τ)=τ in (2.1), we recover the result in [18,Theorem 3].
3. If we choose ς=0, α=1 and μ(ψ)=ψ in (2.1), we recover the result in [24,Theorem 2.1].
4. If we choose ς=0, α=m=1, μ(ψ)=ψ and h(τ)=τ in (2.1), we recover the result in [25,Theorem 2.1].
5. If we choose ς=0, α=1, μ(ψ)=ψ and h(τ)=τ in (2.1), we recover the result in [25,Theorem 3.1].
6. If we choose ς=p=κ=0, α=m=1, μ(ψ)=ψ and h(τ)=τ in (2.1), we recover the result in [29,Theorem 2].
In the following we give another version of the Hermite-Hadamard inequality for exponentially (α,h−m)-convex functions via further generalized fractional integral operators.
Theorem 2.4. Let η:[a1,ma2]⊂[0,∞)→R, 0<a1<ma2 be a positive, integrable and exponentially (α,h−m)-convex functions. Let μ:[a1,ma2]→R be differentiable and strictly increasing. Then for generalized fractional integral operators, the following inequalities hold:
η(μ(a1)+mμ(a2)2)D(ς)μχδˉκ2θ,(μ−1(μ(a1)+mμ(a2)2))+(μ−1(mμ(a2));p)≤h(12α)(μΥω,r,q,cθ,δ,l,ˉκ2θ,(μ−1(μ(a1)+mμ(a2)2))+η∘μ)(μ−1(mμ(a2));p)+mδ+1h(2α−12α)(μΥω,r,q,cθ,δ,l,ˉκ(2m)θ,(μ−1(μ(a1)+mμ(a2)2m))−η∘μ)(μ−1(μ(a1)m);p)≤(mμ(a2)−μ(a1))δ2δ[(h(12α)η(μ(a1))eςμ(a1)+mh(2α−12α)η(μ(a2))eςμ(a2))×∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(τα2α)dτ+m(h(12α)η(μ(a2))eςμ(a2)+mh(2α−12α)η(μ(a1)m2)eςμ(a1)m2)×∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h((2−τ)α2α)dτ],ˉκ=κ(mμ(a2)−μ(a1))θ, | (2.10) |
where D(ς)=eςμ(a2) for ς<0, D(ς)=eςμ(a1) for ς≥0.
Proof. From exponentially (α,h−m)-convexity of η, we have
η(μ(a1)+mμ(a2)2)≤h(12α)η(τ2μ(a1)+m(2−τ)2μ(a2))eς(τ2μ(a1)+m(2−τ)2μ(a2))+mh(2α−12α)η((2−τ)2μ(a1)m+τ2μ(a2))eς((2−τ)2μ(a1)m+τ2μ(a2)). | (2.11) |
Multiplying (2.11) by τδ−1Eω,r,q,cθ,δ,l(κτθ;p) and integrating over [0,1], we have
η(μ(a1)+mμ(a2)2)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)dτ≤h(12α)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)η(τ2μ(a1)+m(2−τ)2μ(a2))eς(τ2μ(a1)+m(2−τ)2μ(a2))dτ+mh(2α−12α)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)η((2−τ)2μ(a1)m+τ2μ(a2))eς((2−τ)2μ(a1)m+τ2μ(a2))dτ. | (2.12) |
Putting μ(ψ)=τ2μ(a1)+m(2−τ)2μ(a2) and μ(ϕ)=(2−τ)2μ(a1)m+τ2μ(a2) in (2.12), then by using (1.8), (1.9) and (1.10), the first inequality of (2.9) can be achieved.
Again from exponentially (α,h−m)-convexity of η, we have the following inequalities:
η(τ2μ(a1)+m(2−τ)2μ(a2))≤h(τα2α)η(μ(a1))eςμ(a1)+mh((2−τ)α2α)η(μ(a2))eςμ(a2), | (2.13) |
η((2−τ)2μ(a1)m+τ2μ(a2))≤mh((2−τ)α2α)η(μ(a1)m2)eςμ(a1)m2+h(τα2α)η(μ(a2))eςμ(a2). | (2.14) |
Multiplying (2.13) by h(12α) and (2.14) by mh(2α−12α), then adding resulting inequalities, we have
h(12α)η(τ2μ(a1)+m(2−τ)2μ(a2))+mh(2α−12α)η((2−τ)2μ(a1)m+τ2μ(a2))≤(h(12α)η(μ(a1))eςμ(a1)+mh(2α−12α)η(μ(a2))eςμ(a2))h(τα2α)+m(h(12α)η(μ(a2))eςμ(a2)+mh(2α−12α)η(μ(a1)m2)eςμ(a1)m2)h((2−τ)α2α). | (2.15) |
Now multiplying (2.15) by τδ−1Eω,r,q,cθ,δ,l(κτθ;p) and integrating over [0,1], we have
h(12α)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)η(τ2μ(a1)+m(2−τ)2μ(a2))dτ+mh(2α−12α)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)η(τ2μ(a2)+(2−τ)2μ(a1)m)dτ≤(h(12α)η(μ(a1))eςμ(a1)+mh(2α−12α)η(μ(a2))eςμ(a2))∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(τ2)dτ+m(h(12α)η(μ(a2))eςμ(a2)+mh(2α−12α)η(μ(a1)m2)eςμ(a1)m2)∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(2−τ2)dτ. | (2.16) |
Putting μ(ψ)=τ2μ(a1)+m(2−τ)2μ(a2) and μ(ϕ)=τ2μ(a2)+(2−τ)2μ(a1)m in (2.16), then by using (1.8) and (1.9), the second inequality of (2.10) can be achieved.
If we choose α=1 in (2.9), then we get following Hermite-Hadamard inequality for exponentially (h−m)-convex functions.
Corollary 2.5. Let η:[a1,ma2]⊂[0,∞)→R, 0<a1<ma2 be a positive, integrable and exponentially (h−m)-convex functions. Let μ:[a1,ma2]→R be differentiable and strictly increasing. Then for generalized fractional integral operators, the following inequalities hold:
η(μ(a1)+mμ(a2)2)D(ς)μχδˉκ2θ,(μ−1(μ(a1)+mμ(a2)2))+(μ−1(mμ(a2));p)≤h(12)[(μΥω,r,q,cθ,δ,l,ˉκ2θ,(μ−1(μ(a1)+mμ(a2)2))+η∘μ)(μ−1(mμ(a2));p)+mδ+1(μΥω,r,q,cθ,δ,l,ˉκ(2m)θ,(μ−1(μ(a1)+mμ(a2)2m))−η∘μ)(μ−1(μ(a1)m);p)]≤(mμ(a2)−μ(a1))δ2δh(12)[(η(μ(a1))eςμ(a1)+mη(μ(a2))eςμ(a2))×∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(τ2)dτ+m(η(μ(a2))eςμ(a2)+mη(μ(a1)m2)eςμ(a1)m2)×∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)h(2−τ2)dτ],ˉκ=κ(mμ(a2)−μ(a1))θ, | (2.17) |
where D(ς)=eςμ(a2) for ς<0, D(ς)=eςμ(a1) for ς≥0.
If we choose h(τ)=τ in 2.9, then we get following Hermite-Hadamard inequality for exponentially (α,m)-convex functions.
Corollary 2.6. Let η:[a1,ma2]⊂[0,∞)→R, 0<a1<ma2 be a positive, integrable and exponentially (α,m)-convex functions. Let μ:[a1,ma2]→R be differentiable and strictly increasing. Then for generalized fractional integral operators, the following inequalities hold:
η(μ(a1)+mμ(a2)2)D(ς)μχδˉκ2θ,(μ−1(μ(a1)+mμ(a2)2))+(μ−1(mμ(a2));p)≤12α[(μΥω,r,q,cθ,δ,l,ˉκ2θ,(μ−1(μ(a1)+mμ(a2)2))+η∘μ)(μ−1(mμ(a2));p)+mδ+1(2α−1)(μΥω,r,q,cθ,δ,l,ˉκ(2m)θ,(μ−1(μ(a1)+mμ(a2)2m))−η∘μ)(μ−1(μ(a1)m);p)]≤(mμ(a2)−μ(a1))δ2δ+α[(η(μ(a1))eςμ(a1)+m(2α−1)η(μ(a2))eςμ(a2))×∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)(τ2)αdτ+m(η(μ(a2))eςμ(a2)+m(2α−1)η(μ(a1)m2)eςμ(a1)m2)×∫10τδ−1Eω,r,q,cθ,δ,l(κτθ;p)((2−τ)α2α)dτ],ˉκ=κ(mμ(a2)−μ(a1))θ, | (2.18) |
where D(ς)=eςμ(a2) for ς<0, D(ς)=eςμ(a1) for ς≥0.
Remark 4. 1. If we choose ς=p=0, α=1 and μ(ψ)=ψ in (2.9), we recover the result in [19,Theorem 3.10].
2. f we choose ς=p=κ=0, α=1 and μ(ψ)=ψ in (2.9), we recover the result in [20,Theorem 2.1].
3. If we choose ς=0, α=1 and μ(ψ)=ψ in (2.9), we recover the result in [22,Theorem 2.11].
4. f we choose ς=p=κ=0, α=m=1 and μ(ψ)=ψ in (2.9), we recover the result in [30,Theorem 4].
In this article, we have proposed the generalized fractional Hermite-Hadamard inequalities for a generalized convexity. The results are applicable for fractional integral operators containing Mittag-Leffler functions in their kernels. Also they hold for exponentially (α,h−m)-convex functions, exponentially (h−m)-convex functions and exponentially (α,m)-convex functions which are further linked with several known classes of convex functions. The readers can deduce a plenty of fractional integral inequalities of their choice of fractional integral operators from Remark 2 and convex function of any kind from Remark 1.
The research was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 11871202, 61673169, 11701176, 11626101, 11601485).
The authors do not have any competing interest
[1] | E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213–231. |
[2] |
O. A. Ladyzhenskaya, Sixth problem of the millennium: Navier-Stokes equations, existence and smoothness, Russian Math. Surveys, 58 (2003), 251–286. https://doi.org/10.1070/RM2003v058n02ABEH000610 doi: 10.1070/RM2003v058n02ABEH000610
![]() |
[3] |
J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193–248. https://doi.org/10.1007/BF02547354 doi: 10.1007/BF02547354
![]() |
[4] | J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Paris, 1969. |
[5] |
L. Cafferalli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771–831. https://doi.org/10.1002/cpa.3160350604 doi: 10.1002/cpa.3160350604
![]() |
[6] | O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow. Translated from Russian by R.A. Silverman and J. Chu. Gordon and Breach Science Publishers, New York, 1963. |
[7] |
F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51 (1998), 241–257. https://doi.org/10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A
![]() |
[8] | A. Majda, A. Bertozzi, Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. https://doi.org/10.1115/1.1483363 |
[9] |
G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173–182. https://doi.org/10.1007/BF02410664 doi: 10.1007/BF02410664
![]() |
[10] |
J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Rat. Mech. Anal., 9 (1962), 187–195. https://doi.org/10.1007/BF00253344 doi: 10.1007/BF00253344
![]() |
[11] | R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, 2nd Ed., North-Holland, Amsterdam, 1979. |
[12] |
M. R. Ukhovskii, V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., 32 (1968), 52–61. https://doi.org/10.1016/0021-8928(68)90147-0 doi: 10.1016/0021-8928(68)90147-0
![]() |
[13] |
A. Mahalov, E. S. Titi, S. Leibovich, Invariant helical subspaces for the Navier-Stokes equations, Arch. Ration. Mech. Anal., 112 (1990), 193–222. https://doi.org/10.1007/BF00381234 doi: 10.1007/BF00381234
![]() |
[14] | C. G. Diego, Absence of simple hyperbolic blow-up for the quasi-geostrophic and Euler equations, Thesis (Ph.D.)-Princeton University, 61 pp, 1998. ISBN: 978-0591-86238-6. |
[15] | S. Wang, Global well-posedness of the 3D incompressible Navier-Stokes and Euler equations in orthogonal curvilinear coordinate systems, Preprint, 2021. |
[16] |
P. Contantin, C. R. Doering, Infinite Prandtl number convection, J. Stat. Phys., 94 (1999), 159–172. https://doi.org/10.1023/A:1004511312885 doi: 10.1023/A:1004511312885
![]() |
[17] | A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, in: Courant Lecture Notes in Mathematics, vol. 9, New York University, Courant Institute of Mathematical Sciences, American Mathematical Society, New York, Providence, RI, 2003. |
[18] | J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. https://doi.org/10.1007/978-1-4612-4650-3 |
[19] |
H. Abidi, T. Hmidi, On the global well-posedness for Boussinesq system, J. Diff. Eqns., 233 (2007), 199–220. https://doi.org/10.1016/j.jde.2006.10.008 doi: 10.1016/j.jde.2006.10.008
![]() |
[20] |
D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497–513. https://doi.org/10.1016/j.aim.2005.05.001 doi: 10.1016/j.aim.2005.05.001
![]() |
[21] | T. Y. Hou, C. M. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1–12. |
[22] |
M. J. Lai, R. H. Pan, K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations, Arch. Ration. Mech. Anal., 199 (2011), 739–760. https://doi.org/10.1007/s00205-010-0357-z doi: 10.1007/s00205-010-0357-z
![]() |
[23] |
T. Hmidi, S. Keraani, On the global well-posedness of the Boussinesq system with zero viscosity, Indinana Univ. Math. J., 58 (2009), 1591–1618. https://doi.org/10.1512/iumj.2009.58.3590 doi: 10.1512/iumj.2009.58.3590
![]() |
[24] |
T. Hmidi, F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data, Ann. I.H. Poincare-AN, 27 (2010), 1227–1246. https://doi.org/10.1016/j.anihpc.2010.06.001 doi: 10.1016/j.anihpc.2010.06.001
![]() |
[25] |
T. Hmidi, F. Rousset, Global well-posedness for the Euler-Boussinesq system with axisymmetric data, J. Funct. Anal., 260 (2011), 745–796. https://doi.org/10.1016/j.jfa.2010.10.012 doi: 10.1016/j.jfa.2010.10.012
![]() |
[26] |
D. Coutand, S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., 20 (2007), 829–930. https://doi.org/10.1090/S0894-0347-07-00556-5 doi: 10.1090/S0894-0347-07-00556-5
![]() |
[27] |
P. Germain, N. Masmoudi, J. Shatah, Global solutions for the gravity water waves equation in dimension 3, Ann. Math., 175 (2012), 691–754. https://doi.org/10.4007/annals.2012.175.2.6 doi: 10.4007/annals.2012.175.2.6
![]() |
[28] | S. J. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math., 130 (1997), 39–72. |
[29] |
S. J. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., 12 (1999), 445–495. https://doi.org/10.1090/S0894-0347-99-00290-8 doi: 10.1090/S0894-0347-99-00290-8
![]() |
[30] |
Y. J. Wang, Z. P. Xin, Global well-posedness of free interface problems for the incompressible inviscid resistive MHD, Comm. Math. Phys., 388 (2021), 1323–1401. https://doi.org/10.1007/s00220-021-04235-3 doi: 10.1007/s00220-021-04235-3
![]() |
[31] |
P. Zhang, Z. F. Zhang, On the free boundary problem of three-dimensional incompressible Euler equations, Commun. Pure Appl. Math., 61 (2008), 877–940. https://doi.org/10.1002/cpa.20226 doi: 10.1002/cpa.20226
![]() |
[32] |
D. Coutand, S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid, Arch. Ration. Mech. Anal., 176 (2005), 25–102. https://doi.org/10.1007/s00205-004-0340-7 doi: 10.1007/s00205-004-0340-7
![]() |
[33] | B. Kaltenbacher, I. Kukavica, I. Lasiecka, A. Tuffaha, J. T. Webster, Mathematical Theory of Evolutionary Fluid-Flow Structure Interactions. Oberwolfach Seminars, Vol. 48, Birkhauser, Springer International Publishing AG, Part of Springer Nature, 2018. |
[34] |
L. Shen, S. Wang, R. Yang, Existence of local strong solutions for the incompressible viscous and non-resistive MHD-structure interaction model. J. Differ. Equations, 272 (2021), 473–543. https://doi.org/10.1016/j.jde.2020.09.039 doi: 10.1016/j.jde.2020.09.039
![]() |
[35] | R. A. Adams, J. F. Fournier, Sobolev Spaces, Second Edition, Academic Press, Heidelberg, New York, 2003. |
[36] | J. L. Lions, E. Magenes, Non-homogeneous boundary value problems and applications I, Springer-Verlag, Heidelberg, 1972. |
[37] | J. Peetre, Espaces d'interpolation et theoreme de Soboleff(French), Ann. Inst. Fourier(Grenoble), 16 (1966), 279–317. |
[38] | L. Cattabriga, Su un problema a1 contorno relativo a1 sistemo di equarioni di Stokes (Italian), Rend. Sem. Mat. Univ. Padova, 31 (1961), 308–340. |
[39] | P. Contantin, C. Foias, Navier-Stokes equations, The university of Chicago Press, Chicago and London, 1989. |
[40] | K. Yosida, Functional Analysis, Springer-Verlag, New York, 1965. |
[41] | L. Nirenberg, On elliptic partial differential equations, IL Principio Di Minimoe Sue Applicazioni Alle Equazioni Funzionali, 13 (1959), 1–48. |
1. | Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y | |
2. | Zareen A. Khan, Saima Rashid, Rehana Ashraf, Dumitru Baleanu, Yu-Ming Chu, Generalized trapezium-type inequalities in the settings of fractal sets for functions having generalized convexity property, 2020, 2020, 1687-1847, 10.1186/s13662-020-03121-x | |
3. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7 | |
4. | Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, 2020, 5, 2473-6988, 6404, 10.3934/math.2020412 | |
5. | Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, 2020, 5, 2473-6988, 6479, 10.3934/math.2020418 | |
6. | Artion Kashuri, Sajid Iqbal, Saad Ihsan Butt, Jamshed Nasir, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Basil K. Papadopoulos, Trapezium-Type Inequalities for k -Fractional Integral via New Exponential-Type Convexity and Their Applications, 2020, 2020, 2314-4785, 1, 10.1155/2020/8672710 | |
7. | Thabet Abdeljawad, Saima Rashid, A. A. El-Deeb, Zakia Hammouch, Yu-Ming Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, 2020, 2020, 1687-1847, 10.1186/s13662-020-02935-z | |
8. | Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9 | |
9. | Kottakkaran Sooppy Nisar, Gauhar Rahman, Dumitru Baleanu, Muhammad Samraiz, Sajid Iqbal, On the weighted fractional Pólya–Szegö and Chebyshev-types integral inequalities concerning another function, 2020, 2020, 1687-1847, 10.1186/s13662-020-03075-0 | |
10. | Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New $(p_1p_2,q_1q_2)$-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456 | |
11. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451 | |
12. | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453 | |
13. | Yu-Ming Chu, Muhammad Uzair Awan, Muhammad Zakria Javad, Awais Gul Khan, Bounds for the Remainder in Simpson’s Inequality via n-Polynomial Convex Functions of Higher Order Using Katugampola Fractional Integrals, 2020, 2020, 2314-4629, 1, 10.1155/2020/4189036 | |
14. | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441 | |
15. | Ohud Almutairi, Adem Kiliçman, Generalized Fejér–Hermite–Hadamard type via generalized (h−m)-convexity on fractal sets and applications, 2021, 147, 09600779, 110938, 10.1016/j.chaos.2021.110938 | |
16. | Slavko Simić, Bandar Bin-Mohsin, Some generalizations of the Hermite–Hadamard integral inequality, 2021, 2021, 1029-242X, 10.1186/s13660-021-02605-y | |
17. | Muhammad Tariq, Soubhagya Kumar Sahoo, Jamshed Nasir, Hassen Aydi, Habes Alsamir, Some Ostrowski type inequalities via $ n $-polynomial exponentially $ s $-convex functions and their applications, 2021, 6, 2473-6988, 13272, 10.3934/math.2021768 | |
18. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Hüseyin Budak, On generalizations of some integral inequalities for preinvex functions via $(p,q)$-calculus, 2022, 2022, 1029-242X, 10.1186/s13660-022-02896-9 | |
19. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus, 2021, 9, 2227-7390, 1338, 10.3390/math9121338 | |
20. | Chahn Yong Jung, Ghulam Farid, Hafsa Yasmeen, Yu-Pei Lv, Josip Pečarić, Refinements of some fractional integral inequalities for refined $(\alpha ,h-m)$-convex function, 2021, 2021, 1687-1847, 10.1186/s13662-021-03544-0 | |
21. | Kamsing Nonlaopon, Ghulam Farid, Ammara Nosheen, Muhammad Yussouf, Ebenezer Bonyah, Mawardi Bahri, New Generalized Riemann–Liouville Fractional Integral Versions of Hadamard and Fejér–Hadamard Inequalities, 2022, 2022, 2314-4785, 1, 10.1155/2022/8173785 | |
22. | Attazar Bakht, Matloob Anwar, Hermite-Hadamard and Ostrowski type inequalities via $ \alpha $-exponential type convex functions with applications, 2024, 9, 2473-6988, 9519, 10.3934/math.2024465 | |
23. | Çetin Yildiz, Juan E. Nápoles Valdés, Luminiţa-Ioana Cotîrlă, A Note on the New Ostrowski and Hadamard Type Inequalities via the Hölder–İşcan Inequality, 2023, 12, 2075-1680, 931, 10.3390/axioms12100931 |