Correction

Correction: The effects of oil prices on confidence and stock return in China, India and Russia

  • Received: 27 February 2019 Accepted: 27 February 2019 Published: 06 March 2019
  • Citation: Melike E. Bildirici, Mesut M. Badur. Correction: The effects of oil prices on confidence and stock return in China, India and Russia[J]. Quantitative Finance and Economics, 2019, 3(1): 46-52. doi: 10.3934/QFE.2019.1.46

    Related Papers:

    [1] Melike E. Bildirici, Mesut M. Badur . The effects of oil prices on confidence and stock return in China, India and Russia. Quantitative Finance and Economics, 2018, 2(4): 884-903. doi: 10.3934/QFE.2018.4.884
    [2] Md Akther Uddin, Mohammad Enamul Hoque, Md Hakim Ali . International economic policy uncertainty and stock market returns of Bangladesh: evidence from linear and nonlinear model. Quantitative Finance and Economics, 2020, 4(2): 236-251. doi: 10.3934/QFE.2020011
    [3] Ke Liu, Changqing Luo, Zhao Li . Investigating the risk spillover from crude oil market to BRICS stock markets based on Copula-POT-CoVaR models. Quantitative Finance and Economics, 2019, 3(4): 754-771. doi: 10.3934/QFE.2019.4.754
    [4] Rubaiyat Ahsan Bhuiyan, Tanusree Chakravarty Mukherjee, Kazi Md Tarique, Changyong Zhang . Hedge asset for stock markets: Cryptocurrency, Cryptocurrency Volatility Index (CVI) or Commodity. Quantitative Finance and Economics, 2025, 9(1): 131-166. doi: 10.3934/QFE.2025005
    [5] Emmanuel Assifuah-Nunoo, Peterson Owusu Junior, Anokye Mohammed Adam, Ahmed Bossman . Assessing the safe haven properties of oil in African stock markets amid the COVID-19 pandemic: a quantile regression analysis. Quantitative Finance and Economics, 2022, 6(2): 244-269. doi: 10.3934/QFE.2022011
    [6] Raéf Bahrini, Assaf Filfilan . Impact of the novel coronavirus on stock market returns: evidence from GCC countries. Quantitative Finance and Economics, 2020, 4(4): 640-652. doi: 10.3934/QFE.2020029
    [7] Thomas C. Chiang . Stock returns and inflation expectations: Evidence from 20 major countries. Quantitative Finance and Economics, 2023, 7(4): 538-568. doi: 10.3934/QFE.2023027
    [8] Chiao Yi Chang, Fu Shuen Shie, Shu Ling Yang . The relationship between herding behavior and firm size before and after the elimination of short-sale price restrictions. Quantitative Finance and Economics, 2019, 3(3): 526-549. doi: 10.3934/QFE.2019.3.526
    [9] Xiaohang Ren, Weixi Xu, Kun Duan . Fourier transform based LSTM stock prediction model under oil shocks. Quantitative Finance and Economics, 2022, 6(2): 342-358. doi: 10.3934/QFE.2022015
    [10] Andrey Kudryavtsev . Absolute Stock Returns and Trading Volumes: Psychological Insights. Quantitative Finance and Economics, 2017, 1(2): 186-204. doi: 10.3934/QFE.2017.2.186


  • The effects of oil prices on confidence and stock return in China, India and Russia

    By Melike E. Bildirici and Mesut M. Badur. Quantitative Finance and Economics, 2018, 2(4): 884–903. doi: 10.3934/QFE.2018.4.884

    We would like to submit the following corrections to our recently published paper (Bildirici and Badur, 2018) due to the wrong version of the manuscript. The details are the following.

    1. The Equation 1 has been updated.

    x=log(xt) (1)

    2. The first paragraph in section 4.1 has been updated.

    At the first stage, the results of Philips Perron (PP) and Elliott, Rothenberg and Stock (ERS) unit root tests were exhibited in Table 3. PP's results indicated that the lopt, lbct, and lsrt variables are integrated of order one and follow Ⅰ (1) processes. At the second stage, Johansen's maximum likelihood procedure is utilized to determine the possible existence of cointegration between lopt, lbct and lsrt.

    Table 3.  Unit Root and Johansen Cointegration Test Results.
    Unit Root Tests for China
    Variables PP ERS Johansen Cointegration Test
    lopt -1.369 0.1169 r=0 18.04
    dlopt -10.856 7.856 r≤1 9.55
    lbct -1.023 0.0389 r≤2 1.67
    dlbct -4.856 5.896
    lsrt -1.236 0.304
    dlsrt -8.369 6.896
    Unit Root Tests for India
    Variables PP ERS Johansen Cointegration Test
    lbct -1.496 0.6141 r=0 27.96
    dlbct -4.986 7.012 r≤1 14.23
    lsrt -2.085 0.945 r≤2 2.788
    dlsrt -11.326 6.056
    Unit Root Tests for Russian
    Variables PP ERS Johansen Cointegration Test
    lbct -2.012 0.212 Model 1
    dlbct -10.856 5.236 r=0 28.11
    lsrt -1.896 0.0459 r≤1 11.08
    dlsrt -11.569 4.996 r≤2 2.11

     | Show Table
    DownLoad: CSV

    3. The table 3 has been updated.

    4. The section 4.2. has been updated.

    4.2. MS-VAR Results and MS-Granger Causality Results1

    1 The variables in MS-VAR model are innovations of the variables and/or first differences. Ox 3 Software and MS-VAR130 packages were used.

    5. The first, second, fifth and sixth paragraph in section 4.2 has been updated.

    To determine the number of regimes, traditional VAR model was tested against a MS-VAR structure with two regimes. To analyze the relationship between oil prices, business confidence index and stock return, the MSIAH(3)-VARX(3) model for China and India, and MSIA(3)-VARX(3) model for Russia were selected as the optimal model. According to the results, the total durations of the high volatility regimes are lower than the other periods. The duration of the low volatility regimes (regime 2 and 3) are higher than the high volatility regimes.

    In MSIAH(3)-VARX(3) and MSIA(3)-VARX(3) models, oil price was accepted as exogenous variable. Accordingly, by depending upon the statistical tests and information criteria, the optimum model was selected as MSIAH(3)-VARX(3). The results of the MSIAH(3)-VARX(3) model for China and India, and MSIA(3)-VARX(3) model for Russia were given between table 46.

    Table 4.  MSIAH(3)-VARX(3) Model for China.
    Regime 1 Regime 2 Regime 3
    Variables dlbc dlsr dlbc dlsr dlbc dlsr
    c 0.00018(0.7715) -0.04801(-6.1919) 0.000015(0.5602) 0.002560(1.0485) 0.000015(0.1268) 0.012881(2.898)
    dlbc(-1) 1.389809(9.0535) 0.700727(0.1386) 1.691963(0.000240) 0.899149(0.2151) 1.519793(11.9288) 5.072676(1.1798)
    dlbc(-2) -1.32651(-6.8094) -1.52701(-0.2397) -1.400750(0.5602) -2.811166(-0.4432) -1.126094(-6.4556) -5.433918(-0.933)
    dlbc(-3) 0.930116(4.746) 6.173444(1.1009) 0.493194(4.4746) 5.039736(1.1097) 0.303518(2.4927) 4.598403(1.1121)
    dlsr(-1) 0.005517(1.1292) -0.63734(-3.9563) 0.000407(-22.0435) 0.080672(1.0126) 0.001844(2.4734) 0.238836(1.8604)
    dlsr(-2) 0.009406(1.954) -0.03222(-0.215) -0.001582(10.765) 0.013497(0.1806) 0.002334(0.6352) -0.021380(-0.1738)
    dlsr(-3) 0.001208(1.884) -0.01172(-0.575) -0.003622(7.115) 0.022275(0. 8776) 0.011375(2.052) -0.012633(-0.2453)
    dlop(-1) 0.015738(2.3338) -0.07309(-0.3355) 0.001741(2.0352) 0.068126(1.9888) -0.001557(-0.4902) 0.131689(2.2116)
    dlop(-2) -0.02807(-4.0515) -0.04881(-2.2249) -0.000746(-2.3557) -0.191293(-2.6967) 0.004737(1.3862) -0.080023(-0.7108)
    dlop(-3) -0.00658(-0.9025) 0.40431(1.8087) 0.000298(-1.0434) -0.144265(-2.0262) -0.000487(-0.1615) -0.194447(-1.8584)
    se 0.001988 0.032292 0.3858 0.023923 0.001792 0.026031
    Matrix of Transition Probabilities Contemporaneous Correlation Regime 1 Regime 2 Regime 3
    Pp0 0.6262 Variables dlbc dlsr dlbc dlsr dbc dlsr
    Pp1 0.9032 dlbc 1 1 1
    Pp2 0.8844 dlsr 0.3206 1 0.0462 1 0.2674 1
    log-likelihood: 1704.7785 linear system: 1596.6021; AIC criterion: -15.9588 linear system: -15.3717; HQ criterion: -15.5064 linear system: -15.2340; SC criterion: -14.8403 linear system: -15.0313 LR linearity test: 216.3529 Chi(42) =[0.0000]** Chi(48)=[0.0000] ** DAVIES=[0.0000]**
    StdResids: Vector portmanteau(12): Chi(36) = 46.8466 [0.1065], Vector normality test : Chi(4) = 2.7351 [0.6031], Vector hetero test: Chi(48) = 61.6074 [0.0897] F(48,530), Vector hetero-X test: Chi(132)=167.3003 [0.0204]* F(132,450), PredError: Vector portmanteau(12): Chi(36) = 94.8802 [0.0000]**, Vector normality test : Chi(4) = 38.1937 [0.0000]**, Vector hetero test: Chi(48), = 92.3063 [0.0001]** F(48,530) PredError: Vector hetero-X test: Chi(132) =208.6341 [0.0000]** F(132,450).
    VAR Error: Vector portmanteau(12): Chi(36) = 82.5645 [0.0000]**, Vector normality test : Chi(4) = 62.5719 [0.0000]**, Vector hetero test: Chi(48) =117.4571 [0.0000]** F(48,530), Vector hetero-X test: Chi(132) =274.9059 [0.0000]** F(132,450)

     | Show Table
    DownLoad: CSV
    Table 5.  MSIAH(3)-VARX(3) Model for India.
    Regime 1 Regime 2 Regime 3
    Variables dlbc dlsr dlbc dlsr dlbc dlsr
    c -0.000019(-0.2573) -0.042428(-4.4091) -0.000007(-0.7286) 0.005250(2.7354) 0.000229(4.5667) 0.025038(4.8947)
    dlbc(-1) 2.229636(17.6746) 27.025355(4.6861416) 2.082449(3.57163) 2.486088(11.022) 1.407974(2.14505) 4.69911(6.734)
    dlbc(-2) -2.334248(-10.2439) -0.75331602(-12.809) -1.744459(-1.81504) -0.226998(-0.1688) -1.054091(-11.0979) -0.889873(-8.911)
    dlbc(-3) 1.067992(6.0964) 0.41193782(8.588) 0.566004(10.9922) -2.693326(-1.9628) 0.353757(6.5266) 4.17073(3.9634)
    dlsr(-1) 0.003435(3.2816) -0.287668(-1.5116) -0.000297(-0.9327) -0.043902(-0.5821) 0.002970(3.0566) -0.090878(-0.7677)
    dlsr(-2) 0.001203(0.9835) -0.660432(-3.1621) 0.000147(2.4732) -0.065353(-0.8764) 0.000221(0.1741) 0.490987(3.0971)
    dlsr(-3) 0.003515(3.0228) -0.373903(-1.7914) 0.000433(1.4188) 0.134859(1.8246) 0.004276(4.4171) -0.313602(-2.3142)
    dlop(-1) 0.000135(2.1155) 0.291169(2.3836) 0.000158(1.7083) -0.024006(-0.4396) 0.004655(4.7678) -0.094720(-0.7823)
    dlop(-2) -0.001189(-0.9314) 0.102625(0.5406) 0.000196(0.8845) 0.013128(2.2398) -0.000310(-0.3428) 0.023387(2.1973)
    dlop(-3) 0.001745(2.5507) 0.310009(2.1536) 0.0014486(1.883) -0.041236(-0.4685) 0.045361(4.7811) -0.092117(-1.7887)
    se 0.000179 0.035289 0.000093 0.022828 0.000131 0.017039
    Matrix of Transition Probabilities Contemporaneous Correlation Regime 1 Regime 2 Regime 3
    Pp0 0.8698 Variables dlbc dlsr dlbc dlsr dlbc dlsr
    Pp1 0.9793 dlbc 1 1 1
    Pp2 0.8104 dsr 0.5121 1 0.1052 1 0.7648 1
    log-likelihood: 2054.3273 linear system: 1950.5208; AIC criterion: -19.3690 linear system: -18.8246; HQ criterion: -18.9166 linear system: -18.6869; SC criterion: -18.2506 linear system: -18.4842 LR linearity test: 207.6130 Chi(42) =[0.0000]** Chi(48)=[0.0000]** DAVIES=[0.0000]**
    StdResids: Vector portmanteau(12): Chi(36) = 62.5281 [0.0040]**, Vector normality test: Chi(4)=7.2953 [0.1211], Vector hetero test: Chi(48)=39.6083 [0.8004] F(48,530), Vector hetero-X test: Chi(132) =126.1108 [0.6281] F(132,450) PredError: Vector portmanteau(12): Chi(36) = 81.6130 [0.0000]**, Vector normality test: Chi(4) = 20.2064 [0.0005]**, Vector hetero test: Chi(48) =120.9946 [0.0000]** F(48,530), Vector hetero-X test: Chi(132)=272.7212 [0.0000]** F(132,450)
    VAR Error: Vector portmanteau(12): Chi(36) = 85.8260 [0.0000]**, Vector normality test: Chi(4) = 45.6596 [0.0000]**, Vector hetero test: Chi(48) =152.0039 [0.0000]** F(48,530), Vector hetero-X test: Chi(132) =338.4949 [0.0000]** F(132,450)

     | Show Table
    DownLoad: CSV
    Table 6.  MSIA(3)-VARX(3) Model for Russia.
    Regime 1 Regime 2 Regime 3
    Variables dlbc dlsr dlbc dlsr dlbc dlsr
    c -0.001297 (-4.3162) -0.088656(-6.7326) -0.000038(-0.5799) 0.003599(1.1972) 0.000044(0.5001) 0.018201(3.9975)
    dlbc(-1) -0.146022(-0.2926) 2.605803(1.8271) 1.097910(12.3636) -0.168417(-0.0422) 1.136220(9.7254) -1.5495236(-2.825)
    dlbc(-2) 0.216201(0.4735) -6.455709(-3.5553) -0.734922(-6.0578) -6.408451(-1.1427) -0.318614(-1.8104) 2.707893(2.8501)
    dlbc(-3) -0.246033(-0.8717) 2.155987(1.8535) 0.242846(2.5578) 2.830235(0.7189) -0.071881(-0.7243) -1.2616269(-2.8029)
    dlsr(-1) 0.008439(1.7201) -0.380105(-1.7624) -0.000832(-0.3839) -0.157830(-1.685) 0.001856(0.9504) 0.015165(0.1671)
    dlsr(-2) 0.012563(2.915) -0.068682(-0.3602) -0.001797(-0.8602) -0.113603(-1.2302) 0.000527(0.2886) 0.093232(1.1347)
    dlsr(-3) 0.018431(3.497) -0.11385(-0.5185) -0.001532(-0.8004) 0.277036(2.8601) 0.002023(1.199) -0.245226(-3.0971)
    dlop(-1) 0.036943(2.8399) 0.336683(0.8042) 0.003365(1.2948) 0.342113(3.7902) 0.001784(0.7007) 0.445668(4.3061)
    dlop(-2) -0.001151(-0.1058) 1.250838(2.8225) 0.000593(0.2742) 0.282696(2.9619) 0.001838(0.8112) -0.287767(-2.7525)
    dlop(-3) 0.01143(2.1919) 0.38773(0.44427) 0.010768(1.4448) 0.55233(2.0211) 0.011568(0.5963) 0. 56113(4.5251)
    se 0.000611 0.02731 0.000611 0.027310 0.000611 0.027310
    Matrix of Transition Probabilities Contemporaneous Correlation Regime 1 Regime 2 Regime 3
    Pp0 0.6492 Variables dlbc dlsr dlbc dlsr dlbc dlsr
    Pp1 0.9125 dlbc 1 1 1
    Pp2 0.6854 dlsr -0.5013 1 0.1492 1 0.5917 1
    log-likelihood: 2070.0258 linear system: 1975.0766; AIC criterion: -19.0832 linear system: -18.9178; HQ criterion : -18.3357 linear system: -18.6818 SC criterion: -17.2353 linear system: -18.3343; LR linearity test: 189.8984 Chi(72) =[0.0000]** Chi(78)=[0.0000]** DAVIES=[0.0000]**. StdResids: Vector portmanteau(12): Chi(81) =103.2590 [0.0483]*, Vector normality test: Chi(6)=9.1410 [0.1658], Vector hetero test: Chi(108)=94.7195 [0.8153] F(108,992), StdResids: Vector hetero-X test: Chi(324)=317.9332 [0.5846] F(324,820), PredError: Vector portmanteau(12): Chi(81) =100.9987 [0.0656], Vector normality test : Chi(6) = 39.6366 [0.0000]**, Vector hetero test: Chi(108) =164.1054 [0.0004]** F(108,992), Vector hetero-X test: Chi(324), =469.4786 [0.0000]** F(324,820), VAR Error: Vector portmanteau(12): Chi(81)= 95.2465 [0.1332], Vector normality test: Chi(6)= 41.0304 [0.0000]**, Vector hetero test: Chi(108) =144.5896 [0.0108]* F(108,992), Vector hetero-X test: Chi(324)=433.3302 [0.0000]** F(324,820)

     | Show Table
    DownLoad: CSV

    The dependent variable of the second equation is lsr, the innovations of stock return. The overall effects of oil price on stock return are statistically significant. Standart error in regime 2 is differentiated from the others. Standart error of lbc is higher than lsr. But the other regimes exhibit different results. In these regimes, standart error of lbc is smaller than lsr. The dependent variable of the first equation is dlbc which is the innovations of business confidence index. In regime 1, the parameter estimates of the dlsr(-2) in the lbc vector is 0.009406 and statistically significant at 5% significance level.

    The MS-VAR model for India has three regimes. Additionally, by depending upon the statistical tests and information criteria, the selected model has three regime with MSIAH(3)-VAR(3) model. The results of the MSIAH(3)-VAR(3) model for India are given in Table 5. The computed regime probabilities are Prob(st = 1|st-1 = 1) = 0.8698, Prob(st = 2|st-1 = 2) = 0.9793, Prob(st = 3|st-1 = 3) = 0.8104. Standart error of dlbc is lower than dlsr in all regimes.

    6. The table 4, table 5, table 6, table 7 and table 8 has been updated.

    Table 7.  Traditional Granger causality results for China, India and the Russia.
    China
    Δlop→Δlsr
    Δlsr →Δlop
    Δlbc→Δlsr
    Δlsr→Δlbc
    Δlop→Δbc
    Δbci→Δlop
    F stat. 7.31 1.79 13.82 1.97 0.785 7.511
    Direction of causality dlop→dlsr dlbc→ dlsr dlbc→dlop
    India
    F stat. 0.6625 8.0495 7.12 2.288 0.607 7.699
    Direction of causality dlsr →dlop dlbcdlsr dlbc→dlop
    Russia
    F stat. 0.308 15.47 2.97 2.86 0.604 11.4784
    Direction of causality dlsr →dlop dlbcdlsr dlbc→dlop

     | Show Table
    DownLoad: CSV
    Table 8.  MS-Granger causality results for China, India and the Russia.
    Regime 1 Regime 2 Regime 3
    China
    Direction of causality dlsr→ dlbc dlsr→ dlbc dlsr→ dlbc
    Direction of causality dlop→dlbc dlop→dlbc dlopdlbc
    Direction of causality dlop→dlsr dlop→dlsr dlop→dlsr
    India
    Direction of causality dlbcdlsr dlbcdlsr dlbcdlsr
    Direction of causality dlop→dlbc dlop→dlbc dlop→dlbc
    Direction of causality dlop→dlsr dlop→dlsr dlop→dlsr
    Russia
    Direction of causality dlbcdlsr dlbcdlsr dlbc→ dlsr
    Direction of causality dlop→dlbc dlopdlbc dlopdlbc
    Direction of causality dlop→dlsr dlop→dlsr dlop→dlsr

     | Show Table
    DownLoad: CSV

    7. The seventh paragraph in section 4.3 has been updated.

    The results of unidirectional causality from oil price to stock return in all countries are similar to Ding et al (2017) and Qadan and Nama (2018)'s one.



    [1] Bildirici ME, Badur MM (2018) The effects of oil prices on confidence and stock return in China, India and Russia. Quantitat Financ Econ 2: 884–903. doi: 10.3934/QFE.2018.4.884
  • This article has been cited by:

    1. Zi-Sheng Ouyang, Ying Huang, Yun Jia, Chang-Qing Luo, Measuring Systemic Risk Contagion Effect of the Banking Industry in China: A Directed Network Approach, 2020, 56, 1540-496X, 1312, 10.1080/1540496X.2019.1711368
    2. Xian Chen, Yang Li, Jihong Xiao, Fenghua Wen, Oil shocks, competition, and corporate investment: Evidence from China, 2020, 89, 01409883, 104819, 10.1016/j.eneco.2020.104819
    3. Xu Gong, Mingchao Wang, Liuguo Shao, The impact of macro economy on the oil price volatility from the perspective of mixing frequency, 2020, 1076-9307, 10.1002/ijfe.2383
    4. Yun Qin, Jinyu Chen, Xuesong Dong, Oil prices, policy uncertainty and travel and leisure stocks in China, 2021, 96, 01409883, 105112, 10.1016/j.eneco.2021.105112
    5. Zhifeng Dai, Huiting Zhou, Fenghua Wen, Shaoyi He, Efficient predictability of stock return volatility: The role of stock market implied volatility, 2020, 52, 10629408, 101174, 10.1016/j.najef.2020.101174
    6. Meiyu Tian, Wanyang Li, Fenghua Wen, The dynamic impact of oil price shocks on the stock market and the USD/RMB exchange rate: Evidence from implied volatility indices, 2021, 55, 10629408, 101310, 10.1016/j.najef.2020.101310
    7. Sabri Burak Arzova, Hasan Murat Ertuğrul, Bertaç Şakir Şahin, The effect of gas and oil prices on economic confidence: An empirical analysis for euro area, 2023, 0958-305X, 10.1177/0958305X231222166
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3438) PDF downloads(613) Cited by(7)

Article outline

Figures and Tables

Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog