Research article Special Issues

On criticality coupled sub-Laplacian systems with Hardy type potentials on Stratified Lie groups

  • Received: 15 December 2022 Revised: 03 March 2023 Accepted: 16 March 2023 Published: 23 March 2023
  • 35R03, 35J70, 35B45, 35J20

  • In this work, our main concern is to study the existence and multiplicity of solutions for the following sub-elliptic system with Hardy type potentials and multiple critical exponents on Carnot group

    $ \begin{equation*} \left\{\begin{aligned} &-\Delta_{\mathbb{G}}u = \frac{\psi^{\alpha}|u|^{2^*(\alpha)-2}u}{d(z)^{\alpha}}+ \frac{p_{1}}{2^*(\gamma)}\frac{\psi^{\gamma}|u|^{p_{1}-2}u|v|^{p_{2}}}{d(z, z_{0})^{\gamma}} +\lambda h(z)\frac{\psi^{\sigma}|u|^{q-2}u}{d(z)^{\sigma}} \, \, & \text{in } \, \, \Omega, \\ &-\Delta_{\mathbb{G}}v = \frac{\psi^{\beta}|v|^{2^*(\beta)-2}v}{d(z)^{\beta}}+ \frac{p_{2}}{2^*(\gamma)}\frac{\psi^{\gamma}|u|^{p_{1}}|v|^{p_{2}-2}v}{d(z, z_{0})^{\gamma}} +\lambda h(z)\frac{\psi^{\sigma}|v|^{q-2}v}{d(z)^{\sigma}}\, \, &\text{in } \, \, \Omega, \\ &\quad u = v = 0\, \, &\text{on } \, \, \partial\Omega, \end{aligned}\right. \end{equation*} $

    where $ -\Delta_{\mathbb{G}} $ is a sub-Laplacian on Carnot group $ \mathbb{G} $, $ \alpha, \beta, \gamma, \sigma\in [0, 2) $, $ d $ is the $ \Delta_{\mathbb{G}} $-natural gauge, $ \psi = |\nabla_{\mathbb{G}}d| $ and $ \nabla_{\mathbb{G}} $ is the horizontal gradient associated to $ \Delta_{\mathbb{G}} $. The positive parameters $ \lambda $, $ q $ satisfy $ 0 < \lambda < \infty $, $ 1 < q < 2 $, and $ p_{1} $, $ p_{2} > 1 $ with $ p_{1}+p_{2} = 2^*(\gamma) $, here $ 2^*(\alpha): = \frac{2(Q-\alpha)}{Q-2} $, $ 2^*(\beta): = \frac{2(Q-\beta)}{Q-2} $ and $ 2^*(\gamma) = \frac{2(Q-\gamma)}{Q-2} $ are the critical Hardy-Sobolev exponents, $ Q $ is the homogeneous dimension of the space $ \mathbb{G} $. By means of variational methods and the mountain-pass theorem of Ambrosetti and Rabonowitz, we study the existence of multiple solutions to the sub-elliptic system.

    Citation: Jinguo Zhang, Shuhai Zhu. On criticality coupled sub-Laplacian systems with Hardy type potentials on Stratified Lie groups[J]. Communications in Analysis and Mechanics, 2023, 15(2): 70-90. doi: 10.3934/cam.2023005

    Related Papers:

  • In this work, our main concern is to study the existence and multiplicity of solutions for the following sub-elliptic system with Hardy type potentials and multiple critical exponents on Carnot group

    $ \begin{equation*} \left\{\begin{aligned} &-\Delta_{\mathbb{G}}u = \frac{\psi^{\alpha}|u|^{2^*(\alpha)-2}u}{d(z)^{\alpha}}+ \frac{p_{1}}{2^*(\gamma)}\frac{\psi^{\gamma}|u|^{p_{1}-2}u|v|^{p_{2}}}{d(z, z_{0})^{\gamma}} +\lambda h(z)\frac{\psi^{\sigma}|u|^{q-2}u}{d(z)^{\sigma}} \, \, & \text{in } \, \, \Omega, \\ &-\Delta_{\mathbb{G}}v = \frac{\psi^{\beta}|v|^{2^*(\beta)-2}v}{d(z)^{\beta}}+ \frac{p_{2}}{2^*(\gamma)}\frac{\psi^{\gamma}|u|^{p_{1}}|v|^{p_{2}-2}v}{d(z, z_{0})^{\gamma}} +\lambda h(z)\frac{\psi^{\sigma}|v|^{q-2}v}{d(z)^{\sigma}}\, \, &\text{in } \, \, \Omega, \\ &\quad u = v = 0\, \, &\text{on } \, \, \partial\Omega, \end{aligned}\right. \end{equation*} $

    where $ -\Delta_{\mathbb{G}} $ is a sub-Laplacian on Carnot group $ \mathbb{G} $, $ \alpha, \beta, \gamma, \sigma\in [0, 2) $, $ d $ is the $ \Delta_{\mathbb{G}} $-natural gauge, $ \psi = |\nabla_{\mathbb{G}}d| $ and $ \nabla_{\mathbb{G}} $ is the horizontal gradient associated to $ \Delta_{\mathbb{G}} $. The positive parameters $ \lambda $, $ q $ satisfy $ 0 < \lambda < \infty $, $ 1 < q < 2 $, and $ p_{1} $, $ p_{2} > 1 $ with $ p_{1}+p_{2} = 2^*(\gamma) $, here $ 2^*(\alpha): = \frac{2(Q-\alpha)}{Q-2} $, $ 2^*(\beta): = \frac{2(Q-\beta)}{Q-2} $ and $ 2^*(\gamma) = \frac{2(Q-\gamma)}{Q-2} $ are the critical Hardy-Sobolev exponents, $ Q $ is the homogeneous dimension of the space $ \mathbb{G} $. By means of variational methods and the mountain-pass theorem of Ambrosetti and Rabonowitz, we study the existence of multiple solutions to the sub-elliptic system.



    加载中


    [1] N. Garofalo, E. Lanconelli, Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier (Grenoble), 40 (1990), 313–356. https://doi.org/10.5802/aif.1215 doi: 10.5802/aif.1215
    [2] L. D'Ambrosio, Some Hardy inequalities on the Heisenberg group, Differ. Equ., 40 (2004), 552–564. https://doi.org/10.1023/B:DIEQ.0000035792.47401.2a doi: 10.1023/B:DIEQ.0000035792.47401.2a
    [3] L. D'Ambrosio, Hardy-type inequalities related to degenerate elliptic differential operators, Ann. Sc. Norm. Super. Pisa Cl. Sci., 5 (2005), 451–486.
    [4] Y. Han, P. Niu, Hardy-Sobolev type inequalities on the H-type group, Manuscripta Math., 118 (2005), 235–252. https://doi.org/10.1007/s00229-005-0589-7 doi: 10.1007/s00229-005-0589-7
    [5] N. Garofalo, D. Vassilev, Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot Groups, Math. Ann., 318 (2000), 453–516. https://doi.org/10.1007/s002080000127 doi: 10.1007/s002080000127
    [6] A. Loiudice, Critical growth problems with singular nonlinearities on Carnot groups, Nonlinear Anal., 126 (2015), 415–436. https://doi.org/10.1016/j.na.2015.06.010 doi: 10.1016/j.na.2015.06.010
    [7] J. Zhang, Sub-elliptic systems involving critical Hardy-Sobolev exponents and sign-changing weight functions on Carnot groups, J. Nonlinear Var. Anal., (2023), In press.
    [8] A. Loiudice, Optimal decay of $p$-Sobolev extremals on Carnot groups, J. Math. Anal. Appl., 470 (2019), 619–631. https://doi.org/10.1016/j.jmaa.2018.10.027 doi: 10.1016/j.jmaa.2018.10.027
    [9] E. Lanconelli, F. Uguzzoni, Non-existence results for semilinear Kohn-Laplace equations in unbounded domains, Commun. Partial Differ. Equations, 25 (2000), 1703–1739. https://doi.org/10.1080/03605300008821564 doi: 10.1080/03605300008821564
    [10] G. Molica Bisci, P. Pucci, Critical Dirichlet problems on $H$ domains of Carnot groups, Electron. J. Differ. Equations, Conference 25 (2018), 179-196.
    [11] L. Roncal, S. Thangavelu, Hardy's inequality for fractional powers of the sublaplacian on the Heisenberg group, Adv. Math., 302 (2016), 106–158. https://doi.org/10.1016/j.aim.2016.07.010 doi: 10.1016/j.aim.2016.07.010
    [12] J. Zhang, Existence and multiplicity of positive solutions to sub-elliptic systems with multiple critical exponents on Carnot groups, Proceedings-Mathematical Sciences, 2023.
    [13] A. Loiudice, $L^p$-weak regularity and asymptotic behavior of solutions for critical equations with singular potentials on Carnot groups, Nonlinear Differ. Equ. Appl., 17 (2010), 575–589. https://doi.org/10.1007/s00030-010-0069-y doi: 10.1007/s00030-010-0069-y
    [14] A. Loiudice, Local behavior of solutions to sunelliptic problems with Hardy potential on Carnot groups, Mediterr. J. Math., 15 (2018), 81. https://doi.org/10.1007/s00009-018-1126-8 doi: 10.1007/s00009-018-1126-8
    [15] A. Loiudice, Critical problems with hardy potential on Stratified Lie groups, Adv. Differential Equations, 28 (2023), 1–33. https://doi.org/10.57262/ade028-0102-1 doi: 10.57262/ade028-0102-1
    [16] J. Zhang, Sub-elliptic problems with multiple critical Sobolev-Hardy exponents on Carnot groups, Manuscripta Math., (2023). https://doi.org/10.1007/s00229-022-01406-x doi: 10.1007/s00229-022-01406-x
    [17] J. Zhang, On the existence and multiplicity of solutions for a class of sub-Laplacian problems involving critical Sobolev-Hardy exponents on Carnot groups, Appl. Anal., (2022). https://doi.org/10.1080/00036811.2022.2107910 doi: 10.1080/00036811.2022.2107910
    [18] S. Zhu, J. Zhang, Multiplicity of solutions for sub-Laplacian systems involving Hardy-Sobolev critical exponents on Carnot groups, preprint. https://doi.org/10.21203/rs.3.rs-2342975/v1
    [19] P. Pucci, Critical Schrödinger-Hardy systems in the Heisenberg group, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 375–400. https://doi.org/10.3934/dcdss.2019025 doi: 10.3934/dcdss.2019025
    [20] P. Pucci, L. Temperini, Existence for $(p, q)$ critical systems in the Heisenberg group, Adv. Nonlinear Anal., 9 (2020), 895–922. https://doi.org/10.1515/anona-2020-0032 doi: 10.1515/anona-2020-0032
    [21] P. Pucci, L. Temperini, Entire solutions for some critical equations in the Heisenberg group, Opuscula Math., 42 (2022), 279–303. https://doi.org/10.7494/OpMath.2022.42.2.279 doi: 10.7494/OpMath.2022.42.2.279
    [22] S. Bordoni, R. Filippucci, P. Pucci, Existence problems on Heisenberg groups involving Hardy and critical terms, J. Geom. Anal., 30 (2020), 1887–1917. https://doi.org/10.1007/s12220-019-00295-z doi: 10.1007/s12220-019-00295-z
    [23] S. Bordoni, R. Filippucci, P. Pucci, Nonlinear elliptic inequalities with gradient terms on the Heisenberg group, Nonlinear Anal., 121 (2015), 262–279. https://doi.org/10.1016/j.na.2015.02.012 doi: 10.1016/j.na.2015.02.012
    [24] R. Filippucci, P. Pucci, F. Robert, On a $p$-Laplace equation with multiple critical nonlinearities, J. Math. Pures Appl., 91 (2009), 156–177. https://doi.org/10.1016/j.matpur.2008.09.008 doi: 10.1016/j.matpur.2008.09.008
    [25] R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352–370. https://doi.org/10.1016/j.jfa.2005.04.005 doi: 10.1016/j.jfa.2005.04.005
    [26] T. Pucci, T. Temperini, On the concentration-compactness principle for Folland-Stein spaces and for fractional horizontal Sobolev spaces, Math. Eng., 5 (2023), 1–21. https://doi.org/10.3934/mine.2023007 doi: 10.3934/mine.2023007
    [27] P. Pucci, T. Temperini, Concentration-compactness results for systems in the Heisenberg group, Opuscula Math., 40 (2020), 151–162. https://doi.org/10.7494/OpMath.2020.40.1.151 doi: 10.7494/OpMath.2020.40.1.151
    [28] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, in: Applied Mathematical Sciences, vol. 74, Springer, New York, 1989.
    [29] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
    [30] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for their Sub-Laplacians, in: Springer Monographs in Mathematics, Springer, Berlin, 2007.
    [31] M. Ruzhansky, D. Suragan, Hardy inequalities on homogeneous groups, 100 Years of Hardy Inequalities, in Birkhäuser, Cham, 2019. DOI https://doi.org/10.1007/978-3-030-02895-4
    [32] G.B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161–207. https://doi.org/10.1007/BF02386204 doi: 10.1007/BF02386204
    [33] G.B. Folland, E. Stein, Hardy Spaces on Homogeneous Groups, in: Mathematical Notes, vol. 28, University Press, Princeton, NJ, 1982.
    [34] J.M. Bony, Principle du maximum, inéglité de Harnack et uniciyé du probléme de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Geenobles), 19 (1969), 277–304. https://doi.org/10.5802/aif.319 doi: 10.5802/aif.319
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1239) PDF downloads(169) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog