Research article

Mean-variance Optimal Reinsurance-investment Strategy in Continuous Time

  • Received: 29 June 2017 Accepted: 19 September 2017 Published: 12 October 2017
  • In this paper, Lagrange method is used to solve the continuous-time mean-variance reinsurance-investment problem. Proportional reinsurance, multiple risky assets and risk-free asset are considered synthetically in the optimal strategy for insurers. By solving the backward stochastic differential equation for the Lagrange multiplier, we get the mean-variance optimal reinsurance-investment strategy and its effective frontier in explicit forms.

    Citation: Daheng Peng, Fang Zhang. Mean-variance Optimal Reinsurance-investment Strategy in Continuous Time[J]. Quantitative Finance and Economics, 2017, 1(3): 320-333. doi: 10.3934/QFE.2017.3.320

    Related Papers:

    [1] Lingli Zhou, Fengqing Fu, Yao Wang, Ling Yang . Interlocked feedback loops balance the adaptive immune response. Mathematical Biosciences and Engineering, 2022, 19(4): 4084-4100. doi: 10.3934/mbe.2022188
    [2] Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028
    [3] Eduardo Ibargüen-Mondragón, M. Victoria Otero-Espinar, Miller Cerón Gómez . A within-host model on the interaction dynamics between innate immune cells and Mycobacterium tuberculosis. Mathematical Biosciences and Engineering, 2025, 22(3): 511-527. doi: 10.3934/mbe.2025019
    [4] Simeone Marino, Edoardo Beretta, Denise E. Kirschner . The role of delays in innate and adaptive immunity to intracellular bacterial infection. Mathematical Biosciences and Engineering, 2007, 4(2): 261-286. doi: 10.3934/mbe.2007.4.261
    [5] A. D. Al Agha, A. M. Elaiw . Global dynamics of SARS-CoV-2/malaria model with antibody immune response. Mathematical Biosciences and Engineering, 2022, 19(8): 8380-8410. doi: 10.3934/mbe.2022390
    [6] Ephraim O. Agyingi, Tamas I. Wiandt, Laurence U. Buxbaum, Bolaji N. Thomas . Modeling the immune system response: an application to leishmaniasis. Mathematical Biosciences and Engineering, 2020, 17(2): 1253-1271. doi: 10.3934/mbe.2020064
    [7] Prathibha Ambegoda, Hsiu-Chuan Wei, Sophia R-J Jang . The role of immune cells in resistance to oncolytic viral therapy. Mathematical Biosciences and Engineering, 2024, 21(5): 5900-5946. doi: 10.3934/mbe.2024261
    [8] Tianqi Song, Chuncheng Wang, Boping Tian . Mathematical models for within-host competition of malaria parasites. Mathematical Biosciences and Engineering, 2019, 16(6): 6623-6653. doi: 10.3934/mbe.2019330
    [9] Denise E. Kirschner, Alexei Tsygvintsev . On the global dynamics of a model for tumor immunotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 573-583. doi: 10.3934/mbe.2009.6.573
    [10] Farzad Fatehi, Yuliya N. Kyrychko, Konstantin B. Blyuss . Time-delayed model of autoimmune dynamics. Mathematical Biosciences and Engineering, 2019, 16(5): 5613-5639. doi: 10.3934/mbe.2019279
  • In this paper, Lagrange method is used to solve the continuous-time mean-variance reinsurance-investment problem. Proportional reinsurance, multiple risky assets and risk-free asset are considered synthetically in the optimal strategy for insurers. By solving the backward stochastic differential equation for the Lagrange multiplier, we get the mean-variance optimal reinsurance-investment strategy and its effective frontier in explicit forms.


    [1] Bai L, Guo J (2008) Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint. Insurance: Math and Econ 42: 968–975. doi: 10.1016/j.insmatheco.2007.11.002
    [2] Browne S (1995) Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin. Math Oper Res 20: 937–958. doi: 10.1287/moor.20.4.937
    [3] Cao Y, Wan N (2009) Optimal proportional reinsurance and investment based on Hamilton- Jacobi-Bellman equation. Insurance: Math and Econ 45: 157–162. doi: 10.1016/j.insmatheco.2009.05.006
    [4] Chen P, Yam SCP (2013) Optimal proportional reinsurance and investment with regime-switching for mean-variance insurers . Insurance: Math and Econ 53: 871-883. doi: 10.1016/j.insmatheco.2013.10.004
    [5] Chow G (1999) Duplicating contingent claims by the Lagrange method. Econ Rev 4: 277–283.
    [6] Chow G (1997) Dynamics economics: optimization by the Lagrange method. New York, Oxford Univ Press.
    [7] Chow G (1996) The Lagrange method of optimization with applications to portfolio and investment decisions. J Econ Control 20: 1–18. doi: 10.1016/0165-1889(94)00841-9
    [8] Lim A, Zhou X (2002) Mean-variance portfolio selection with random parameters in a complete market. Math Oper Res 27: 101–120. doi: 10.1287/moor.27.1.101.337
    [9] Luenberger DG (1968) Optimization by vector space methods. Wiley, New York.
    [10] Luo S, Taksar M, Tsoi A (2008) On reinsurance and investment for large insurance portfolios. Insurance: Math Econ 42: 434–444. doi: 10.1016/j.insmatheco.2007.04.002
    [11] Promislow DS, Young VR (2005) Minimizing the probability of ruin when claims follow Brownian motion with drift. North Am Actuar J 9: 109–128. doi: 10.1080/10920277.2005.10596229
    [12] Shen Y, Zeng Y (2015) Optimal investment-reinsurance strategy for mean-variance insurers with square-root factor process. Insurance: Math and Econ 62: 118-137. doi: 10.1016/j.insmatheco.2015.03.009
    [13] Taksar M, Markussen C (2003) Optimal dynamic reinsurance policies for large insurance portfolios. Financ Stoch 7: 97–121. doi: 10.1007/s007800200073
    [14] Yong JM, Zhou XY(1999) Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer Press, New York.
    [15] Zhang X, Zhang K, Yu X (2009) Optimal proportional reinsurance and investment with transaction costs, I: Maximizing the terminal wealth. Insurance: Math Econ 44: 473–478.
    [16] Zhou X, Li D (2000) Continuous-time mean-variance portfolio selection: A stochastic LQ framework. Appl Math Optim 42: 19–33. doi: 10.1007/s002450010003
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5112) PDF downloads(1079) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog