Citation: Amir Ahmad Dar, N. Anuradha. Comparison: Binomial model and Black Scholes model[J]. Quantitative Finance and Economics, 2018, 2(1): 230-245. doi: 10.3934/QFE.2018.1.230
[1] | Godwin Amechi Okeke, Akanimo Victor Udo, Rubayyi T. Alqahtani, Nadiyah Hussain Alharthi . A faster iterative scheme for solving nonlinear fractional differential equations of the Caputo type. AIMS Mathematics, 2023, 8(12): 28488-28516. doi: 10.3934/math.20231458 |
[2] | Hasanen A. Hammad, Hassan Almusawa . Modified inertial Ishikawa iterations for fixed points of nonexpansive mappings with an application. AIMS Mathematics, 2022, 7(4): 6984-7000. doi: 10.3934/math.2022388 |
[3] | Buthinah A. Bin Dehaish, Rawan K. Alharbi . On fixed point results for some generalized nonexpansive mappings. AIMS Mathematics, 2023, 8(3): 5763-5778. doi: 10.3934/math.2023290 |
[4] | Noor Muhammad, Ali Asghar, Samina Irum, Ali Akgül, E. M. Khalil, Mustafa Inc . Approximation of fixed point of generalized non-expansive mapping via new faster iterative scheme in metric domain. AIMS Mathematics, 2023, 8(2): 2856-2870. doi: 10.3934/math.2023149 |
[5] | Kaiwich Baewnoi, Damrongsak Yambangwai, Tanakit Thianwan . A novel algorithm with an inertial technique for fixed points of nonexpansive mappings and zeros of accretive operators in Banach spaces. AIMS Mathematics, 2024, 9(3): 6424-6444. doi: 10.3934/math.2024313 |
[6] | Hamza Bashir, Junaid Ahmad, Walid Emam, Zhenhua Ma, Muhammad Arshad . A faster fixed point iterative algorithm and its application to optimization problems. AIMS Mathematics, 2024, 9(9): 23724-23751. doi: 10.3934/math.20241153 |
[7] | Junaid Ahmad, Kifayat Ullah, Hasanen A. Hammad, Reny George . On fixed-point approximations for a class of nonlinear mappings based on the JK iterative scheme with application. AIMS Mathematics, 2023, 8(6): 13663-13679. doi: 10.3934/math.2023694 |
[8] | Junaid Ahmad, Kifayat Ullah, Hasanen A. Hammad, Reny George . A solution of a fractional differential equation via novel fixed-point approaches in Banach spaces. AIMS Mathematics, 2023, 8(6): 12657-12670. doi: 10.3934/math.2023636 |
[9] | Siniša N. Ješić, Nataša A. Ćirović, Rale M. Nikolić, Branislav M. Ranƌelović . A fixed point theorem in strictly convex b-fuzzy metric spaces. AIMS Mathematics, 2023, 8(9): 20989-21000. doi: 10.3934/math.20231068 |
[10] | Doaa Filali, Mohammad Dilshad, Mohammad Akram . Generalized variational inclusion: graph convergence and dynamical system approach. AIMS Mathematics, 2024, 9(9): 24525-24545. doi: 10.3934/math.20241194 |
The motion dynamics of incompressible isotropic elastodynamics is characterized as a wave system in Lagrangian coordinates, which inherently satisfies the null condition. Based on this structure, a series of studies have been conducted to establish the global well-posedness of classical solutions to this system; see[1,2]. However, these studies reveal a certain time growth for the highest-order generalized energy. In this paper, we investigate the time growth of the Sobolev norm for classical solutions to three-dimensional inhomogeneous incompressible isotropic elastodynamics with small initial perturbation and establish the uniform bound for the highest-order energy.
Before presenting the main result of this paper, we briefly review related known results. For three-dimensional elastic waves, John [3] proved that the genuine nonlinearity condition leads to singularity formation even for arbitrarily small spherically symmetric displacement. We also refer readers to [4] regarding large displacement singularity. The existence of almost global solutions was established in [5,6] for three-dimensional quasilinear wave equations with sufficiently small initial data. Significant contributions toward global existence were independently made by Sideris [7,8] and Agemi [9] under the assumption that nonlinearity satisfies the null condition in three dimensions. In terms of three-dimensional incompressible elastodynamics, the only waves presented in the isotropic systems are shear waves, which are linearly degenerate. The global existence of a solution was demonstrated by Sideris and Thomases in [1,2] through two different methods. It is more challenging to obtain the global existence for the two-dimensional incompressible elastodynamics due to the weaker dispersive decay. In [10], the authors proved almost global existence for a two-dimensional incompressible system in Eulerian coordinates. By introducing the concept of strong null condition and observing that the incompressible elastodynamics automatically satisfies such strong null structure in Lagrangian coordinates, Lei [11] successfully proved the global well-posedness for two-dimensional incompressible elastodynamics by the method of Klainerman and Alinhac's ghost weight method [12]. We also see [13] for a different approach using the spacetime resonance method. All the aforementioned works considered the homogeneous fluids. In [14], the authors established the global well-posedness for the three-dimensional inhomogeneous incompressible elastodynamics in Lagrangian coordinates. It is noteworthy that the upper bound of the highest-order generalized energy in those studies depends on time. Utilizing the Klainerman's generalized energy method, an analysis of the inherent structure of the system and the ghost weight method, [15,16] established the uniform bound for the highest-order generalized energy estimates for two-dimensional and three-dimensional incompressible elastodynamics, respectively. Based on the above foundational works, it is natural to verify the uniform bound for the highest-order generalized energy for three-dimensional inhomogeneous incompressible isotropic elastodynamics. To establish the time growth of the Sobolev norm of classical solution, two novel methods are presented in this paper. First, based on the Sobolev embedding inequality and the structure of the system, the refined decay rates were derived for the solution in the domain away from the light cone. Second, we apply the KSS-type estimate to overcome the difficulties posed by insufficient time decay resulting from density perturbation.
This paper is organized as follows. In Section 2, we introduce the system of three-dimensional inhomogeneous isotropic elastodynamics and define the notations utilized throughout this paper. Besides, the main result along with several useful lemmas are presented in this section. The energy estimates are discussed in Section 3.
We first formulate the inhomogeneous isotropic elastodynamics and denote some notations that are used frequently in this paper.
For any given smooth flow map X(t,x), we call it incompressible if
∫Ωdx=∫ΩtdX,Ωt={X(t,x)|x∈Ω} |
for any smooth bounded connected domain Ω, which yields that
det(∇X)=1. |
Denote
X(t,x)=x+v(t,x). |
Simple calculation shows that the incompressible condition is equivalent to
∇⋅v+12[(tr∇v)2−tr(∇v)2]+det(∇v)=0. | (2.1) |
Without loss of generality, we assume that the density of fluid is a small perturbation around the constant state 1, that is, ρ(x)=1+η(x). For the inhomogeneous isotropic material, the motion of the elastic fluid in the Lagrangian coordinate is determined by
L(X;T,Ω)=∫T0∫Ω(12ρ(x)|∂tX|2−W(∇X)+p(t,x)[det(∇X)−1])dxdt. | (2.2) |
Here W(∇X)∈C∞ is the strain energy function. p(t,x) is a Lagrangian multiplier that is used to force the flow maps to be incompressible. To simplify the presentation, we only study the typical Hookean case for which the strain energy functional is given by
W(∇X)=12|∇X|2. |
By calculating the variation of (2.2), we obtain the equation
ρ∂2tv−Δv=−(∇X)−T∇p. | (2.3) |
Now, we introduce the following derivative vector fields
∂t=∂0,∇=(∂1,∂2,∂3)and∂=(∂0,∂1,∂2,∂3). |
The scaling operator is denoted by
S=t∂t+r∂r. |
Here, the radial derivative is defined by ∂r=xr⋅∇, r=|x|. The angular momentum operators are denoted by
Ω=x∧∇. |
In the application, we usually use the modified rotational operators and scaling operator; that is, for any vector v and scalar p and ρ, we set
˜Sp=Sp,˜Sρ=Sρ,˜Sv=(S−1)v,˜Ωip=Ωip,˜Ωiρ=Ωiρ,˜Ωiv=Ωiv+Uiv,i=1,2,3, |
where
U1=e2⊗e3−e3⊗e2,U2=e3⊗e1−e1⊗e3,U3=e1⊗e2−e2⊗e1. |
Let
Γ=(Γ1,⋯,Γ8)=(∂,˜Ω,˜S) |
and for any multi-index α=(α1,α2,⋯,α8)∈N8, we denote
Γα=Γα11⋯Γα88. |
We apply the derivatives Γα to the equations (2.1) and (2.3), and then the three-dimensional inhomogeneous isotropic elastodynamics can be written as
ρ∂2tΓαv−ΔΓαv=−(∇X)−T∇Γαp−∑β+γ=α|β|≠|α|CβαΓγη∂2tΓβv−∑β+γ=α|β|≠|α|Cβα(∇X)−T(∇Γγv)T⋅(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)=:Nα | (2.4) |
with the incompressible condition
∇⋅Γαv+∑β+γ=αi,j=1,2,3,i<jCβα(∂iΓβvi∂jΓγvj−∂iΓβvj∂jΓγvi)+∑β+γ+ι=αCβαCγα−β|∂1Γβv1∂2Γβv1∂3Γβv1∂1Γβv2∂2Γβv2∂3Γβv2∂1Γβv3∂2Γβv3∂3Γβv3|=0. | (2.5) |
Here the binomial coefficient Cβα is given by
Cβα=α!β!(α−β)!. |
We denote the Klainerman's generalized energy by
Eκ(t)=∑|α|≤κ−1∫R3(|∂tΓαv|2+|∇Γαv|2)dx. |
We also define the weighted energy norm
Xκ(t)=∑|α|≤κ−2∫R3⟨t−r⟩2|∂2Γαv|2dx. |
To describe the space of initial data, we introduce the time-independent analogue of Γ as
Λ=(∇,r∂r−1,˜Ω) |
and the space of initial data is defined by
HκΛ={(f,g):∑|α|≤κ−1(‖Λαf‖L2+‖∇Λαf‖L2+‖Λαg‖L2)<∞}. |
As the first step to investigate our problem, we introduce the following lemma, which helps us to solve the additional terms resulting from density perturbation. Let
LEκ(T)=∑|α|≤κ−1∫T0∫Rnr−1+2μ⟨r⟩−2μ′(|∂Γαv|+|Γαv|r)2dxdt |
with μ∈(0,12) and μ′>μ. Without loss of generality, we choose μ=14 and μ′=12 in this paper. In the case of μ′=μ, we see LEκ(T) is the KSS norm, and we denote it by KSSκ(T).
Lemma 1. Let f0=[r/(1+r)]2μ, fk=r/(r+2k) with k≥1, μ∈(0,1/2), and v be the solution to the equation ∂2tv−c2Δv+hab∂a∂bv=N in [0,T]×Rn with hab=hba, ∑0≤a,b≤n|hab|≤min(1,c2)/2 for any integer n≥3. Then there exists a positive constant C0 that depends only on the dimension n such that
sup0≤t≤T∫Rn|∂v|2(t)dx+LE1(T)+(ln(2+T))−1KSS1(T)≤C0∫Rn|∂v|2(0)dx+C0∫T0∫Rn[(|∂h|+|h|r1−2μ⟨r⟩2μ)|∂v|(|∂v|+|v|r)]dxdt+C0|∫T0∫Rn∂tv⋅Ndxdt|+C0supk≥0|∫T0∫Rnfk(∂rv+n−12rv)⋅Ndxdt|, |
where |h|=∑na,b=0|hab| and |∂h|=∑na,b,c=0|∂chab|.
This lemma can be found in [17]. See also [18,19] and references therein.
Based on the previous statement, we are ready to show the main result of this paper.
Theorem 1. Let W(∇X)=12|∇X|2 be an isotropic Hookean strain energy function and (v0,∂tv0)∈HκΛ with κ≥12. Let C0>0 be given constant in Lemma 1. Suppose v0 satisfies the structural constraint condition (2.1) and
Eκ(0)=∑|α|≤κ−1(‖∂tΛαv0‖2L2+‖∇Λαv0‖2L2)≤ε. |
If
‖⟨r⟩Λαη‖L2≤δfor|α|≤κ, |
then there exist two sufficiently small constants, ε0,δ0 and constant C1, that depend only on κ and C0 such that if ε≤ε0 and δ≤δ0, the system (2.3) has a unique global classical solution that satisfies
Eκ(t)≤C1ε |
uniformly for all t∈[0,+∞).
In this part, we establish several lemmas that are crucial for the energy estimates. Throughout this paper, we denote ⟨⋅⟩=(1+|⋅|2)12. The notation f≲g stands for f≤Cg for some generic constant C>0, which may vary from line to line. In the process of deriving the energy estimates, we usually separate the whole integration domain R3 into two parts:
R={x∈R3:r≤⟨t⟩/8},Rc={x∈R3:r>⟨t⟩/8}. |
We first recall the Sobolev-type inequalities, which were justified in [8].
Lemma 2. For any v∈C∞0(R3)3, r=|x| and ˜r=|y|, we have
‖⟨r⟩12v(x)‖L∞≲∑|α|≤1‖∇˜Ωαv‖L2,‖⟨r⟩v(x)‖L∞≲∑|α|≤1‖∂r˜Ωαv‖12L2(|y|≥r)‖˜Ωαv‖12L2(|y|≥r),‖⟨r⟩⟨t−r⟩v(x)‖L∞≲∑|α|≤1‖⟨t−˜r⟩∂˜r˜Ωαv‖L2(|y|≥r)+∑|α|≤2‖⟨t−˜r⟩˜Ωαv‖L2(|y|≥r). |
The following lemma concerns the dispersive decay of solutions in the domain away from the light cone.
Lemma 3. For any v∈H2(R3), there holds
⟨t⟩‖v‖L∞(r≤⟨t⟩/8)≲‖v‖L2(r≤⟨t⟩/4)+‖⟨t−r⟩∇v‖L2(r≤⟨t⟩/4)+‖⟨t−r⟩∇2v‖L2(r≤⟨t⟩/4). |
Proof. The proof can be found in Lemma 4.3 in [16].
Let s=8r⟨t⟩. We introduce a radial cutoff function ξ(s)∈C∞0 that satisfies
ξ(s)={1,s≤1,0,s≥2. |
It is easy to observe from Lemmas 2 and 3 that
⟨t⟩‖∂v‖L∞≲⟨t⟩‖∂v‖L∞(R)+‖⟨r⟩(1−ξ(s))∂v‖L∞≲‖∂v‖L2(r≤⟨t⟩/4)+‖⟨t−r⟩∇∂v‖L2(r≤⟨t⟩/4)+‖⟨t−r⟩∇2∂v‖L2(r≤⟨t⟩/4)+∑ι1,|ι2|≤1‖∂ι1r˜Ωι2[(1−ξ(s))∂v]‖L2≲E123(t)+X123(t). | (2.6) |
To control the weighted energy norm by the generalized energy norm, the pressure must be estimated via the system (2.4)-(2.5). A similar proof can be found in [14]. For a self-contained presentation, we include its proof below.
Lemma 4. For any integer κ≥6 and multi-index α satisfying |α|≤κ−2, if E[κ/2]+3(t) and ‖⟨r⟩Λαη‖L2 are small. Then there holds
⟨t⟩‖∇Γαp‖L2+⟨t⟩‖ρ∂2tΓαv−ΔΓαv‖L2≲δX12κ(t)+E12κ(t)X12[κ/2]+3(t)+E12[κ/2]+3(t)X12κ(t). |
Proof. It observes from (2.4) that
∇Γαp=−(∇X)T(ρ∂2tΓαv−ΔΓαv)−∑β+γ=α|β|≠|α|Cβα(∇X)TΓγη∂2tΓβv−∑β+γ=α|β|≠|α|Cβα(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v). | (2.7) |
We apply ∇Δ−1∇⋅ to the above equality and take the L2 norm. By the L2 boundness of the Riesz operator, one has
‖∇Γαp‖L2≲‖∇Δ−1∇⋅(ρ∂2tΓαv−ΔΓαv)‖L2+‖(∇v)T(ρ∂2tΓαv−ΔΓαv)‖L2+∑β+γ=α|β|≠|α|‖(∇X)TΓγη∂2tΓβv‖L2+∑β+γ=α|β|≠|α|‖(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L2. | (2.8) |
Special attention is paid to the first term on the right-hand side of (2.8). We apply the derivative operator (∂2t−Δ) to the incompressible condition (2.5). Without loss of generality, we assume at least one order derivative operator of (∂2t−Δ) works on the first component of the velocity field in the second line of (2.5). Then we obtain
(∂2t−Δ)(∇⋅Γαv)=−∑β+γ=αi,j=1,2,3,i<jCβα(∂2t−Δ)(∂iΓβvi∂jΓγvj−∂iΓβvj∂jΓγvi)−∑β+γ+ι=αCβαCγα−β(∂2t−Δ)|∂1Γβv1∂2Γβv1∂3Γβv1∂1Γβv2∂2Γβv2∂3Γβv2∂1Γβv3∂2Γβv3∂3Γβv3|=∑β+γ=αm+n=1,i=0,1,2,3Cβα∇⋅(∂m+1iΓβv1∂2∂niΓγv2+∂m+1iΓβv1∂3∂niΓγv3−∂2∂miΓβv1∂n+1iΓγv2−∂3∂miΓβv1∂n+1iΓγv3−∂m+1iΓβv1∂1∂niΓγv2+∂m+1iΓβv2∂3∂niΓγv3+∂1∂miΓβv1∂n+1iΓγv2−∂3∂miΓβv2∂n+1iΓγv3−∂m+1iΓβv2∂2∂niΓγv3−∂m+1iΓβv1∂1∂niΓγv3+∂2∂miΓβv2∂n+1iΓγv3+∂1∂miΓβv1∂n+1iΓγv3)+∑β+γ+ι=αm2+m2+m3=1,i=0,1,2,3CβαCγα−β∇⋅[∂m1+1iΓβv1(∂2∂m2iΓγv2∂3∂m3iΓιv3−∂3∂m2iΓγv2∂2∂m3iΓιv3∂3∂m2iΓγv2∂1∂m3iΓιv3−∂1∂m2iΓγv2∂3∂m3iΓιv3∂1∂m2iΓγv2∂2∂m3iΓιv3−∂2∂m2iΓγv2∂1∂m3iΓιv3)]. |
Based on the above equality, we handle the first term on the right-hand side of (2.8) as follows
‖∇Δ−1∇⋅(ρ∂2tΓαv−ΔΓαv)‖L2≲‖∇Δ−1[(ρ∂2t−Δ)(∇⋅Γαv)]‖L2+∑i=1,2,3‖∇Δ−1(∂η∂2tΓαvi)‖L2≲(1+‖∇v‖L∞)‖∇v‖L∞‖ρ∂2tΓαv−ΔΓαv‖L2+∑β+γ=α,|β|≠|α|i,j=1,2,3,i≠j‖∂2Γβvi∂Γγvj‖L2+∑β+γ+ι=α,|β|≠|α|i,j,k=1,2,3,i≠j≠k‖∂2Γβvi∂Γγvj∂Γιvk‖L2+∑β+γ=α,|β|≠|α|i,j=1,2,3,i≠j‖∇Δ−1(∂η∂2Γβvi∂Γγvj)‖L2+∑β+γ+ι=α,|β|≠|α|i,j,k=1,2,3,i≠j≠k‖∇Δ−1(∂η∂2Γβvi∂Γγvj∂Γιvk)‖L2+∑i=1,2,3‖∇Δ−1(∂η∂2tΓαvi)‖L2+∑i,j=1,2,3i≠j‖∇Δ−1(∂η∂2tΓαvi∂vj)‖L2+∑i,j,k=1,2,3i≠j≠k‖∇Δ−1(∂η∂2tΓαvi∂vj∂vk)‖L2. | (2.9) |
By (2.8), (2.9), the Sobolev embedding inequality, and the smallness of ‖∇η‖L3, we have
‖∇Γαp‖L2≲(1+‖∇v‖L∞)‖∇v‖L∞‖ρ∂2tΓαv−ΔΓαv‖L2+∑β+γ=α,|β|≠|α|i,j=1,2,3,i≠j‖∂2Γβvi∂Γγvj‖L2+∑β+γ+ι=α,|β|≠|α|1,j,k=1,2,3,i≠j≠k‖∂2Γβvi∂Γγvj∂Γιvk‖L2+∑β+γ=α|β|≠|α|‖Γγη∂2tΓβv‖L2+∑β+γ=α|β|≠|α|‖(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L2+∑i=1,2,3‖∂η∂2tΓαvi‖L65+∑i,j=1,2,3i≠j‖∂η∂2tΓαvi∂vj‖L65+∑i,j,k=1,2,3i≠j‖∂η∂2tΓαvi∂vj∂vk‖L65. |
By (2.4), the above inequality and the smallness of E[κ/2]+3(t), one obtains
‖∇Γαp‖L2+‖ρ∂2tΓαv−ΔΓαv‖L2≲∑β+γ=α,|β|≠|α|i,j=1,2,3,i≠j‖∂2Γβvi∂Γγvj‖L2+∑β+γ+ι=α,|β|≠|α|i,j,k=1,2,3,i≠j≠k‖∂2Γβvi∂Γγvj∂Γιvk‖L2+∑β+γ=α|β|≠|α|‖Γγη∂2tΓβv‖L2+∑β+γ=α|β|≠|α|‖(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L2+∑i=1,2,3‖∂η∂2tΓαvi‖L65+∑i,j=1,2,3i≠j‖∂η∂2tΓαvi∂vj‖L65+∑i,j,k=1,2,3i≠j≠k‖∂η∂2tΓαvi∂vj∂vk‖L65. |
We deduce from Lemma 2 that
⟨t⟩‖∇Γαp‖L2+⟨t⟩‖ρ∂2tΓαv−ΔΓαv‖L2≲∑β+γ=α|γ|<|β|<|α|‖⟨t−r⟩∂2Γβv‖L2‖⟨r⟩∂Γγv‖L∞+∑β+γ=α|β|≤|γ|‖⟨r⟩⟨t−r⟩∂2Γβv‖L∞‖∂Γγv‖L2+∑β+γ+ι=α|γ|,|ι|<|β|<|α|‖⟨t−r⟩∂2Γβv‖L2‖⟨r⟩∂Γγv‖L∞‖∂Γιv‖L∞+∑β+γ+ι=α|β|,|ι|≤|γ|‖⟨r⟩⟨t−r⟩∂2Γβv‖L∞‖∂Γγv‖L2‖∂Γιv‖L∞+∑β+γ+ι=α|β|,|γ|≤|ι|‖⟨r⟩⟨t−r⟩∂2Γβv‖L∞‖∂Γγv‖L∞‖∂Γιv‖L2+∑β+γ=α|γ|<|β|<|α|‖⟨r⟩Γγη‖L∞‖⟨t−r⟩∂2tΓβv‖L2+∑β+γ=α|β|≤|γ|‖Γγη‖L2‖⟨r⟩⟨t−r⟩∂2tΓβv‖L∞+‖⟨r⟩∇η‖L3(1+‖∇v‖L∞)2‖⟨t−r⟩∂2tΓαv‖L2+∑β+γ=α|γ|<|β|<|α|‖⟨r⟩∇Γγv‖L∞‖⟨t−r⟩(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L2+∑β+γ=α|β|≤|γ|‖∇Γγv‖L2‖⟨r⟩⟨t−r⟩(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L∞≲δX12κ(t)+E12κ(t)X12[κ/2]+3(t)+E12[κ/2]+3(t)X12κ(t). |
It completes the proof.
As an application of the above result, we establish the estimate of weighted energy.
Lemma 5. Let v∈HκΓ(R3) be the solution to the system (2.3) with the constraint condition (2.1). For any integer κ≥6, if Eκ(t) and ‖⟨r⟩Λαη‖L2 are small, then we have
Xκ(t)≲Eκ(t). |
Proof. For any multi-index α satisfying |α|≤κ−2, we apply Γα to Lemma 3.3 in [11] to get
Xκ(t)≲Eκ(t)+t‖∂2tΓαv−ΔΓαv‖2L2. |
It follows from the above inequality and Lemma 4 that
Xκ(t)≲Eκ(t)+δ2Xκ(t)+E[κ/2]+3(t)Xκ(t)+Eκ(t)X[κ/2]+3(t). |
By the smallness of δ and Eκ(t), we arrive at the lemma.
In preparation for the energy estimates, more detailed analysis of pressure is needed. In what follows, we always assume that Eκ(t) and ‖⟨r⟩Λαη‖L2 are small.
Lemma 6. For any integer κ≥8 and multi-index α satisfying |α|≤κ−1, we have
‖∇Γαp‖L2≲E12κ(t) | (2.10) |
and
⟨t⟩‖∇Γαp‖L2(Rc)+⟨t⟩‖ρ∂2tΓαv−ΔΓαv‖L2(Rc)≲E12κ(t). | (2.11) |
Proof. Following the calculations in Lemma 4, we arrive at (2.9). Special attention is paid to the last three terms on the right-hand side of (2.9). From (2.4), one has
∂2tΓαv=ρ−1ΔΓαv−ρ−1(∇X)−T∇Γαp−∑β+γ=α|β|≠|α|Cβαρ−1Γγη∂2tΓβv−∑β+γ=α|β|≠|α|Cβαρ−1(∇X)−T(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v). |
We use the above equality and the Sobolev embedding inequality to solve the last three terms on the right-hand side of (2.9) by
‖∇Δ−1[ρ−1∂η(1+∂v)2ΔΓαv]‖L2+‖∇Δ−1[ρ−1∂η(1+∂v)2(∇X)−T∇Γαp]‖L2+∑β+γ=α|β|≠|α|‖∇Δ−1[ρ−1∂η(1+∂v)2(∇X)−T(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2∂2tΓι1v)]‖L2+∑β+γ=α|β|≠|α|‖∇Δ−1[ρ−1∂η(1+∂v)2Γγη∂2tΓβv]‖L2≲‖∂η(1+∂v)2∇Γαv‖L2+∑i+j+k=1‖∂i(ρ−1)∂j∂η∂k(1+∇v)2∇Γαv‖L65+‖∂η(1+∂v)2(∇X)−T∇Γαp‖L65+∑β+γ=α|β|≠|α|‖∂η(1+∂v)2(∇X)−T(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L65+∑β+γ=α|β|≠|α|‖∂η(1+∂v)2Γγη∂2tΓβv‖L65. |
Utilizing (2.4), (2.8), the above estimate, and the Sobolev embedding inequality, we arrive at
‖∇Γαp‖L2+‖ρ∂2tΓαv−ΔΓαv‖L2≲∑β+γ=α|γ|<|β|<|α|‖∂2Γβv‖L2‖∂Γγv‖L∞+∑β+γ=α|β|≤|γ|‖∂2Γβv‖L∞‖∂Γγv‖L2+∑β+γ+ι=α|γ|,|ι|<|β|<|α|‖∂2Γβv‖L2‖∂Γγv‖L∞‖∂Γιv‖L∞+∑β+γ+ι=α|β|,|ι|≤|γ|‖∂2Γβv‖L∞‖∂Γγv‖L2‖∂Γιv‖L∞+∑β+γ+ι=α|β|,|γ|≤|ι|‖∂2Γβv‖L∞‖∂Γγv‖L∞‖∂Γιv‖L2+∑β+γ=α|γ|<|β|<|α|‖Γγη‖L∞‖∂2tΓβv‖L2+∑β+γ=α|β|≤|γ|‖Γγη‖L2‖∂2tΓβv‖L∞+∑1≤|ι|≤3‖∇ιη‖L2‖∇Γαv‖L2+∑β+γ=α|γ|<|β|<|α|‖∇Γγv‖L∞‖∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v‖L2+∑β+γ=α|β|≤|γ|‖∇Γγv‖L2‖∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v‖L∞≲δE12κ(t)+E12κ(t)E12[κ/2]+4(t). | (2.12) |
The smallness of δ and Eκ(t) leads to (2.10).
To verify (2.11), we use (2.12), Lemma 2, and the smallness of Eκ(t) to get
⟨t⟩‖∇Γαp‖L2(Rc)+⟨t⟩‖ρ∂2tΓαv−ΔΓαv‖L2(Rc)≲∑β+γ=α|γ|<|β|<|α|‖∂2Γβv‖L2‖⟨r⟩∂Γγv‖L∞+∑β+γ=α|β|≤|γ|‖⟨r⟩∂2Γβv‖L∞‖∂Γγv‖L2+∑β+γ+ι=α|β|,|ι|≤|γ|‖∂2Γβv‖L∞‖∂Γγv‖L2‖⟨r⟩∂Γιv‖L∞+∑β+γ+ι=α|β|,|γ|≤|ι|‖∂2Γβv‖L∞‖⟨r⟩∂Γγv‖L∞‖∂Γιv‖L2+∑β+γ+ι=α|γ|,|ι|<|β|<|α|‖∂2Γβv‖L2‖⟨r⟩∂Γγv‖L∞‖∂Γιv‖L∞+∑β+γ=α|γ|<|β|<|α|‖⟨r⟩Γγη‖L∞‖∂2tΓβv‖L2+∑β+γ=α|β|≤|γ|‖Γγη‖L2‖⟨r⟩∂2tΓβv‖L∞+∑1≤|ι|≤3‖⟨r⟩∇ιη‖L2‖∇Γαv‖L2+∑β+γ=α|γ|<|β|<|α|‖⟨r⟩∇Γγv‖L∞‖∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v‖L2+∑β+γ=α|β|≤|γ|‖∇Γγv‖L2‖⟨r⟩(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L∞≲E12κ(t)E12[κ/2]+4(t)+δE12κ(t). |
The smallness of δ and Eκ(t) implies (2.11).
In the subsequent part, we present the improved decay properties for the third-order spatial derivatives of unknown variables in the domain away from the light cone.
Lemma 7. For any integer κ≥10 and multi-index α satisfying |α|≤[κ/2], it holds that
⟨t⟩2‖∇3Γαv‖L2(R)≲E12[κ/2]+5(t). |
Proof. We apply the derivative operator ∇ to the equation (2.4) to get
∇ΔΓαv=∇η∂2tΓαv+ρ∂2t∇Γαv+∇(∇X)−T∇Γαp+(∇X)−T∇∇Γαp+∑β+γ=α|β|≠|α|Cβα∇Γγη∂2tΓβv+∑β+γ=α|β|≠|α|CβαΓγη∂2t∇Γβv+∑β+γ=α|β|≠|α|Cβα∇[(∇X)−T(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]. |
By multiplying the above equality by t2ξ(s) and taking the L2 inner product, one has
∫R3|t2ξ(s)∇ΔΓαv|2dx≤7∫R3|t2ξ(s)∇η∂2tΓαv|2dx+7∫R3|t2ξ(s)ρ∂2t∇Γαv|2dx+7∫R3|t2ξ(s)∇(∇X)−T∇Γαp|2dx+7∫R3|t2ξ(s)(∇X)−T∇2Γαp|2dx+∑β+γ=α|β|≠|α|7∫R3|Cβαt2ξ(s)∇Γγη∂2tΓβv|2dx+∑β+γ=α|β|≠|α|7∫R3|Cβαt2ξ(s)Γγη∂2t∇Γβv|2dx+∑β+γ=α|β|≠|α|7∫R3|Cβαt2ξ(s)∇[(∇X)−T(∇Γγv)T⋅(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]|2dx. | (2.13) |
Since for any f∈H2(R3), the following Sobolev embedding inequality holds true
‖f‖L∞≲‖∇f‖12L2‖∇2f‖12L2. | (2.14) |
By Lemma 2, the first term on the right-hand side of (2.13) is estimated by
7∫R3|t2ξ(s)∇η∂2tΓαv|2dx≲∫R3|trξ(s)∇η∂r∂tΓαv|2dx+∫R3|tξ(s)∇η∂t˜SΓαv|2dx≲(‖ξ(s)⟨r⟩⟨t−r⟩∂r∂tΓαv‖2L∞+‖tξ(s)∂t˜SΓαv‖2L∞)‖∇η‖2L2≲(‖⟨r⟩⟨t−r⟩∂r∂tΓαv‖2L∞+‖∇(tξ(s)∂t˜SΓαv)‖L2‖∇2(tξ(s)∂t˜SΓαv)‖L2)‖∇η‖2L2≲[‖⟨r⟩⟨t−r⟩∂r∂tΓαv‖2L∞+(‖ξ′(s)∂t˜SΓαv‖L2+‖ξ(s)⟨t−r⟩∂t∇˜SΓαv‖L2)⋅(⟨t⟩−1‖ξ″(s)∂t˜SΓαv‖L2+‖ξ′(s)∂t∇˜SΓαv‖L2+‖ξ(s)⟨t−r⟩∂t∇2˜SΓαv‖L2)]‖∇η‖2L2≲δ2E[κ/2]+4(t). | (2.15) |
By a similar argument, we handle the second term on the right-hand side of (2.13) as follows
7∫R3|t2ξ(s)ρ∂2t∇Γαv|2dx≤7∫R3|trξ(s)ρ∂r∂t∇Γαv|2dx+C∫R3(|tξ(s)ρ∂t∇˜SΓαv|2+|tξ(s)ρ∂t∇Γαv|2)dx≤7∫R3|r2ξ(s)ρ∂2r∇Γαv|2dx+C∫R3(|tξ(s)ρ∂t∇˜SΓαv|2+|tξ(s)ρ∂t∇Γαv|2+|ξ(s)ρr∂r∇˜SΓαv|2+|ξ(s)ρr∂r∇Γαv|2)dx≤7∫R3|r2ξ(s)ρ∇3Γαv|2dx+C(‖⟨t−r⟩∂∇Γαv‖2L2(R)+‖⟨t−r⟩∂∇˜SΓαv‖2L2(R))≤716∫R3|t2ξ(s)∇3Γαv|2dx+CE[κ/2]+3(t). | (2.16) |
In view of (2.7), the smallness of δ and Eκ(t), one has
‖∇Γαp‖L2(R)+⟨t⟩‖∇Γαp‖L2(R)≲‖(1+⟨t⟩)(∇X)T(∂2tΓαv−ΔΓαv)‖L2(R)+∑β+γ=α‖(1+⟨t⟩)(∇X)TΓγη∂2tΓβv‖L2(R)+∑β+γ=α‖(1+⟨t⟩)(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L2(R)≲E12[κ/2]+2(t). |
We substitute the above inequality into the third term on the right-hand side of (2.13) to get
7∫R3|t2ξ(s)∇(∇X)−T∇Γαp|2dx≲⟨t⟩2‖∇2v‖2L∞(R)⟨t⟩2‖∇v‖2L∞(R)‖∇Γαp‖2L2(R)+⟨t⟩2‖∇2v‖2L∞(R)⟨t⟩2‖∇Γαp‖2L2(R)≲E[κ/2]+2(t). |
We come back to the fourth term on the right-hand side of (2.13). We apply the divergence operator to the equality (2.7) and multiply t2 on both sides of the resulting equality. By taking the L2 inner product, one has
‖t2ξ(s)ΔΓαp‖L2≲‖t2ξ(s)∇⋅[(∇v)T(ρ∂2tΓαv−ΔΓαv)]‖L2+∑β+γ=α|β|≠|α|‖t2ξ(s)∇⋅[(∇v)TΓγη∂2tΓβv]‖L2+‖t2ξ(s)∇⋅(ρ∂2tΓαv−ΔΓαv)‖L2+∑β+γ=α|β|≠|α|‖t2ξ(s)∇⋅(Γγη∂2tΓβv)‖L2+∑β+γ=α|β|≠|α|‖t2ξ(s)∇⋅[(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]‖L2. | (2.17) |
For the first two terms on the right-hand side of (2.17), we deduce from Lemma 3 that
‖t2ξ(s)∇⋅[(∇v)T(ρ∂2tΓαv−ΔΓαv)]‖L2+∑β+γ=α|β|≠|α|‖t2ξ(s)∇⋅[(∇v)TΓγη∂2tΓβv]‖L2≲∑i+j=1⟨t⟩‖∇i(∇v)T‖L∞(R)‖⟨t−r⟩∇j(ρ∂2tΓαv−ΔΓαv)‖L2(R)+∑β+γ=α,|β|≤|γ| i+j+k=1⟨t⟩‖∇i(∇v)T‖L∞(R)‖∇jΓγη‖L2(R)⟨t⟩‖∂2t∇kΓβv‖L∞(R)+∑β+γ=α,|γ|<|β|<|α| i+j+k=1⟨t⟩‖∇i(∇v)T‖L∞(R)‖∇jΓγη‖L∞(R)‖⟨t−r⟩∂2t∇kΓβv‖L2(R)≲E124(t)E12[κ/2]+3(t)+δE124(t)E12[κ/2]+5(t). |
For the third and fourth terms on the right-hand side of (2.17), we have
‖t2ξ(s)∇⋅(ρ∂2tΓαv−ΔΓαv)‖L2+∑β+γ=α|β|≠|α|‖t2ξ(s)∇⋅(Γγη∂2tΓβv)‖L2≲‖t2ξ(s)∇η⋅∂2tΓαv‖L2+‖t2ξ(s)[(ρ∂2t−Δ)(∇⋅Γαv)]‖L2+∑β+γ=α,|β|≠|α|i+j=1‖t2ξ(s)∇iΓγη∂2t(∇j⋅Γβv)‖L2. | (2.18) |
By the definition of ˜S and the Sobolev embedding inequality, we solve the first term on the right-hand side of (2.18) by
‖t2ξ(s)∇η⋅∂2tΓαv‖L2≲‖∇η‖L3‖tξ(s)∂t˜SΓαv‖L6+‖trξ(s)∇η∂r∂tΓαv‖L2≲‖∇η‖L3(‖∂t˜SΓαv‖L2(R)+‖⟨t−r⟩∂t∇˜SΓαv‖L2(R))+‖⟨r⟩∇η‖L∞‖⟨t−r⟩∂r∂tΓαv‖L2(R)≲δE12[κ/2]+3(t). |
In terms of (2.5) and the definition of ˜S, the last two terms on the right-hand side of (2.18) are estimated by
‖t2ξ(s)[(ρ∂2t−Δ)(∇⋅Γαv)]‖L2+∑β+γ=α,|β|≠|α|i+j=1‖t2ξ(s)∇iΓγη∂2t(∇j⋅Γβv)‖L2≲∑β+γ=αi+j=1‖⟨t−r⟩∂i∂∇Γβv‖L2(R)⟨t⟩‖∂j∇Γγv‖L∞(R)+∑β+γ+ι=αi+j+k=1‖⟨t−r⟩∂i∂∇Γβv‖L2(R)⟨t⟩‖∂j∇Γγv‖L∞(R)‖∂k∇Γιv‖L∞(R)+∑β+γ+ι=αj+k=1‖Γγη‖L∞(R)‖⟨t−r⟩∂j∂∇Γβv‖L2(R)⟨t⟩‖∂k∇Γιv‖L∞(R)+∑β+γ+ι=αi+j+k=1‖Γγη‖L∞(R)‖⟨t−r⟩∂i∂∇Γβv‖L2(R)⟨t⟩‖∂j∇Γγv‖L∞(R)‖∂k∇Γιv‖L∞(R)+∑β+γ=α|β|≠|α|‖ξ(s)∇Γγη‖L3⟨t⟩‖ξ(s)∂t˜SΓβv‖L6+∑β+γ=α|β|≠|α|‖⟨r⟩∇Γγη‖L∞(R)‖⟨t−r⟩∂t∂rΓβv‖L2(R)≲(1+δ)E12[κ/2]+3(t)(E12[κ/2]+4(t)+E[κ/2]+4(t))+δE12[κ/2]+3(t). |
Along the same line, the last term on the right-hand side of (2.17) is dealt with by
∑β+γ=α|β|≠|α|‖t2ξ(s)∇⋅[(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]‖L2≲∑β+γ=α|β|≠|α|‖⟨t−r⟩∇2Γγv‖L2(R)⟨t⟩‖∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v‖L∞(R)+∑β+γ=α|β|≠|α|⟨t⟩‖∇Γγv‖L∞(R)‖⟨t−r⟩∇(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L2(R)≲E[κ/2]+4(t). |
Combining all the estimates, Lemma 4, and the fact
‖t2ξ(s)∇2Γαp‖L2≲‖t2ξ(s)ΔΓαp‖L2+‖tξ(s)∇Γαp‖L2, |
the fourth term on the right-hand side of (2.13) is estimated by
7∫R3|t2ξ(s)(∇X)−T∇2Γαp|2dx≲⟨t⟩2‖∇v‖2L∞(R)⟨t⟩2‖∇v‖2L∞(R)‖∇2Γαp‖2L2(R)+⟨t⟩2‖∇v‖2L∞(R)⟨t⟩2‖∇2Γαp‖2L2(R)+‖t2∇2Γαp‖2L2(R)≲E[κ/2]+5(t). |
We employ the similar method as (2.15) and (2.16) to estimate the fifth and sixth terms on the right-hand side of (2.13) by
∑β+γ=α|β|≠|α|7∫R3|Cβαt2ξ(s)∇Γγη∂2tΓβv|2dx+∑β+γ=α|β|≠|α|7∫R3|Cβαt2ξ(s)Γγη∂2t∇Γβv|2dx≲∑β+γ=α|β|≠|α|∫R3(|tξ(s)∇Γγη∂t˜SΓβv|2dx+|tξ(s)r∇Γγη∂r∂tΓβv|2+|tξ(s)Γγη∂t∇˜SΓβv|2+|tξ(s)Γγη∂t∇Γβv|2+|tξ(s)Γγηr∂r∂t∇Γβv|2)dx≲∑β+γ=α|β|≠|α|(‖∇Γγη‖2L3‖tξ(s)∂t˜SΓβv‖2L6+‖⟨r⟩ξ(s)∇Γγη‖2L∞‖⟨t−r⟩∂∇Γβv‖2L2(R)+‖Γγη‖2L∞(R)‖⟨t−r⟩∂∇˜SΓβv‖2L2(R)+‖Γγη‖2L∞(R)‖⟨t−r⟩∂t∇Γβv‖2L2(R)+‖⟨r⟩ξ(s)Γγη‖2L∞‖⟨t−r⟩∂∇2Γβv‖2L2(R))≲δ2E[κ/2]+3(t). |
For the last term on the right-hand side of (2.13), we have
∑β+γ=α|β|≠|α|7∫R3|Cβαt2ξ(s)∇[(∇X)−T(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]|2dx≲∑β+γ=α,|β|≠|α|i+j≤1⟨t⟩2‖∇i(∇Γγv)T‖2L∞(R)‖⟨t−r⟩∇j(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖2L2(R)≲E[κ/2]+4(t). |
Collecting the above estimates and the fact
∫R3|t2ξ(s)∇3Γαv|2dx≲∫R3|t2ξ(s)∇ΔΓαv|2dx+∫R3|tξ(s)∇2Γαv|2dx, |
we complete the proof.
By Lemma 7, we obtain the following estimate.
Lemma 8. For any integer κ≥12 and multi-index α satisfying |α|≤[κ/2], there holds
⟨t⟩32‖∂Γαv‖L∞(R)≲E12[κ/2]+5(t), | (2.19) |
⟨t⟩2‖∂2Γαv‖L∞(R)≲E12[κ/2]+6(t). | (2.20) |
Proof. By the definition of ˜S and Lemma 7, we have
⟨t⟩2‖∂t∇2Γαv‖L2(R)≲‖⟨t−r⟩∂t∇2Γαv‖L2(R)+‖⟨t−r⟩∇2˜SΓαv‖L2(R)+‖⟨t−r⟩∇2Γαv‖L2(R)+⟨t⟩2‖∇3Γαv‖L2(R)≲E12[κ/2]+5(t). | (2.21) |
The inequalities (2.14), (2.21), and Lemma 7 yield that
⟨t⟩32‖∂Γαv‖L∞(R)≲⟨t⟩32‖∇(ξ(s)∂Γαv)‖12L2‖∇2(ξ(s)∂Γαv)‖12L2≲(‖ξ′(s)∂Γαv‖12L2+‖ξ(s)⟨t−r⟩∇∂Γαv‖12L2) (‖ξ″(s)∂Γαv‖12L2+‖ξ′(s)⟨t−r⟩∇∂Γαv‖12L2+⟨t⟩‖ξ(s)∇2∂Γαv‖12L2)≲E12[κ/2]+5(t). |
To consider (2.20), the definition of ˜S, combined with inequalities (2.14) and (2.21) and Lemmas 3 and 7, implies that
⟨t⟩2‖∂2tΓαv‖L∞(R)+⟨t⟩2‖∂∇Γαv‖L∞(R)≲⟨t⟩‖∂2tΓαv‖L∞(R)+⟨t⟩‖∂tΓαv‖L∞(R)+⟨t⟩‖∂t˜SΓαv‖L∞(R)+⟨t⟩‖r∂r∂tΓαv‖L∞(R)+⟨t⟩2‖∇(ξ(s)∂∇Γαv)‖12L2‖∇2(ξ(s)∂∇Γαv)‖12L2≲E12[κ/2]+4(t)+∑i,|ι|≤1‖⟨t−r⟩∂ir˜Ωι(ξ(s)∂r∂tΓαv)‖L2+(‖ξ′(s)⟨t−r⟩∂∇Γαv‖12L2+‖⟨t⟩2ξ(s)∂∇2Γαv‖12L2)⋅(‖ξ″(s)∂∇Γαv‖12L2+‖⟨t⟩ξ′(s)∂∇2Γαv‖12L2+‖⟨t⟩2ξ(s)∂∇3Γαv‖12L2)≲E12[κ/2]+6(t), |
which implies the desired.
Before concluding this section, we formulate the following two lemmas, which are utilized in the process of deriving energy estimates.
Lemma 9. For any integer κ≥12 and multi-index α satisfying |α|≤[κ/2], we have
⟨t⟩2‖ρ∂2tΓαv−ΔΓαv‖L∞≲E12[κ/2]+5(t). |
Proof. We separate two cases to consider this lemma. For the case x∈R, we use the Sobolev embedding inequality (2.14) to get
‖ξ(s)(ρ∂2tΓαv−ΔΓαv)‖L∞≲‖∇[ξ(s)(ρ∂2tΓαv−ΔΓαv)]‖12L2‖∇2[ξ(s)(ρ∂2tΓαv−ΔΓαv)]‖12L2. |
For the integer i satisfying 1≤i≤2, one has
⟨t⟩2‖∇i[ξ(s)(ρ∂2tΓαv−ΔΓαv)]‖L2≲∑j+k=i1≤j≤i⟨t⟩2‖∇jξ(s)∇k(ρ∂2tΓαv−ΔΓαv)‖L2+∑1≤i≤2⟨t⟩2‖ξ(s)∇i(ρ∂2tΓαv−ΔΓαv)‖L2. | (2.22) |
We estimate the first term on the right-hand side of (2.22) by
∑j+k=i1≤j≤i⟨t⟩2‖∇jξ(s)∇k(ρ∂2tΓαv−ΔΓαv)‖L2≲⟨t⟩‖ξ′(s)∇(ρ∂2tΓαv−ΔΓαv)‖L2+‖ρ∂2tΓαv−ΔΓαv‖L2≲E12[κ/2]+3(t). |
By (2.4), we solve the second term on the right-hand side of (2.22) as follows
∑1≤i≤2⟨t⟩2‖ξ(s)∇i(ρ∂2tΓαv−ΔΓαv)‖L2≲∑1≤i≤2j+k=i,1≤j⟨t⟩2‖ξ(s)∇j(∇X)−T∇k∇Γαp‖L2+∑1≤i≤2⟨t⟩2‖ξ(s)(∇X)−T∇i∇Γαp‖L2+∑β+γ=α,|β|≠|α| j+k=i,1≤i≤2⟨t⟩2‖ξ(s)∇jΓγη∂2t∇kΓβv‖L2+∑β+γ=α,|β|≠|α|1≤i≤2⟨t⟩2‖ξ(s)∇i[(∇X)−T(∇Γγv)T⋅(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]‖L2. | (2.23) |
For the first term on the right-hand side of (2.23), by Lemmas 3 and 4, we have
∑1≤i≤2j+k=i,1≤j⟨t⟩2‖ξ(s)∇j(∇X)−T∇k∇Γαp‖L2≲∑1≤i≤2j+k=i,1≤j⟨t⟩‖∇j(∇X)−T‖L∞(R)⟨t⟩‖∇k∇Γαp‖L2(R)≲X125(t)(E[κ/2]+5(t)+δE12[κ/2]+4(t)). |
Adopting the same method as was used in (2.17), we estimate the second term on the right-hand side of (2.23) by
∑1≤i≤2⟨t⟩2‖ξ(s)(∇X)−T∇i∇Γαp‖L2≲∑1≤i≤2⟨t⟩‖∇v‖L∞(R)(1+‖∇v‖L∞(R))⟨t⟩‖∇i∇Γαp‖L2(R)+∑1≤i≤2⟨t⟩2‖∇i∇Γαp‖L2(R)≲δE12[κ/2]+5(t)+E[κ/2]+5(t). |
For the third term on the right-hand side of (2.23), by the definition of ˜S and (2.6), we obtain
∑β+γ=α,|β|≠|α| j+k=i,1≤i≤2⟨t⟩2‖ξ(s)∇jΓγη∂2t∇kΓβv‖L2≲∑β+γ=α,|β|≠|α| j+k=i,1≤i≤2⟨t⟩(‖ξ(s)∇jΓγη∂2t∇kΓβv‖L2+‖ξ(s)∇jΓγηr∂r∂t∇kΓβv‖L2)+∑β+γ=α,|β|≠|α|1≤i≤2⟨t⟩‖ξ(s)∇iΓγη∂t˜SΓβv‖L2+∑β+γ=α,|β|≠|α| j+k=i,1≤k≤i≤2⟨t⟩(‖ξ(s)∇jΓγη∂t∇˜S∇k−1Γβv‖L2+‖ξ(s)∇jΓγη∂t∇kΓβv‖L2)≲∑β+γ=α,|β|≠|α| j+k=i,1≤i≤2‖⟨r⟩ξ(s)∇jΓγη‖L∞‖⟨t−r⟩∂t∂∇kΓβv‖L2(R)+∑β+γ=α,|β|≠|α|1≤i≤2‖∇iΓγη‖L2(R)⟨t⟩‖∂t˜SΓβv‖L∞(R)+∑β+γ=α,|β|≠|α| j+k=i,1≤k≤i≤2‖∇jΓγη‖L∞(R)(‖⟨t−r⟩∂t∇˜S∇k−1Γβv‖L2(R)+‖⟨t−r⟩∂t∇kΓβv‖L2(R))≲δE12[κ/2]+4(t). |
The last term on the right-hand side of (2.23) is estimated by
∑β+γ=α,|β|≠|α|1≤i≤2⟨t⟩2‖ξ(s)∇i[(∇X)−T(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]‖L2≲∑β+γ=α,|β|≠|α|1≤i≤2,j+k+l=i‖∇l(∇X)−T‖L∞(R)⟨t⟩‖∇j(∇Γγv)T‖L∞(R)‖⟨t−r⟩∇k(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)‖L2(R)≲E[κ/2]+5(t). |
We verify the case x∈Rc. By Lemmas 2 and 6, we have
⟨t⟩2‖ρ∂2tΓαv−ΔΓαv‖L∞(Rc)≲⟨t⟩‖⟨r⟩(1−ξ(s))(ρ∂2tΓαv−ΔΓαv)‖L∞≲∑i,|ι|≤1⟨t⟩‖∂ir˜Ωι[(1−ξ(s))(ρ∂2tΓαv−ΔΓαv)]‖L2≲∑i+j+k≤1|ι1|+|ι2|+|ι3|≤1≤j+|ι2|‖∂ir˜Ωι1(1−ξ(s))‖L∞(Rc)‖⟨r⟩∂jr˜Ωι2ρ‖L∞(Rc)‖∂kr˜Ωι3∂2tΓβv‖L2(Rc)+∑i+j≤1|ι1|+|ι2|≤1‖∂ir˜Ωι1(1−ξ(s))‖L∞(Rc)‖⟨t⟩(ρ∂2t∂jr˜Ωι2Γβv−Δ∂jr˜Ωι2Γβv)‖L2(Rc)≲E12[κ/2]+4(t). |
Collecting all of the estimates together, we justify the lemma.
Lemma 10. For any integer κ≥12 and multi-index α satisfying |α|≤[κ/2], one has
∑β+γ=α⟨t⟩2‖Γγη∂2tΓβv‖L∞≲δE12[κ/2]+4(t). |
Proof. We deduce from the definition of ˜S that
∑β+γ=αΓγη∂2tΓβv=∑β+γ=α11+t(Γγη∂2tΓβv+Γγη∂t˜SΓβv−Γγηr∂r∂tΓβv). |
By Lemma 2 and (2.6), one has
∑β+γ=α⟨t⟩2‖Γγη∂2tΓβv‖L∞≲∑β+γ=α‖Γγη‖L∞‖⟨r⟩⟨t−r⟩∂2tΓβv‖L∞+∑β+γ=α‖Γγη‖L∞⟨t⟩‖∂t˜SΓβv‖L∞+∑β+γ=α‖⟨r⟩Γγη‖L∞‖⟨r⟩⟨t−r⟩∂r∂tΓβv‖L∞≲δE12[κ/2]+4(t). |
This completes the proof.
This section is devoted to the energy estimates. For any integer κ≥12 and multi-index α∈N8 satisfying |α|≤κ−1, we apply Lemma 1 to the system (2.4)-(2.5) to get
sup0≤t≤T∫R3|∂Γαv|2(t)dx+LEκ(T)≤C0∫R3|∂Γαv|2(0)dx+C0∫T0∫R3[(|∂η|+|η|r12⟨r⟩12)|∂Γαv|(|∂Γαv|+|Γαv|r)]dxdt+C0|∫T0∫R3∂tΓαv⋅Nαdxdt|+C0supk≥0|∫T0∫R3fk(∂rΓαv+Γαvr)⋅Nαdxdt|. | (3.1) |
For the second term on the right-hand side of (3.1), by Lemma 2, one has
C0∫T0∫R3[(|∂η|+|η|r12⟨r⟩12)|∂Γαv|(|∂Γαv|+|Γαv|r)]dxdt≲∫T0(‖⟨r⟩r∂η‖L∞+‖⟨r⟩η‖L∞)‖r−14⟨r⟩−12|∂Γαv|‖L2‖r−14⟨r⟩−12(|∂Γαv|+|Γαv|r)‖L2dt≲∑i,j,k,|ι|≤1∫T0‖ri∂jr˜Ωι∂kη‖L2‖r−14⟨r⟩−12|∂Γαv|‖L2‖r−14⟨r⟩−12(|∂Γαv|+|Γαv|r)‖L2dt≲δLEκ(T). |
By utilizing (2.4), we formulate the third term on the right-hand side of (3.1) as follows
∫T0∫R3∂tΓαv⋅Nαdxdt=−∫T0∫R3∂tΓαv⋅(∇X)−T∇Γαpdxdt−∑β+γ=α|β|≠|α|Cβα∫T0∫R3∂tΓαv⋅Γγη∂2tΓβvdxdt−∑β+γ=α|β|≠|α|Cβα∫T0∫R3∂tΓαv⋅[(∇X)−T(∇Γγv)T(∂2tΓβv−ΔΓβv+∑ι1+ι2=βCι1βΓι2η∂2tΓι1v)]dxdt. | (3.2) |
We handle term by term on the right-hand side of (3.2). For the first term on the right-hand side of (3.2), since (∇X)−T is composed of elements of the form ∂lvj∂mvk, ∂jvj, ∂ivj and the constant 1, where j,k,l,m=1,2,3, it follows that
−∫T0∫R3∂tΓαv⋅(∇X)−T∇Γαpdxdt≲∑i,j,k,l,m,n=1,2,3i≠j≠k∫T0∫R3|∂tΓαvi∂lvj∂mvk∂nΓαp|dxdt+∑i,j=1,2,3i≠j∫T0∫R3|∂tΓαvi∂jvj∂iΓαp|dxdt+∑i,j=1,2,3i≠j∫T0∫R3|∂tΓαvi∂ivj∂jΓαp|dxdt+|∫T0∫R3∂tΓαv⋅∇Γαpdxdt|. | (3.3) |
For the first term on the right-hand side of (3.3), by (2.6) and Lemma 6, we have
−∑i,j,k,l,m,n=1,2,3i≠j≠k∫T0∫R3|∂tΓαvi∂lvj∂mvk∂nΓαp|dxdt≲∫T0⟨t⟩−2‖∂tΓαv‖L2⟨t⟩2‖∇v‖2L∞‖∇Γαp‖L2dt≲∫T0⟨t⟩−2Eκ(t)E[κ/2]+2(t)dt. |
To handle the second and third terms on the right-hand side of (3.3), we apply (2.11) and (2.19) to show
∑i,j=1,2,3i≠j∫T0∫R3|∂tΓαvi∂jvj∂iΓαp|dxdt+∑1,j=1,2,3i≠j∫T0∫R3|∂tΓαvi∂ivj∂jΓαp|dxdt≲∫T0⟨t⟩−32‖∂tΓαv‖L2(R)⟨t⟩32‖∇v‖L∞(R)‖∇Γαp‖L2(R)dt+∫T0⟨t⟩−2‖∂tΓαv‖L2(Rc)‖⟨r⟩(1−ξ(s))∇v‖L∞(Rc)⟨t⟩‖∇Γαp‖L2(Rc)dt≲∫T0⟨t⟩−32E32κ(t)dt. |
Along the same line, the last term on the right-hand side of (3.3) is estimated by
|∫T0∫R3∂tΓαv⋅∇Γαpdxdt|=|∫T0∫R3∂t(∇⋅Γαv)⋅Γαpdxdt|=|∫T0∫R3∇⋅[∑β+γ+ι=α∂tΓβv1(∂2Γγv2∂3Γιv3−∂3Γγv2∂2Γιv3∂3Γγv2∂1Γιv3−∂1Γγv2∂3Γιv3∂1Γγv2∂2Γιv3−∂2Γγv2∂1Γιv3)−∑β+γ=α(∂tΓβv1∂2Γγv2+∂tΓβv1∂3Γγv3−∂2Γβv1∂tΓγv2−∂3Γβv1∂tΓγv3−∂tΓβv1∂1Γγv2+∂tΓβv2∂3Γγv3+∂1Γβv1∂tΓγv2−∂3Γβv2∂tΓγv3−∂tΓβv2∂2Γγv3−∂tΓβv1∂1Γγv3+∂2Γβv2∂tΓγv3+∂1Γβv1∂tΓγv3)]Γαpdxdt|≲∑β+γ+ι=α|γ|,|ι|≤|β|∫T0‖∂Γβv‖L2‖∂Γγv‖L∞(1+‖∂Γιv‖L∞)‖∇Γαp‖L2dt≲∑β+γ+ι=α|γ|,|ι|≤|β|∫T0⟨t⟩−32‖∂Γβv‖L2(1+‖∂Γιv‖L∞)(⟨t⟩32‖∂Γγv‖L∞(R)‖∇Γαp‖L2(R)+‖⟨r⟩(1−ξ(s))∂Γγv‖L∞⟨t⟩‖∇Γαp‖L2(Rc))dt≲∫T0⟨t⟩−32Eκ(t)E12[κ/2]+3(t)dt. |
For the second term on the right-hand side of (3.2), by the definition of ˜S and (2.6), one has
−∑β+γ=α|β|≠|α|Cβα∫T0∫R3∂tΓαv⋅Γγη∂2tΓβvdxdt≲∑β+γ=α|γ|<|β|<|α|∫T0⟨t⟩−1‖r−14⟨r⟩−12|∂tΓαv|‖L2‖⟨r⟩Γγη‖L∞‖∂t˜SΓβv‖L2dt+∑β+γ=α|γ|<|β|<|α|∫T0⟨t⟩−2‖∂tΓαv‖L2‖⟨r⟩2Γγη‖L∞(‖⟨t−r⟩∂2tΓβv‖L2+‖⟨t−r⟩∂t∂rΓβv‖L2)dt+∑β+γ=α|β|≤|γ|∫T0⟨t⟩−2‖∂tΓαv‖L2‖⟨r⟩Γγη‖L2(⟨t⟩‖∂2tΓβv‖L∞+⟨t⟩‖∂t˜SΓβv‖L∞+⟨t⟩‖∂t∂rΓβv‖L∞)dt≲δLEκ(T)+δ∫T0⟨t⟩−2Eκ(t)dt. |
It is left to estimate the last term on the right-hand side of (3.2). Two cases are considered. By Lemmas 2, 4, and (2.6), we solve the case |\gamma| < |\beta| < |\alpha| by
\begin{align*} &-\sum\limits_{\beta+\gamma = \alpha\atop |\gamma| < |\beta| < |\alpha|} C_\alpha^\beta\int_0^T\int_{\mathbb{R}^3} \partial_t\Gamma^\alpha {\mathbf{v}}\cdot\big[(\nabla X)^{-T}(\nabla\Gamma^\gamma {\mathbf{v}})^T\big(\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta \Gamma^\beta {\mathbf{v}} +\sum\limits_{\iota_1+\iota_2 = \beta}C_\beta^{\iota_1}\Gamma^{\iota_2}\eta\partial_t^2\Gamma^{\iota_1} {\mathbf{v}}\big)\big]\; dxdt\notag\\ \lesssim\;&\sum\limits_{\beta+\gamma = \alpha\atop |\gamma| < |\beta| < |\alpha|}\int_0^T\langle t\rangle^{-2}\|\partial_t\Gamma^\alpha {\mathbf{v}}\|_{L^2}\langle t\rangle \|\nabla\Gamma^\gamma{\mathbf{v}} \|_{L^\infty}\langle t\rangle\|\rho\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta \Gamma^\beta {\mathbf{v}}\|_{L^2}\; dt\notag\\ &+\sum\limits_{\beta+\gamma = \alpha, \iota_1+\iota_2 = \beta\atop |\gamma| < |\beta| < |\alpha|, |\iota_1|\leq|\iota_2|}\int_0^T\langle t\rangle^{-2}\|\partial_t\Gamma^\alpha {\mathbf{v}}\|_{L^2}\langle t\rangle \|\nabla\Gamma^\gamma{\mathbf{v}} \|_{L^\infty}\|\Gamma^{\iota_2}\eta\|_{L^2}\|\langle r\rangle\langle t-r\rangle\partial_t^2\Gamma^{\iota_1}{\mathbf{v}}\|_{L^\infty}\; dt\notag\\ &+\sum\limits_{\beta+\gamma = \alpha, \iota_1+\iota_2 = \beta\atop |\gamma| < |\beta| < |\alpha|, |\iota_2| < |\iota_1|}\int_0^T \langle t\rangle^{-2}\|\partial_t\Gamma^\alpha {\mathbf{v}}\|_{L^2}\langle t\rangle \|\nabla\Gamma^\gamma{\mathbf{v}} \|_{L^\infty}\|\langle r\rangle\Gamma^{\iota_2}\eta\|_{L^\infty}\|\langle t-r\rangle\partial_t^2\Gamma^{\iota_1}{\mathbf{v}}\|_{L^2}\; dt\notag\\ \lesssim\;&\int_0^T\langle t\rangle^{-2}\mathcal{E}_\kappa^\frac32(t)\; dt. \end{align*} |
Utilizing Lemmas 9 and 10, we solve the case |\beta|\leq|\gamma| by
\begin{align*} &-\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\leq|\gamma|}C_\alpha^\beta\int_0^T\int_{\mathbb{R}^3} \partial_t\Gamma^\alpha {\mathbf{v}}\cdot\big[(\nabla X)^{-T}(\nabla\Gamma^\gamma {\mathbf{v}})^T(\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta \Gamma^\beta {\mathbf{v}} +\sum\limits_{\iota_1+\iota_2 = \beta}C_\beta^{\iota_1}\Gamma^{\iota_2}\eta\partial_t^2\Gamma^{\iota_1} {\mathbf{v}})\big]\; dxdt\notag\\ \lesssim\;&\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\leq|\gamma|}\int_0^T\langle t\rangle^{-2}\|\partial_t\Gamma^\alpha {\mathbf{v}}\|_{L^2}\|\nabla\Gamma^\gamma {\mathbf{v}}\|_{L^2 }\langle t\rangle^2\|\rho\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta \Gamma^\beta {\mathbf{v}}\|_{L^\infty}\; dt\notag\\ &+\sum\limits_{\beta+\gamma = \alpha, \iota_1+\iota_2 = \beta\atop |\beta|\leq|\gamma|}\int_0^T\langle t\rangle^{-2}\|\partial_t\Gamma^\alpha {\mathbf{v}}\|_{L^2}\|\nabla\Gamma^\gamma {\mathbf{v}}\|_{L^2}\langle t\rangle^{2}\| \Gamma^{\iota_2}\eta \partial_t^2\Gamma^{\iota_1}{\mathbf{v}}\|_{L^\infty}\; dt\notag\\ \lesssim\;&\int_0^T\langle t\rangle^{-2}\mathcal{E}_\kappa^\frac32(t) \; dt. \end{align*} |
By summing up the above estimates, we deduce that
\begin{align*} \Big| \int_0^T\int_{\mathbb{R}^3} \partial_t \Gamma^\alpha{\mathbf{v}}\cdot N^\alpha \;dxdt\Big|\lesssim\; \int_0^T\langle t\rangle^{-\frac32}\mathcal{E}_\kappa^\frac32(t)\; dt+\delta \int_0^T\langle t\rangle^{-\frac32}\mathcal{E}_\kappa (t)\; dt+ \delta L\mathcal{E}_\kappa(T). \end{align*} |
We continue to handle the last term on the right-hand side of (3.1). The identity (2.4) yields that
\begin{align} &\int_0^T\int_{\mathbb{R}^3} f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot N^\alpha \;dxdt \\ = &-\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\neq|\alpha|} C_\alpha^\beta \int_0^T\int_{\mathbb{R}^3}f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot\Gamma^\gamma \eta \partial_t^2\Gamma^\beta {\mathbf{v}}\; dxdt\\ &-\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\neq |\alpha|}C_\alpha^\beta\int_0^T\int_{\mathbb{R}^3} f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot\big[(\nabla X)^{-T}(\nabla\Gamma^\gamma {\mathbf{v}})^T\big(\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta \Gamma^\beta {\mathbf{v}} +\sum\limits_{\iota_1+\iota_2 = \beta}C_\beta^{\iota_1}\Gamma^{\iota_2}\eta\partial_t^2\Gamma^{\iota_1} {\mathbf{v}}\big)\big]\; dxdt\\ &-\int_0^T\int_{\mathbb{R}^3} f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot(\nabla X)^{-T}\nabla \Gamma^\alpha p\; dxdt. \end{align} | (3.4) |
We use Lemmas 9 and 10 to handle the first two terms on the right-hand side of (3.4) by
\begin{align*} &\sum\limits_{\beta+\gamma = \alpha\atop |\gamma| < |\beta| < |\alpha|}\int_0^T\langle t\rangle^{-1} \Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle^2\Gamma^\gamma\eta\|_{L^\infty}\|\langle t-r\rangle\partial_t^2\Gamma^\beta {\mathbf{v}}\|_{L^2}\; dt\notag\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\leq|\gamma| }\int_0^T\langle t\rangle^{-1} \Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle\Gamma^\gamma\eta\|_{L^2}\|\langle r\rangle\langle t-r\rangle\partial_t^2\Gamma^\beta {\mathbf{v}}\|_{L^\infty}\; dt\notag\\ & + \sum\limits_{\beta+\gamma = \alpha\atop |\gamma| < |\beta| < |\alpha|}\int_0^T \langle t\rangle^{-2} \Big\| |\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r} \Big\|_{L^2} \langle t\rangle\|\nabla\Gamma^\gamma {\mathbf{v}}\|_{L^\infty}\Big( \langle t\rangle\|\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta \Gamma^\beta {\mathbf{v}}\|_{L^2}\notag\\ &+\sum\limits_{\iota_1+\iota_2 = \beta} \|\langle r\rangle \langle t-r\rangle\Gamma^{\iota_2}\eta\partial_t^2\Gamma^{\iota_1} {\mathbf{v}}\big\|_{L^2}\Big)\; dt\notag\\ &+ \sum\limits_{\beta+\gamma = \alpha\atop |\beta|\leq|\gamma| }\int_0^T \langle t\rangle^{-2} \Big\| |\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r} \Big\|_{L^2} \|\nabla\Gamma^\gamma {\mathbf{v}}\|_{L^2}\Big(\langle t\rangle^2\|\ \rho\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta \Gamma^\beta {\mathbf{v}}\|_{L^\infty} \notag\\ &+\sum\limits_{\iota_1+\iota_2 = \beta} \langle t\rangle^2\|\Gamma^{\iota_2}\eta\partial_t^2\Gamma^{\iota_1} {\mathbf{v}}\|_{L^\infty}\Big)\; dt\notag\\ \lesssim\;& \delta L\mathcal{E}_\kappa(T)+\delta\int_0^T\langle t\rangle^{-2}\mathcal{E}_\kappa(t)\; dt+\int_0^T\langle t\rangle^{-2}\mathcal{E}_\kappa^\frac32(t)\; dt. \end{align*} |
We rewrite the last term on the right-hand side of (3.4) as follows
\begin{align} &-\int_0^T\int_{\mathbb{R}^3} f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot(\nabla X)^{-T}\nabla \Gamma^\alpha p\; dxdt\\ \lesssim & \sum\limits_{ i, j = 1, 2, 3\atop i\neq j}\int_0^T\int_{\mathbb{R}^3}\left(\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}_i+\frac{\Gamma^\alpha {\mathbf{v}}_i}{r}\Big) \partial_j {\mathbf{v}}_j\partial_i \Gamma^\alpha p\Big| + \Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}_i+\frac{\Gamma^\alpha {\mathbf{v}}_i}{r}\Big)\partial_i {\mathbf{v}}_j\partial_j \Gamma^\alpha p\Big|\right)\; dxdt\\ &+\sum\limits_{j, l, m, n, s = 1, 2, 3\atop i\neq j\neq l }\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}_i+\frac{\Gamma^\alpha {\mathbf{v}}_i}{r}\Big)\partial_m {\mathbf{v}}_j \partial_n {\mathbf{v}}_l\partial_s \Gamma^\alpha p\Big|\; dxdt+\Big|\int_0^T\int_{\mathbb{R}^3} f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big) \cdot\nabla\Gamma^\alpha p\; dxdt\Big|. \end{align} | (3.5) |
For the first two terms on the right-hand side of (3.5), the Lemma 6 and (2.19) imply that
\begin{align*} & \int_0^T \langle t\rangle^{-2} \Big\| |\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r} \Big\|_{L^2}\big(1+\|\nabla{\mathbf{v}}\|_{L^\infty}\big)\| \langle r\rangle(1-\xi(s))\nabla{\mathbf{v}}\|_{L^\infty} \langle t\rangle\|\nabla\Gamma^\alpha p\|_{L^2(\mathcal{R}^c)} \;dt \notag\\ &+ \int_0^T \langle t\rangle^{-\frac32}\Big\| |\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r} \Big\|_{L^2}\big(1+\|\nabla{\mathbf{v}}\|_{L^\infty}\big)\langle t\rangle^\frac32\| \nabla{\mathbf{v}}\|_{L^\infty(\mathcal{R})} \|\nabla\Gamma^\alpha p\|_{L^2(\mathcal{R})}\;dt \notag\\ \lesssim\;& \int_0^T\langle t\rangle^{-\frac32}\mathcal{E}_\kappa^\frac32(t)\; dt. \end{align*} |
We use (2.7) to formulate the last term on the right-hand side of (3.5) by
\begin{align} &\Big|\int_0^T\int_{\mathbb{R}^3} f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big) \cdot\nabla\Gamma^\alpha p\; dxdt\Big|\\ \lesssim\; &\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla\cdot\big[(\nabla {\mathbf{v}})^T\big(\rho \partial_t^2\Gamma^\alpha {\mathbf{v}}-\Delta\Gamma^\alpha {\mathbf{v}}\big)\big]\Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\neq|\alpha|}\int_0^T\int_{\mathbb{R}^3} \Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot\nabla\Delta^{-1}\nabla\cdot\big[(\nabla X)^T\Gamma^\gamma\eta \partial_t^2\Gamma^\beta {\mathbf{v}}\big]\Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\neq |\alpha|} \int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot\nabla\Delta^{-1}\nabla\cdot\big[(\nabla\Gamma^\gamma {\mathbf{v}})^T\big(\partial_t^2\Gamma^\beta {\mathbf{v}} -\Delta \Gamma^\beta {\mathbf{v}}+\sum\limits_{\iota_1+\iota_2 = \beta}C_\beta^{\iota_1}\Gamma^{\iota_2}\eta\partial_t^2\Gamma^{\iota_1} {\mathbf{v}}\big)\big]\Big|\; dxdt\\ & +\Big|\int_0^T\int_{\mathbb{R}^3} f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla\cdot\big(\rho \partial_t^2\Gamma^\alpha {\mathbf{v}}-\Delta\Gamma^\alpha {\mathbf{v}}\big)\;dxdt\Big|. \end{align} | (3.6) |
By (2.19) and Lemma 6, we estimate the first term on the right-hand side of (3.6) by
\begin{align} &\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla\cdot\big[(\nabla {\mathbf{v}})^T\big(\rho \partial_t^2\Gamma^\alpha {\mathbf{v}}-\Delta\Gamma^\alpha {\mathbf{v}}\big)\big]\Big|\; dxdt\\ \lesssim\;&\int_0^T\langle t\rangle^{-\frac32}\Big\| | \partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2 }\langle t\rangle^\frac32\|\nabla {\mathbf{v}}\|_{L^\infty(\mathcal{R})} \|\rho \partial_t^2\Gamma^\alpha {\mathbf{v}}-\Delta\Gamma^\alpha {\mathbf{v}}\|_{L^2(\mathcal{R})}\; dt\\ &+\int_0^T\langle t\rangle^{-2}\Big\| |\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r} \Big\|_{L^2}\|\langle r\rangle(1-\xi(s))\nabla {\mathbf{v}}\|_{L^\infty}\ \langle t\rangle\big\|\rho \partial_t^2\Gamma^\alpha {\mathbf{v}}-\Delta\Gamma^\alpha {\mathbf{v}}\big\|_{L^2(\mathcal{R}^c)}\; dt\\ \lesssim\;& \int_0^T\langle t\rangle^{-\frac32}\mathcal{E}_\kappa^\frac32(t)\; dt. \end{align} | (3.7) |
The second and third terms on the right-hand side of (3.6) can be solved using the same method employed by the first two terms of (3.4).
For the last term on the right-hand side of (3.6), we observe that
\begin{align} &\Big| \int_0^T\int_{\mathbb{R}^3} f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla\cdot\Big(\rho \partial_t^2\Gamma^\alpha {\mathbf{v}}-\Delta\Gamma^\alpha {\mathbf{v}}\Big)\; dxdt\Big|\\ \lesssim\;&\Big|\int_0^T\int_{\mathbb{R}^3} f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\rho \partial_t^2\nabla\cdot\Gamma^\alpha {\mathbf{v}}-\Delta\nabla\cdot\Gamma^\alpha {\mathbf{v}}\Big)\; dxdt\Big|\\ &+ \int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \partial_t^2\Gamma^\alpha {\mathbf{v}}\Big)\Big|\; dxdt. \end{align} | (3.8) |
In view of (2.5), we write the first term on the right-hand side of (3.8) by
\begin{align} &\sum\limits_{i, j = 1, 2, 3\atop i\neq j}\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla\cdot\Big[\Big(\rho\partial_t^2\Gamma^\alpha {\mathbf{v}}_i-\Delta\Gamma^\alpha {\mathbf{v}}_i\Big)\partial {\mathbf{v}}_j\Big]\Big|\; dxdt\\ &+\sum\limits_{i, j, l = 1, 2, 3\atop i\neq j\neq l}\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla\cdot\Big[\Big(\rho\partial_t^2\Gamma^\alpha {\mathbf{v}}_i-\Delta\Gamma^\alpha {\mathbf{v}}_i\Big)\partial {\mathbf{v}}_j\partial {\mathbf{v}}_l\Big]\Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma+\iota = \alpha, |\beta|\neq|\alpha|\atop i, j, l = 1, 2, 3, i\neq j\neq l}\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla\cdot\Big(\partial^2\Gamma^\beta {\mathbf{v}}_i\partial\Gamma^\gamma {\mathbf{v}}_j \partial\Gamma^\iota {\mathbf{v}}_l\Big)\Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma+\iota = \alpha, |\beta|\neq|\alpha|\atop i, j, l = 1, 2, 3, i\neq j\neq m}\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\partial\eta\partial^2\Gamma^\beta {\mathbf{v}}_i\partial\Gamma^\gamma {\mathbf{v}}_j \partial\Gamma^\iota {\mathbf{v}}_l\Big)\Big|\; dxdt\\ & +\sum\limits_{\beta+\gamma = \alpha, |\beta|\neq|\alpha|\atop i, j = 1, 2, 3, i\neq j}\Big|\int_0^T\int_{\mathbb{R}^3} f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla\cdot\Big(\partial^2\Gamma^\beta {\mathbf{v}}_i\partial\Gamma^\gamma {\mathbf{v}} _j \Big)\; dxdt\Big|\\ &+\sum\limits_{\beta+\gamma = \alpha, |\beta|\neq|\alpha|\atop i, j = 1, 2, 3, i\neq j}\int_0^T\int_{\mathbb{R}^3} \Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\partial\eta\partial^2\Gamma^\beta {\mathbf{v}}_i\partial\Gamma^\gamma {\mathbf{v}}_j \Big)\Big|\; dxdt. \end{align} | (3.9) |
The first two terms on the right-hand side of (3.9) are dealt with by the same method as (3.7). By (2.6), the third and fourth terms on the right-hand side of (3.9) are estimated by
\begin{align*} &\int_0^T \langle t\rangle^{-2} \Big\||\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2}(1+\|\nabla\eta\|_{L^3}) \Big(\sum\limits_{\beta+\gamma+\iota = \alpha\atop |\gamma|, |\iota| < |\beta| < |\alpha| }\|\partial^2\Gamma^\beta {\mathbf{v}}\|_{L^2}\langle t\rangle \|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^\infty} \langle t\rangle \|\partial\Gamma^\iota {\mathbf{v}}\|_{L^\infty}\notag\\ &+\sum\limits_{\beta+\gamma+\iota = \alpha\atop |\beta|, |\iota|\leq|\gamma| }\langle t\rangle\| \partial^2\Gamma^\beta {\mathbf{v}}\|_{L^\infty}\|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^2}\langle t\rangle \|\partial\Gamma^\iota {\mathbf{v}}\|_{L^\infty} +\sum\limits_{\beta+\gamma+\iota = \alpha\atop |\beta|, |\gamma|\leq|\iota| }\langle t\rangle\| \partial^2\Gamma^\beta {\mathbf{v}}\|_{L^\infty}\langle t\rangle \|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^\infty} \|\partial\Gamma^\iota {\mathbf{v}}\|_{L^2}\Big)\;dt\notag\\ \lesssim\;&\int_0^T \langle t\rangle^{-2}\mathcal{E}_\kappa^\frac32(t)\; dt. \end{align*} |
To consider the fifth term on the right-hand side of (3.9), we separate two cases to consider it. For the case x\in \mathcal{R} , by (2.20), we have
\begin{align*} & \sum\limits_{\beta+\gamma = \alpha, |\beta|\neq|\alpha|\atop i, j = 1, 2, 3, i\neq j}\Big|\int_0^T\int_{\mathbb{R}^3} \xi(s) f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla\cdot\Big(\partial^2\Gamma^\beta {\mathbf{v}}_i\partial\Gamma^\gamma {\mathbf{v}} _j \Big)\; dxdt\Big|\notag\\ \lesssim\;&\sum\limits_{\beta+\gamma = \alpha, |\beta|\neq|\alpha|\atop i, j = 1, 2, 3, i\neq j}\int_0^T \Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle t-r\rangle\partial^2\Gamma^\beta {\mathbf{v}}_i\partial\Gamma^\gamma {\mathbf{v}} _j \|_{L^2}\; d t\notag\\ \lesssim\;&\sum\limits_{\beta+\gamma = \alpha \atop |\gamma| < |\beta| < |\alpha|}\int_0^T \langle t\rangle^{-1} \Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle t-r\rangle\partial^2\Gamma^\beta {\mathbf{v}}\|_{L^2}\langle t\rangle \|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^\infty}\; dt\notag\\ &+\sum\limits_{\beta+\gamma = \alpha \atop |\beta|\leq|\gamma|}\int_0^T \langle t\rangle^{-1} \Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\Big(\|\langle r\rangle\langle t-r\rangle(1-\xi(s))\partial^2\Gamma^\beta {\mathbf{v}}\|_{L^\infty }\notag\\ &+\langle t\rangle^2\|\partial^2\Gamma^\beta {\mathbf{v}}\|_{L^\infty(\mathcal{R})}\Big) \|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^2}\; dt\notag\\ \lesssim\;& \sup\limits_{0\leq t\leq T} \mathcal{E}_\kappa^\frac12(t)L\mathcal{E}_\kappa(T)+\int_0^T\langle t\rangle^{-2}\mathcal{E}_\kappa^\frac32(t)\; dt. \end{align*} |
To consider the case x\in \mathcal{R}^c , we use the integration by parts to get
\begin{align} & \sum\limits_{\beta+\gamma = \alpha, |\beta|\neq|\alpha|\atop i, j = 1, 2, 3, i\neq j}\Big|\int_0^T\int_{\mathbb{R}^3} [1-\xi(s)] f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla\cdot\Big(\partial^2\Gamma^\beta {\mathbf{v}}_i\partial\Gamma^\gamma {\mathbf{v}} _j \Big)\; dxdt\Big|\\ \lesssim& \sum\limits_{\beta+\gamma = \alpha, |\beta|\neq|\alpha|\atop i, j = 1, 2, 3, i\neq j}\Big|\int_0^T\int_{\mathbb{R}^3} \nabla\cdot\Big[[1-\xi(s)] f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\Big]\cdot \Delta^{-1}\nabla\cdot\Big(\partial^2\Gamma^\beta {\mathbf{v}}_i\partial\Gamma^\gamma {\mathbf{v}} _j \Big)\; dxdt\Big|\\ \lesssim\;& \sum\limits_{\beta+\gamma = \alpha, |\beta|\neq|\alpha|\atop i, j = 1, 2, 3, i\neq j}\int_0^T \langle t\rangle^{-1}\Big\||\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2}\Big\| \Delta^{-1}\nabla\cdot\Big(\partial^2\Gamma^\beta {\mathbf{v}}_i\partial\Gamma^\gamma {\mathbf{v}} _j \Big)\Big\|_{L^2}\; dt\\ &+ \sum\limits_{\beta+\gamma = \alpha, |\beta|\neq|\alpha|\atop i, j = 1, 2, 3, i\neq j}\int_0^T \|\nabla\cdot\Gamma^\alpha {\mathbf{v}}\|_{L^2} \|\partial^2\Gamma^\beta {\mathbf{v}}_i\partial\Gamma^\gamma {\mathbf{v}} _j \|_{L^2}\;dt. \end{align} | (3.10) |
For the first term on the right-hand side of (3.10), we have
\begin{align*} & \sum\limits_{\beta+\gamma = \alpha, |\beta|\neq|\alpha|\atop i, j = 1, 2, 3, i\neq j}\int_0^T \langle t\rangle^{-1}\Big\||\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2}\Big\| \Delta^{-1}\nabla\cdot\Big(\partial^2\Gamma^\beta {\mathbf{v}}_i\partial\Gamma^\gamma {\mathbf{v}} _j \Big)\Big\|_{L^2}\; dt\notag\\ \lesssim\;& \sum\limits_{\beta+\gamma = \alpha\atop |\beta|\leq|\gamma| }\int_0^T \langle t\rangle^{-\frac43}\Big\||\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2 } \langle t\rangle^\frac13\| \partial^2\Gamma^\beta {\mathbf{v}}\|_{L^\infty}^\frac13\|\partial^2\Gamma^\beta {\mathbf{v}}\|_{L^2}^\frac23\|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^2 }\;dt\notag\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\gamma| < |\beta| < |\alpha| }\int_0^T \langle t\rangle^{-\frac43}\Big\||\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2 }\| \partial^2\Gamma^\beta {\mathbf{v}}\|_{L^2}\|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^2}^\frac23 \langle t\rangle^\frac13\|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^\infty}^\frac13\; dt\notag\\ \lesssim\;&\int_0^T\langle t\rangle^{-\frac43}\mathcal{E}_\kappa^\frac32(t)\; dt. \end{align*} |
We use (2.5) to estimate the second term on the right-hand side of (3.10) by
\begin{align*} &\sum\limits_{\beta+\gamma = \alpha, |\beta|\neq|\alpha|\atop i, j = 1, 2, 3, i\neq j}\int_0^T \|\nabla\cdot\Gamma^\alpha {\mathbf{v}}\|_{L^2} \|\partial^2\Gamma^\beta {\mathbf{v}}_i\partial\Gamma^\gamma {\mathbf{v}} _j \|_{L^2}\;dt\notag\\ \lesssim&\sum\limits_{\beta+\gamma = \alpha, \tilde\beta+\tilde\gamma +\tilde\iota = \alpha\atop |\beta|\leq|\gamma|, |\tilde\gamma|, |\tilde\iota| |\leq|\tilde\beta|}\int_0^T\langle t\rangle^{-2} \|\partial\Gamma^{\tilde\beta}{\mathbf{v}}\|_{L^2}\langle t\rangle\|\partial\Gamma^{\tilde\gamma} {\mathbf{v}}\|_{L^\infty} (1+\|\partial\Gamma^{\tilde\iota} {\mathbf{v}}\|_{L^\infty})\langle t\rangle\|\partial^2\Gamma^\beta {\mathbf{v}}\|_{L^\infty} \|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^2}\; dt\notag\\ &+\sum\limits_{\beta+\gamma = \alpha, \tilde\beta+\tilde\gamma +\tilde\iota = \alpha\atop |\gamma| < |\beta| < |\alpha|, |\tilde\gamma|, |\tilde\iota|\leq|\tilde\beta|}\int_0^T\langle t\rangle^{-2} \|\partial\Gamma^{\tilde\beta}{\mathbf{v}}\|_{L^2}\langle t\rangle\|\partial\Gamma^{\tilde\gamma} {\mathbf{v}}\|_{L^\infty} (1+\|\partial\Gamma^{\tilde\iota} {\mathbf{v}}\|_{L^\infty})\|\partial^2\Gamma^\beta {\mathbf{v}}\|_{L^2} \langle t\rangle \|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^\infty}\; dt\notag\\ \lesssim\;&\int_0^T\langle t\rangle^{-2}\mathcal{E}_\kappa^2(t)\; dt. \end{align*} |
For the last term on the right-hand side of (3.9), it follows from the Sobolev embedding inequality, (2.6), and (2.19), that
\begin{align*} &\sum\limits_{\beta+\gamma = \alpha, |\beta|\neq|\alpha| \atop i, j = 1, 2, 3, i\neq j}\int_0^T\int_{\mathbb{R}^3} \Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\partial\eta\partial^2\Gamma^\beta {\mathbf{v}}_i\partial\Gamma^\gamma {\mathbf{v}}_j \Big)\Big|\; dxdt\notag\\ \lesssim\;&\sum\limits_{\beta+\gamma = \alpha\atop |\gamma| < |\beta| < |\alpha|}\int_0^T\langle t\rangle^{-2}\Big\|| \partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2}\|\langle r\rangle\nabla\eta\|_{L^3}\|\langle t-r\rangle\partial^2\Gamma^\beta {\mathbf{v}}\|_{L^2} \langle t\rangle\|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^\infty}\;dt \notag\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\leq|\gamma|}\int_0^T\langle t\rangle^{-\frac32}\Big\|| \partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2}\|\partial\Gamma^\gamma {\mathbf{v}}\|_{L^2}\Big(\| \nabla\eta\|_{L^3(\mathcal{R})}\langle t\rangle^\frac32\| \partial^2\Gamma^\beta {\mathbf{v}}\|_{L^\infty(\mathcal{R})} \notag\\ & +\|\langle r\rangle(1-\xi(s))\nabla\eta\|_{L^3}\|\langle r\rangle(1-\xi(s))\partial^2\Gamma^\beta {\mathbf{v}}\|_{L^\infty}\Big) \; dt\notag\\ \lesssim\;&\int_0^T\langle t\rangle^{-\frac32}\mathcal{E}_\kappa^\frac32(t)\; dt. \end{align*} |
To solve the second term on the right-hand side of (3.8), we rewrite it as follows
\begin{align} &\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \partial_t^2\Gamma^\alpha{\mathbf{v}} \Big)\Big|\; dxdt\\ \lesssim\;&\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \partial_t^2\nabla\Delta^{-1}\nabla\cdot\Gamma^\alpha{\mathbf{v}} \Big)\Big|\; dxdt\\ &+\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \partial_t^2\nabla^\bot\Delta^{-1}\nabla^\bot\cdot\Gamma^\alpha{\mathbf{v}} \Big)\Big|\; dxdt. \end{align} | (3.11) |
In view of (2.5), we formulate the first term on the right-hand side of (3.11) by
\begin{align} &\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \partial_t^2\nabla\Delta^{-1}\nabla\cdot\Gamma^\alpha{\mathbf{v}} \Big)\Big|\; dxdt\\ \lesssim\;&\sum\limits_{\beta+\gamma = \alpha\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \partial_t^2\nabla\Delta^{-1}\big(\partial_l\Gamma^\beta {\mathbf{v}}_i\partial_m\Gamma^\gamma {\mathbf{v}}_j\big)\Big)\Big|\; dxdt\\ &+ \sum\limits_{\beta+\gamma+\iota = \alpha\atop i, j, l = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1} \Big(\nabla\eta\cdot \partial_t^2\nabla\Delta^{-1} \big(\partial_i\Gamma^\beta{\mathbf{v}}_1\partial_j\Gamma^\gamma {\mathbf{v}}_2\partial_l\Gamma^\iota {\mathbf{v}}_3\big) \Big)\Big|\; dxdt. \end{align} | (3.12) |
Since the second term has analogous estimates to the first term of (3.12), it suffices to concentrate on the first term. We observe that
\begin{align} &\sum\limits_{\beta+\gamma = \alpha\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \partial_t^2\nabla\Delta^{-1}\big(\partial_l\Gamma^\beta {\mathbf{v}}_i\partial_m\Gamma^\gamma {\mathbf{v}}_j\big)\Big)\Big|\; dxdt\\ \lesssim\;&\sum\limits_{\beta+\gamma = \alpha \atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1}\big(\partial_t^2\partial_l\Gamma^\beta {\mathbf{v}}_i\partial_m\Gamma^\gamma {\mathbf{v}}_j\big)\Big) \Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma = \alpha \atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1}(\partial_t\partial_l\Gamma^\beta {\mathbf{v}}_i\partial_t\partial_m\Gamma^\gamma {\mathbf{v}}_j)\Big) \Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma = \alpha \atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1}(\partial_l\Gamma^\beta {\mathbf{v}}_i\partial_t^2\partial_m\Gamma^\gamma {\mathbf{v}}_j)\Big) \Big|\; dxdt. \end{align} | (3.13) |
Here, we restrict our analysis to the first term on the right-hand side of (3.13), as the remaining two terms have similar estimates.
\begin{align} &\sum\limits_{\beta+\gamma = \alpha \atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1}\big(\partial_t^2\partial_l\Gamma^\beta {\mathbf{v}}_i\partial_m\Gamma^\gamma {\mathbf{v}}_j\big)\Big) \Big|\; dxdt\\ \lesssim\;&\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1}\big(\partial_t^2\Gamma^\beta{\mathbf{v}}_i\partial_l\partial_m \Gamma^\gamma {\mathbf{v}}_j\big)\Big) \Big|\; dxdt\\ &+\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1}\partial_l\big(\partial_t^2\Gamma^\beta {\mathbf{v}}_i\partial_m\Gamma^\gamma {\mathbf{v}}_j\big)\Big) \Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma = \alpha, |\beta|\leq |\gamma|\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1}\big(\partial_t^2\partial_l\Gamma^\beta {\mathbf{v}}_i\partial_m\Gamma^\gamma {\mathbf{v}}_j\big)\Big)\Big|\; dxdt. \end{align} | (3.14) |
For the first term on the right-hand side of (3.14), we deduce from (2.4) that
\begin{align} & \sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1}\big(\partial_t^2\Gamma^\beta{\mathbf{v}}_i\partial_l\partial_m\Gamma^\gamma {\mathbf{v}}_j\big)\Big) \Big|\; dxdt\\ \lesssim\;& \sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1}\big(\rho^{-1}\Delta\Gamma^\beta {\mathbf{v}}_i\partial_l\partial_m \Gamma^\gamma {\mathbf{v}}_j\big)\Big)\Big|\; dxdt\\ &+ \sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1} \big(\rho^{-1} N_i^\beta\partial_l\partial_m\Gamma^\gamma {\mathbf{v}}_j\big)\Big) \Big|\; dxdt. \end{align} | (3.15) |
We formulate the first term on the right-hand side of (3.15) as follows
\begin{align} &\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m, n = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla\Big(\eta \nabla\Delta^{-1}\partial_n\big(\rho^{-1} \partial_n\Gamma^\beta {\mathbf{v}}_i\partial_l\partial_m \Gamma^\gamma {\mathbf{v}}_j\big)\Big) \Big|\; dxdt\\ &+\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m, n = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\partial_n \Big( \rho^{-1}\eta \partial_n\Gamma^\beta {\mathbf{v}}_i\partial_l\partial_m \Gamma^\gamma {\mathbf{v}}_j \Big) \Big|\; dxdt\\ &+\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m, n = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla\Big(\eta \nabla\Delta^{-1} \big[ \partial_n\Gamma^\beta {\mathbf{v}}_i\partial_n\big(\rho^{-1}\partial_l\partial_m \Gamma^\gamma{\mathbf{v}}_j\big)\big]\Big)\Big|\; dxdt\\ &+\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m, n = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1} \Big(\rho^{-1}\partial_n\eta \partial_n\Gamma^\beta {\mathbf{v}}_i\partial_l\partial_m \Gamma^\gamma {\mathbf{v}}_j\Big) \Big|\; dxdt\\ &+\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m, n = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1} \Big(\eta \partial_n\Gamma^\beta {\mathbf{v}}_i\partial_n\big(\rho^{-1}\partial_l \partial_m \Gamma^\gamma{\mathbf{v}}_j\big)\Big)\Big|\; dxdt. \end{align} | (3.16) |
The first three terms on the right-hand side of (3.16) can be estimated by
\begin{align*} &\sum\limits_{ \beta+\gamma = \alpha\atop |\gamma| < |\beta| }\int_0^T\langle t\rangle^{-1}\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle \eta \|_{L^\infty}\|\nabla\Gamma^\beta {\mathbf{v}}\|_{L^2}\langle t\rangle\|\nabla^2\Gamma^\gamma{\mathbf{v}}\|_{L^\infty}\; dt\notag\\ &+\sum\limits_{ \beta+\gamma = \alpha\atop |\gamma| < |\beta| }\int_0^T\langle t\rangle^{-1}\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle\eta\|_{L^3}\|\nabla\Gamma^\beta {\mathbf{v}}\|_{L^2}\langle t\rangle\|\nabla\big(\rho^{-1}\nabla^2\Gamma^\gamma {\mathbf{v}}\big)\|_{L^\infty}\;dt\notag\\ \lesssim\;& \delta L\mathcal{E}_\kappa(T)+\int_0^T \langle t\rangle^{-2}\mathcal{E}_\kappa^2(t)\; dt. \end{align*} |
We utilize (2.19) to solve the last two terms on the right-hand side of (3.16) by
\begin{align*} &\sum\limits_{ \beta+\gamma = \alpha\atop |\gamma| < |\beta| }\int_0^T\langle t\rangle^{-\frac32}\Big\||\partial_r\Gamma^\beta {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2}\|\nabla\Gamma^\beta {\mathbf{v}}\|_{L^2}\Big(\|\langle r\rangle(1-\xi(s))\nabla\eta\|_{L^3}\|\langle r\rangle(1-\xi(s))\nabla^2\Gamma^\gamma{\mathbf{v}}\|_{L^\infty}\notag\\ &+\| \nabla\eta\|_{L^3(\mathcal{R})}\langle t\rangle^{\frac32} \|\nabla^2\Gamma^\gamma{\mathbf{v}}\|_{L^\infty(\mathcal{R})}+\|\langle r\rangle(1-\xi(s))\eta\|_{L^3}\|\langle r\rangle(1-\xi(s))\nabla\big(\rho^{-1}\nabla^2\Gamma^\gamma {\mathbf{v}}\big)\|_{L^\infty}\notag\\ &+\|\eta\|_{L^3(\mathcal{R})}\langle t\rangle^{\frac32}\| \nabla\big(\rho^{-1}\nabla^2 \Gamma^\gamma{\mathbf{v}}_j\big)\|_{L^\infty(\mathcal{R})}\Big)\; dt\notag\\ \lesssim\;&\int_0^T \langle t\rangle^{-\frac32}\mathcal{E}_\kappa^\frac32(t)\; dt. \end{align*} |
Along the same line, the second term on the right-hand side of (3.15) can be handled by
\begin{align*} &\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \nabla\Delta^{-1} \big(\rho^{-1} N_i^\beta\partial_l\partial_m \Gamma^\gamma{\mathbf{v}}_j\big)\Big) \Big|\; dxdt\notag\\ \lesssim\;&\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla\Big(\eta\cdot \nabla\Delta^{-1} \big(\rho^{-1} N_i^\beta\partial_l\partial_m \Gamma^\gamma {\mathbf{v}}_j\big)\Big) \Big|\; dxdt\notag\\ & +\sum\limits_{ \beta+\gamma = \alpha, |\gamma| < |\beta|\atop i, j, l, m = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3}\Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1} \Big(\rho^{-1}\eta N_i^\beta\partial_l \partial_m \Gamma^\gamma {\mathbf{v}}_j \Big) \Big|\; dxdt\notag\\ \lesssim\;&\sum\limits_{ \beta+\gamma = \alpha\atop |\gamma| < |\beta| }\int_0^T\langle t\rangle^{-1}\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle \eta\|_{L^3}\|N^\beta\|_{L^2}\langle t\rangle\|\nabla^2\Gamma^\gamma{\mathbf{v}}\|_{L^\infty}\; dt\notag\\ &+\sum\limits_{ \beta+\gamma = \alpha\atop |\gamma| < |\beta| }\int_0^T\langle t\rangle^{-2}\Big\||\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2}\|N^\beta\|_{L^2}\|\langle r\rangle(1-\xi(s)) \eta\|_{L^3}\|\langle r\rangle(1-\xi(s))\nabla^2\Gamma^\gamma{\mathbf{v}}\|_{L^\infty}\; dt \notag\\ &+\sum\limits_{ \beta+\gamma = \alpha\atop |\gamma| < |\beta| }\int_0^T\langle t\rangle^{-\frac32}\Big\||\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big\|_{L^2}\|N^\beta\|_{L^2}\| \eta\|_{L^3(\mathcal{R})}\langle t\rangle^{\frac32}\| \nabla^2\Gamma^\gamma{\mathbf{v}}\|_{L^\infty(\mathcal{R})}\; dt\notag\\ \lesssim\;& \delta L\mathcal{E}_\kappa(T)+\int_0^T \langle t\rangle^{-\frac32}\mathcal{E}_\kappa^2(t)\; dt. \end{align*} |
The same estimates hold for the last two terms on the right-hand side of (3.14).
Applying (2.4), we formulate the second term on the right-hand side of (3.11) as follows
\begin{align} &\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\Big(\nabla\eta\cdot \partial_t^2\nabla^\bot\Delta^{-1}\nabla^\bot\cdot\Gamma^\alpha{\mathbf{v}} \Big)\Big|\; dxdt\\ = \;&\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta\cdot \partial_t^2\Delta^{-1}\nabla^\bot\cdot\Gamma^\alpha{\mathbf{v}} \Big)\Big|\; dxdt\\ \lesssim\;&\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \nabla^\bot\cdot\Gamma^\alpha {\mathbf{v}}\Big)\Big|\; dxdt\\ &+\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot\big[(\nabla X)^{-T}\nabla\Gamma^\alpha p\big]\Big)\Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma = \alpha}\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot \big(\Gamma^\gamma \eta \partial_t^2\Gamma^\beta {\mathbf{v}}\big)\Big)\Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\neq|\alpha|}\int_0^T\int_{\mathbb{R}^3} \Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot \big[C_\alpha^\beta(\nabla X)^{-T}(\nabla\Gamma^\gamma {\mathbf{v}})^T\\ &\cdot\big(\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta\Gamma^\beta {\mathbf{v}}+\sum\limits_{\iota_1+\iota_2 = \beta}C_{\beta}^{\iota_1}\Gamma^{\iota_2}\eta\partial_t^2\Gamma^{\iota_1}{\mathbf{v}} \big)\big]\Big)\Big|\; dxdt. \end{align} | (3.17) |
The first term on the right-hand side of (3.17) is solved by
\begin{align*} &\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \nabla^\bot\cdot\Gamma^\alpha {\mathbf{v}}\Big)\Big|\; dxdt\notag\\ \lesssim\;&\int_0^T\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle^2\nabla\eta \|_{L^\infty}\big\|r^{-\frac14}\langle r\rangle^{-\frac12}|\nabla\Gamma^\alpha {\mathbf{v}}|\big\|_{L^2}\; dt\notag\\ \lesssim\;&\delta L\mathcal{E}_\kappa(T). \end{align*} |
The calculations in (2.12) imply that
\begin{align} &\|\nabla\Gamma^\alpha p\|_{L^2}+\|\rho\partial_t^2 \Gamma^\alpha {\mathbf{v}}-\Delta \Gamma^\alpha {\mathbf{v}}\|_{L^2 }\\ \lesssim\;&\sum\limits_{\beta+\gamma = \alpha}\langle t\rangle^{-1}\|\langle r\rangle\langle t-r\rangle|\partial^2\Gamma^\beta {\mathbf{v}}||\partial\Gamma^\gamma {\mathbf{v}}|\|_{L^2}+\sum\limits_{\beta+\gamma+\iota = \alpha}\langle t\rangle^{-1}\|\langle r\rangle\langle t-r\rangle|\partial^2\Gamma^\beta {\mathbf{v}}||\partial\Gamma^\gamma {\mathbf{v}}||\partial\Gamma^\iota{\mathbf{v}}|\|_{L^2}\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\neq|\alpha|}\langle t\rangle^{-1}\|\langle r\rangle\langle t-r\rangle|\Gamma^\gamma\eta||\partial_t^2\Gamma^\beta {\mathbf{v}}|\|_{L^2}+\sum\limits_{1\leq \iota\leq 3}\|\langle r\rangle\nabla^\iota\eta \|_{L^\infty}\big\| r^{-\frac14}\langle r\rangle^{-\frac12}|\nabla\Gamma^\alpha {\mathbf{v}}|\big\|_{L^2}\\ &+ \sum\limits_{\beta+\gamma = \alpha\atop |\gamma| < |\beta| < |\alpha|} \langle t\rangle^{-1}\| \langle r\rangle \nabla\Gamma^\gamma {\mathbf{v}}\|_{L^\infty }\big\|\langle t-r\rangle(\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta \Gamma^\beta {\mathbf{v}} + \sum\limits_{\iota_1+\iota_2 = \beta}C_\beta^{\iota_1}\Gamma^{\iota_2}\eta\partial_t^2\Gamma^{\iota_1} {\mathbf{v}})\big\|_{L^2 } \\ & + \sum\limits_{\beta+\gamma = \alpha\atop |\beta|\leq|\gamma|} \langle t\rangle^{-1} \|\nabla\Gamma^\gamma {\mathbf{v}}\|_{L^2 }\big\| \langle r\rangle \langle t-r\rangle( \partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta \Gamma^\beta {\mathbf{v}} + \sum\limits_{\iota_1+\iota_2 = \beta}C_\beta^{\iota_1}\Gamma^{\iota_2}\eta\partial_t^2\Gamma^{\iota_1} {\mathbf{v}})\big\|_{L^\infty }. \end{align} | (3.18) |
Substituting (3.18) into the second term on the right-hand side of (3.17), we have
\begin{align} &\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot[(\nabla X)^{-T}\nabla\Gamma^\alpha p]\Big)\Big|\; dxdt\\ \lesssim\;&\sum\limits_{i, j, l, m, n = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3} f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot\big(\partial_l {\mathbf{v}}_i\partial_m {\mathbf{v}}_j\partial_n\Gamma^\alpha p\big)\Big)\; dxdt\\ &+\sum\limits_{i, j, l = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3} f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot\big( \partial_j {\mathbf{v}}_i\partial_l\Gamma^\alpha p\big)\Big)\; dxdt\\ \lesssim\;& \int_0^T\langle t\rangle^{-1}\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle \nabla\eta\|_{L^\infty}\langle t\rangle\|\nabla{\mathbf{v}}\|_{L^\infty} \|\nabla{\mathbf{v}}\|_{L^3}\|\nabla\Gamma^\alpha p\|_{L^2}\; dt \\ &+ \int_0^T \Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle \nabla\eta\|_{L^\infty}\|\nabla{\mathbf{v}}\|_{L^3}\|\nabla\Gamma^\alpha p\|_{L^2}\; dt\\ \lesssim\;& \delta L\mathcal{E}_\kappa(T)+\int_0^T \langle t\rangle^{-2}\mathcal{E}_\kappa^\frac32(t)\; dt. \end{align} | (3.19) |
For the third term on the right-hand side of (3.17), we have
\begin{align} &\sum\limits_{\beta+\gamma = \alpha}\int_0^T\int_{\mathbb{R}^3} \Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot \big(\Gamma^\gamma \eta \partial_t^2\Gamma^\beta {\mathbf{v}}\big)\Big)\Big|\; dxdt\\ \lesssim\;&\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot\big (\eta \partial_t^2\Gamma^\alpha{\mathbf{v}}\big)\Big)\Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\neq|\alpha|}\int_0^T\int_{\mathbb{R}^3} \Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot \big(\Gamma^\gamma \eta \partial_t^2\Gamma^\beta {\mathbf{v}}\big)\Big)\Big|\; dxdt. \end{align} | (3.20) |
We use (2.4) to formulate the first term on the right-hand side of (3.20) as follows
\begin{align} &\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot\big( \rho^{-1}\eta \Delta \Gamma^\alpha{\mathbf{v}}\big)\Big)\Big|\; dxdt\\ &+\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot \big(\rho^{-1}\eta (\nabla X)^{-T}\nabla\Gamma^\alpha p\big)\Big)\Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\neq|\alpha|}\int_0^T\int_{\mathbb{R}^3} \Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot \big( \rho^{-1}\eta \Gamma^\gamma \eta \partial_t^2\Gamma^\beta {\mathbf{v}}\big)\Big)\Big|\; dxdt\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\neq|\alpha|}\int_0^T\int_{\mathbb{R}^3} \Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot \big[ \rho^{-1}\eta\big(\nabla X)^{-T}(\nabla\Gamma^\gamma {\mathbf{v}}\big)^T \\ &\cdot\big(\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta \Gamma^\beta {\mathbf{v}}+\sum\limits_{\iota_1+\iota_2 = \iota}C_\beta^{\iota_1}\Gamma^{\iota_2}\eta \partial_t^2\Gamma^{\iota_1}{\mathbf{v}}\big)\big]\Big)\Big|\; dxdt \end{align} | (3.21) |
For the first term on the right-hand side of (3.21), we have
\begin{align*} &\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot \big( \rho^{-1}\eta \Delta \Gamma^\alpha{\mathbf{v}}\big)\Big)\Big|\; dxdt\notag\\ \lesssim\;&\sum\limits_{i = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3} f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot\partial_i \big( \rho^{-1}\eta \partial_i \Gamma^\alpha{\mathbf{v}}\big)\Big)\; dxdt\notag\\ &+\sum\limits_{i = 1, 2, 3}\int_0^T\int_{\mathbb{R}^3} f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot\big[ \partial_i ( \rho^{-1}\eta ) \partial_i \Gamma^\alpha{\mathbf{v}}\big]\Big)\; dxdt\notag\\ \lesssim\;&\int_0^T\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle \nabla\eta\|_{L^\infty}\Big(\|\langle r\rangle\eta\|_{L^\infty}+\|\langle r\rangle\nabla(\rho^{-1}\eta)\|_{L^3}\Big)\notag\\ &\cdot\big\|r^{-\frac14}\langle r\rangle^{-\frac12}|\nabla\Gamma^\alpha {\mathbf{v}}|\big\|_{L^2}\; dt\notag\\ \lesssim \;&\delta L\mathcal{E}_\kappa(T). \end{align*} |
The second term on the right-hand side of (3.21) can be solved as (3.19). We employ the analogous method utilized for the first two terms on the right-hand side of (3.4) to solve the last two terms on the right-hand side of (3.21).
For the second term on the right-hand side of (3.20), we have
\begin{align*} &\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\neq|\alpha|}\int_0^T\int_{\mathbb{R}^3} \Big|f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla^\bot\cdot\Big(\nabla\eta \Delta^{-1}\nabla^\bot\cdot \big(\Gamma^\gamma \eta \partial_t^2\Gamma^\beta {\mathbf{v}}\big)\Big)\Big|\; dxdt\notag\\ \lesssim\;&\sum\limits_{\beta+\gamma = \alpha\atop |\gamma| < |\beta| < |\alpha|}\int_0^T\langle t\rangle^{-1}\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle \nabla\eta\|_{L^\infty}\|\langle r\rangle\Gamma^\gamma\eta\|_{L^3}\|\langle t-r\rangle\partial_t^2\Gamma^\beta{\mathbf{v}}\|_{L^2}\; dt\notag\\ &+\sum\limits_{\beta+\gamma = \alpha\atop |\beta|\leq|\gamma|}\int_0^T\langle t\rangle^{-1}\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}|}+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\|\langle r\rangle \nabla\eta\|_{L^\infty}\|\langle r\rangle\Gamma^\gamma\eta\|_{L^2}\|\langle t-r\rangle\partial_t^2\Gamma^\beta{\mathbf{v}}\|_{L^3}\;dt\notag\\ \lesssim\;&\delta L\mathcal{E}_\kappa(T)+\delta\int_0^T \langle t\rangle^{-2}\mathcal{E}_\kappa(t)\;dt. \end{align*} |
For the last term on the right-hand side of (3.17), by Lemmas 2 and 6, we have
\begin{align*} &\int_0^T\int_{\mathbb{R}^3}\Big| f_k\Big(\partial_r\Gamma^\alpha {\mathbf{v}}+\frac{\Gamma^\alpha {\mathbf{v}}}{r}\Big)\cdot \nabla\Delta^{-1}\nabla_i^\bot\Big(\nabla_i\eta \Delta^{-1}\nabla^\bot\cdot \big[C_\alpha^\beta(\nabla X)^{-T}(\nabla\Gamma^\gamma {\mathbf{v}})^T\notag\\ &\cdot\big(\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta\Gamma^\beta {\mathbf{v}}+\sum\limits_{\iota_1+\iota_2 = \beta}C_{\beta}^{\iota_1}\Gamma^{\iota_2}\eta\partial_t^2\Gamma^{\iota_1}{\mathbf{v}} \big)\big]\Big)\Big|\; dxdt\notag\\ \lesssim\;&\sum\limits_{\beta+\gamma = \alpha\atop |\gamma| < |\beta| < |\alpha|}\int_0^T\langle t\rangle^{-1}\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\| \langle r\rangle\nabla\eta\|_{L^\infty}\| \nabla\Gamma^\gamma {\mathbf{v}}\|_{L^3}\notag\\ &\cdot\big\|\langle t\rangle\big(\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta\Gamma^\beta {\mathbf{v}}+\sum\limits_{\iota_1+\iota_2 = \beta}C_{\beta}^{\iota_1}\Gamma^{\iota_2}\eta\partial_t^2\Gamma^{\iota_1}{\mathbf{v}}\big) \big\|_{L^2}\; dt\notag\\ &+ \sum\limits_{\beta+\gamma = \alpha\atop |\beta|\leq|\gamma|}\int_0^T\langle t\rangle^{-1}\Big\|r^{-\frac14}\langle r\rangle^{-\frac12}\Big(|\partial_r\Gamma^\alpha {\mathbf{v}}|+\frac{|\Gamma^\alpha {\mathbf{v}}|}{r}\Big)\Big\|_{L^2}\| \langle r\rangle\nabla\eta\|_{L^\infty}\| \nabla\Gamma^\gamma {\mathbf{v}}\|_{L^2}\notag\\ &\cdot\big\|\langle t\rangle\big(\partial_t^2\Gamma^\beta {\mathbf{v}}-\Delta\Gamma^\beta {\mathbf{v}}+\sum\limits_{\iota_1+\iota_2 = \beta}C_{\beta}^{\iota_1}\Gamma^{\iota_2}\eta\partial_t^2\Gamma^{\iota_1}{\mathbf{v}}\big) \big\|_{L^3}\; dt\notag\\ \lesssim\;&\delta L\mathcal{E}_\kappa(T)+\int_0^T\langle t\rangle^{-2}\mathcal{E}_\kappa^\frac32(t)\; dt. \end{align*} |
Combining all the estimates, we conclude that
\begin{align*} & \sup\limits_{0\leq t\leq T}\int_{\mathbb{R}^3}|\partial \Gamma^\alpha{\mathbf{v}}|^2(t)\; dx+L \mathcal{E}_\kappa(T)\notag\\ \leq\;&C_0\int_{\mathbb{R}^3}|\partial\Gamma^\alpha {\mathbf{v}}|^2 (0)\;dx+C C_0\big(\delta +\sup\limits_{0\leq t\leq T}\mathcal{E}_\kappa^\frac12(t)\big) L\mathcal{E}_\kappa(T) +C\int_0^T\langle t\rangle^{-\frac43}\mathcal{E}_\kappa^\frac32(t)\; dt +C\delta\int_0^T\langle t\rangle^{-\frac43}\mathcal{E}_\kappa (t)\; dt, \end{align*} |
where C > 0 is some positive constant. By the smallness of \delta , \mathcal{E}_\kappa(t) , and the standard continuity method, we arrive at the main result.
All authors contributed equally.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The work of the first author was partially supported by the National Natural Science Foundation of China under Grants 12401278. The work of the second author was partially supported by the RFS grant and GRF grants from the Research Grants Council (Project Nos. PolyU 11302021, 11310822, and 11302523). The authors would like to thank the research center for nonlinear analysis at PolyU for the opportunity of discussions and encouragement.
The authors declare there is no conflict of interest.
[1] | Baxter M, Rennie A (1996) Financial calculus: an introduction to derivative pricing. Cambridge university press. |
[2] |
Blattberg RC, Gonedes NJ (1974) A comparison of the stable and student distributions as statistical models for stock prices. J Bus 47: 244–280. doi: 10.1086/295634
![]() |
[3] |
Boyle PP (1977) Options: A monte Carlo approach. J Financ Econ 4: 323–338. doi: 10.1016/0304-405X(77)90005-8
![]() |
[4] | Carlsson C, Fullér R (2003) A fuzzy approach to real option valuation. Fuzzy sets systems 139: 297–312. |
[5] |
Cox JC, Ross SA (1976) The valuation of options for alternative stochastic processes. J Financ Econ 3: 145–166. doi: 10.1016/0304-405X(76)90023-4
![]() |
[6] |
Cox JC, Ross SA, Rubinstein M (1979) Option pricing: A simplified approach. J Financ Econ 7: 229–263. doi: 10.1016/0304-405X(79)90015-1
![]() |
[7] | Feng Y, Clerence CYK (2012) Connecting Binominal and Back Scholes option pricing modes: A spreadsheet-based illustration. Spreadsheets Education (eJSIE), vo. 5, issue 3, article 2. |
[8] |
Fama EF (1965) The behaviour of stock-market prices. J Bus 38: 34–105. doi: 10.1086/294743
![]() |
[9] | Hull JC (2006) Options, futures, and other derivatives. Pearson Education India. |
[10] | Hull J, White A (1987) The pricing of options on assets with stochastic volatilities. J Financ 42: 281–300. |
[11] |
Ingersoll JE (1976) A theoretical and empirical investigation of the dual purpose funds: An application of contingent-claims analysis. J Financ Econ 3: 83–123. doi: 10.1016/0304-405X(76)90021-0
![]() |
[12] | Liu SX, Chen Y (2009) Application of fuzzy theory to binomial option pricing model. In Fuzzy Information and Engineering (pp. 63-70). Springer, Berlin, Heidelberg. |
[13] |
Merton RC (1973) Theory of rational option pricing. Bell J Econ manage science 4: 141–183. doi: 10.2307/3003143
![]() |
[14] | Dar AA, Anuradha N (2017) Probability Default in Black Scholes Formula: A Qualitative Study. J Bus Econ Dev 2: 99–106. |
[15] |
Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Political Econ 81: 637–654. doi: 10.1086/260062
![]() |
[16] | Dar AA, Anuradha N (2017) One Period Binomial Model: The risk-neutral probability measure assumption and the state price deflator approach. |
[17] |
Mandelbrot B (1963) The variation of certain speculative prices. J Bus 36: 394–419. doi: 10.1086/294632
![]() |
[18] |
Nargunam R, Anuradha N (2017) Market efficiency of gold exchange-traded funds in India. Financ Innov 3: 14. doi: 10.1186/s40854-017-0064-y
![]() |
[19] | Oduro FT (2012) The Binomial and Black-Scholes Option Pricing Models: A Pedagogical Review with VBA Implementation. Int J Bus Inf Technology 2. |
[20] | Lazarova L, Jolevska-Tuneska B, Atanasova-Pacemska T (2014) Comparing the binomial model and the Black-Scholes model for options pricing. Yearb Fac Computer Science 3: 83–87. |
[21] | Dar AA, Anuradha N (2017) Use of orthogonal arrays and design of experiment via Taguchi L9 method in probability of default. |
[22] | Liang J, Yin H-M, Chen X, et al. (2017) On a Corporate Bond Pricing Model with Credit Rating Migration Risksand Stochastic Interest Rate. |