Review

Current landscape for the management of facioscapulohumeral muscular dystrophy and emerging treatment modalities: A literature review

  • Received: 03 May 2025 Revised: 18 June 2025 Accepted: 23 June 2025 Published: 25 June 2025
  • Facioscapulohumeral Muscular Dystrophy (FSHD) is a genetic disorder characterized by progressive muscle weakness, primarily affecting the facial, shoulder, and upper arm muscles. In this literature review, we examined the available treatments for FSHD, covering established methods and experimental approaches. We began with an overview of pharmacological treatments, emphasizing the importance of physical therapy and rehabilitation in maintaining muscle strength, improving mobility, preventing contractures, and respiratory therapy for severe cases. We also explored exercise interventions, addressing the debate surrounding exercise in FSHD patients, and highlight the possible benefits of aerobic and strength training, as well as ongoing research into safe exercise protocols. Additionally, the use of assistive devices and orthotics, such as braces and mobility aids, is discussed, along with surgical interventions like scapular fixation surgery and corrective procedures for foot drop. Emerging therapeutic strategies, including gene therapy focusing on DUX4 silencing and CRISPR-Cas9 technology, were evaluated. The potential of antisense oligonucleotides and myostatin inhibitors was reviewed, along with the challenges and ethical considerations associated with cell-based therapies. We aimed to inform researchers and advance treatment strategies for FSHD patients.

    Citation: Ubaid Ansari, Dawnica Nadora, Lauren Ong, Romteen Sedighi, Ethan Tabaie, Zaid Ansari, Meraj Alam, Burhaan Syed, Noorhan Amani, Sarah Preiss-Farzanegan. Current landscape for the management of facioscapulohumeral muscular dystrophy and emerging treatment modalities: A literature review[J]. AIMS Neuroscience, 2025, 12(2): 291-311. doi: 10.3934/Neuroscience.2025016

    Related Papers:

    [1] Andrei Korobeinikov, Philip K. Maini . A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences and Engineering, 2004, 1(1): 57-60. doi: 10.3934/mbe.2004.1.57
    [2] Ke Guo, Wanbiao Ma . Global dynamics of an SI epidemic model with nonlinear incidence rate, feedback controls and time delays. Mathematical Biosciences and Engineering, 2021, 18(1): 643-672. doi: 10.3934/mbe.2021035
    [3] Yoichi Enatsu, Yukihiko Nakata . Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences and Engineering, 2014, 11(4): 785-805. doi: 10.3934/mbe.2014.11.785
    [4] Ardak Kashkynbayev, Daiana Koptleuova . Global dynamics of tick-borne diseases. Mathematical Biosciences and Engineering, 2020, 17(4): 4064-4079. doi: 10.3934/mbe.2020225
    [5] Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya . Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences and Engineering, 2010, 7(2): 347-361. doi: 10.3934/mbe.2010.7.347
    [6] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
    [7] Jinliang Wang, Hongying Shu . Global analysis on a class of multi-group SEIR model with latency and relapse. Mathematical Biosciences and Engineering, 2016, 13(1): 209-225. doi: 10.3934/mbe.2016.13.209
    [8] Yu Ji . Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences and Engineering, 2015, 12(3): 525-536. doi: 10.3934/mbe.2015.12.525
    [9] Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067
    [10] Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297
  • Facioscapulohumeral Muscular Dystrophy (FSHD) is a genetic disorder characterized by progressive muscle weakness, primarily affecting the facial, shoulder, and upper arm muscles. In this literature review, we examined the available treatments for FSHD, covering established methods and experimental approaches. We began with an overview of pharmacological treatments, emphasizing the importance of physical therapy and rehabilitation in maintaining muscle strength, improving mobility, preventing contractures, and respiratory therapy for severe cases. We also explored exercise interventions, addressing the debate surrounding exercise in FSHD patients, and highlight the possible benefits of aerobic and strength training, as well as ongoing research into safe exercise protocols. Additionally, the use of assistive devices and orthotics, such as braces and mobility aids, is discussed, along with surgical interventions like scapular fixation surgery and corrective procedures for foot drop. Emerging therapeutic strategies, including gene therapy focusing on DUX4 silencing and CRISPR-Cas9 technology, were evaluated. The potential of antisense oligonucleotides and myostatin inhibitors was reviewed, along with the challenges and ethical considerations associated with cell-based therapies. We aimed to inform researchers and advance treatment strategies for FSHD patients.





    Conflict of interest



    The authors declare no conflict of interest.

    Authors' contributions



    The authors confirm contribution to the paper as follows: study conception and design: Ubaid Ansari, Dawnica Nadora, Lauren Ong, Romteen Sedighi, Ethan Tabaie, Zaid Ansari, Meraj Alam, Burhaan Syed, Noorhan Amani, Sarah Preiss-Farzanegan MD; data collection: Ubaid Ansari, Dawnica Nadora, Lauren Ong, Romteen Sedighi, Ethan Tabaie, Zaid Ansari, Meraj Alam, Burhaan Syed, Noorhan Amani, Sarah Preiss-Farzanegan MD; analysis and interpretation of results: Ubaid Ansari, Dawnica Nadora, Lauren Ong, Romteen Sedighi, Ethan Tabaie, Zaid Ansari, Meraj Alam, Burhaan Syed, Noorhan Amani, Sarah Preiss-Farzanegan MD; draft manuscript preparation: Ubaid Ansari, Dawnica Nadora, Lauren Ong, Romteen Sedighi, Ethan Tabaie, Zaid Ansari, Meraj Alam, Burhaan Syed, Noorhan Amani, Sarah Preiss-Farzanegan MD. All authors reviewed the results and approved the final version of the manuscript.

    [1] Preston MK, Tawil R, Wang LH (1993) Facioscapulohumeral Muscular Dystrophy. GeneReviews® [Internet] . Seattle (WA): University of Washington, Seattle.
    [2] Guien C, Blandin G, Lahaut P, et al. (2018) The French National Registry of patients with Facioscapulohumeral muscular dystrophy. Orphanet J Rare Dis 13: 218. https://doi.org/10.1186/s13023-018-0960-x
    [3] van der Maarel SM, Tawil R, Tapscott SJ (2011) Facioscapulohumeral Muscular Dystrophy and DUX4: Breaking the Silence. Trends Mol Med 17: 252-258. https://doi.org/10.1016/j.molmed.2011.01.001
    [4] Statland JM, Tawil R (2016) Facioscapulohumeral Muscular Dystrophy. Continuum (Minneap Minn) 22: 1916-1931. https://doi.org/10.1212/CON.0000000000000399
    [5] Corrado B, Ciardi G (2015) Facioscapulohumeral distrophy and physiotherapy: a literary review. J Phys Ther Sci 27: 2381-2385. https://doi.org/10.1589/jpts.27.2381
    [6] Himeda CL, Jones PL (2022) FSHD Therapeutic Strategies: What Will It Take to Get to Clinic?. J Pers Med 12: 865. https://doi.org/10.3390/jpm12060865
    [7] Cohen J, DeSimone A, Lek M, et al. (2021) Therapeutic Approaches in Facioscapulohumeral Muscular Dystrophy. Trends Mol Med 27: 123-137. https://doi.org/10.1016/j.molmed.2020.09.008
    [8] Eren İ, Gedik CC, Kılıç U, et al. (2022) Management of scapular dysfunction in facioscapulohumeral muscular dystrophy: the biomechanics of winging, arthrodesis indications, techniques and outcomes. EFORT Open Rev 7: 734-746. https://doi.org/10.1530/EOR-22-0080
    [9] Tawil R, McDermott MP, Pandya S, et al. (1997) A pilot trial of prednisone in facioscapulohumeral muscular dystrophy. FSH-DY Group. Neurology 48: 46-49. https://doi.org/10.1212/wnl.48.1.46
    [10] Passerieux E, Hayot M, Jaussent A, et al. (2015) Effects of vitamin C, vitamin E, zinc gluconate, and selenomethionine supplementation on muscle function and oxidative stress biomarkers in patients with facioscapulohumeral dystrophy: A double-blind randomized controlled clinical trial. Free Radical Bio Med 81: 158-169. https://doi.org/10.1016/j.freeradbiomed.2014.09.014
    [11] Maltin CA, Delday MI, Watson JS, et al. (1993) Clenbuterol, a beta-adrenoceptor agonist, increases relative muscle strength in orthopaedic patients. Clin Sci (Lond) 84: 651-654. https://doi.org/10.1042/cs0840651
    [12] Lynch GS, Hayes A, Campbell SP, et al. (1996) Effects of beta 2-agonist administration and exercise on contractile activation of skeletal muscle fibers. J Appl Physiol (1985) 81: 1610-1618. https://doi.org/10.1152/jappl.1996.81.4.1610
    [13] Zeman RJ, Peng H, Danon MJ, et al. (2000) Clenbuterol reduces degeneration of exercised or aged dystrophic (mdx) muscle. Muscle Nerve 23: 521-528. https://doi.org/10.1002/(sici)1097-4598(200004)23:4<521::aid-mus10>3.0.co;2-8
    [14] Kissel JT, McDermott MP, Mendell JR, et al. (2001) Randomized, double-blind, placebo-controlled trial of albuterol in facioscapulohumeral dystrophy. Neurology 57: 1434-1440. https://doi.org/10.1212/WNL.57.8.1434
    [15] van der Kooi EL, Vogels OJM, van Asseldonk RJGP, et al. (2004) Strength training and albuterol in facioscapulohumeral muscular dystrophy. Neurology 63: 702-708. https://doi.org/10.1212/01.WNL.0000134660.30793.1F
    [16] Payan CA, Hogrel JY, Hammouda EH, et al. (2009) Periodic Salbutamol in Facioscapulohumeral Muscular Dystrophy: A Randomized Controlled Trial. Arch Phys Med Rehabil 90: 1094-1101. https://doi.org/10.1016/j.apmr.2008.12.027
    [17] Tawil R, Wagner KR, Hamel JI, et al. (2024) Safety and efficacy of losmapimod in facioscapulohumeral muscular dystrophy (ReDUX4): a randomised, double-blind, placebo-controlled phase 2b trial. Lancet Neurol 23: 477-486. https://doi.org/10.1016/S1474-4422(24)00073-5
    [18] FSHD SocietyFulcrum halts losmapimod development (2024). [cited 2024 November 25]. Available from: https://www.fshdsociety.org/2024/09/12/fulcrum-halts-losmapimod-development/
    [19] KU Medical CenterPreliminary drug trial results give hope to those with a common form of muscular dystrophy (2024). [cited 2024 November 25]. Available from: https://www.kumc.edu/about/news/news-archive/prelim-drug-trial.html
    [20] Attarian S, Salort-Campana E, Nguyen K, et al. (2012) Recommendations for the management of facioscapulohumeral muscular dystrophy in 2011. Rev Neurol (Paris) 168: 910-918. https://doi.org/10.1016/j.neurol.2011.11.008
    [21] Tawil R, Mah JK, Baker S, et al. (2016) Clinical practice considerations in facioscapulohumeral muscular dystrophy Sydney, Australia, 21 September 2015. Neuromuscul Disord 26: 462-471. https://doi.org/10.1016/j.nmd.2016.03.007
    [22] Tawil R, Kissel JT, Heatwole C, et al. (2015) Evidence-based guideline summary: Evaluation, diagnosis, and management of facioscapulohumeral muscular dystrophy. Neurology 85: 357-364. https://doi.org/10.1212/WNL.0000000000001783
    [23] Aitkens SG, McCrory MA, Kilmer DD, et al. (1993) Moderate resistance exercise program: its effect in slowly progressive neuromuscular disease. Arch Phys Med Rehabil 74: 711-715. https://doi.org/10.1016/0003-9993(93)90031-5
    [24] Milner-Brown HS, Miller RG (1988) Muscle strengthening through high-resistance weight training in patients with neuromuscular disorders. Arch Phys Med Rehabil 69: 14-19.
    [25] Vignos PJ, Watkins MP (1966) The Effect of Exercise in Muscular Dystrophy. JAMA 197: 843-848. https://doi.org/10.1001/jama.1966.03110110067015
    [26] Voet NB, Kooi EL van der, Engelen BG van, et al. (2019) Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev 12: CD003907. https://doi.org/10.1002/14651858.CD003907.pub5
    [27] Calisgan E, Yilmaz O, Tuncel D, et al. (2019) Early adulthood onset of muscle weakness in facioscapulohumeral muscular dystrophy and physical therapy management: An unusual case report. Medicine 8: 1036-1040. https://doi.org/10.5455/medscience.2019.08.9108
    [28] Gianola S, Castellini G, Pecoraro V, et al. (2020) Effect of Muscular Exercise on Patients With Muscular Dystrophy: A Systematic Review and Meta-Analysis of the Literature. Front Neurol 11: 958. https://doi.org/10.3389/fneur.2020.00958
    [29] Bankolé LC, Millet GY, Temesi J, et al. (2016) Safety and efficacy of a 6-month home-based exercise program in patients with facioscapulohumeral muscular dystrophy. Medicine (Baltimore) 95: e4497. https://doi.org/10.1097/MD.0000000000004497
    [30] Olsen DB, Ørngreen MC, Vissing J (2005) Aerobic training improves exercise performance in facioscapulohumeral muscular dystrophy. Neurology 64: 1064-1066. https://doi.org/10.1212/01.WNL.0000150584.45055.27
    [31] Bettio C, Banchelli F, Salsi V, et al. (2024) Physical activity practiced at a young age is associated with a less severe subsequent clinical presentation in facioscapulohumeral muscular dystrophy. BMC Musculoskelet Disord 25: 35. https://doi.org/10.1186/s12891-023-07150-x
    [32] Tawil R (2008) Facioscapulohumeral Muscular Dystrophy. Neurotherapeutics 5: 601. https://doi.org/10.1016/j.nurt.2008.07.005
    [33] Rogozinski BM, Davids JR, Davis RB, et al. (2009) The efficacy of the floor-reaction ankle-foot orthosis in children with cerebral palsy. J Bone Joint Surg Am 91: 2440-2447. https://doi.org/10.2106/JBJS.H.00965
    [34] Ghoseiri K, Zucker-Levin A (2023) Long-term locked knee ankle foot orthosis use: A perspective overview of iatrogenic biomechanical and physiological perils. Front Rehabil Sci 4: 1138792. https://doi.org/10.3389/fresc.2023.1138792
    [35] Rhee YG, Ha JH (2006) Long-term results of scapulothoracic arthrodesis of facioscapulohumeral muscular dystrophy. J Shoulder Elbow Surg 15: 445-450. https://doi.org/10.1016/j.jse.2005.10.015
    [36] Sansone V, Boynton J, Palenski C (1997) Use of gold weights to correct lagophthalmos in neuromuscular disease. Neurology 48: 1500-1503. https://doi.org/10.1212/wnl.48.6.1500
    [37] Das S, Chadwick BP (2016) Influence of Repressive Histone and DNA Methylation upon D4Z4 Transcription in Non-Myogenic Cells. PLoS One 11: e0160022. https://doi.org/10.1371/journal.pone.0160022
    [38] Lemmers RJLF, Tawil R, Petek LM, et al. (2012) Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat Genet 44: 1370-1374. https://doi.org/10.1038/ng.2454
    [39] Tihaya MS, Mul K, Balog J, et al. (2023) Facioscapulohumeral muscular dystrophy: the road to targeted therapies. Nat Rev Neurol 19: 91-108. https://doi.org/10.1038/s41582-022-00762-2
    [40] Morrison DK (2012) MAP Kinase Pathways. Cold Spring Harb Perspect Biol 4: a011254. https://doi.org/10.1101/cshperspect.a011254
    [41] Brennan CM, Hill AS, St Andre M, et al. (2022) DUX4 expression activates JNK and p38 MAP kinases in myoblasts. Dis Model Mech 15: dmm049516. https://doi.org/10.1242/dmm.049516
    [42] Ma Y, Zhang L, Huang X (2014) Genome modification by CRISPR/Cas9. FEBS J 281: 5186-5193. https://doi.org/10.1111/febs.13110
    [43] Šikrová D, Cadar VA, Ariyurek Y, et al. (2021) Adenine base editing of the DUX4 polyadenylation signal for targeted genetic therapy in facioscapulohumeral muscular dystrophy. Mol Ther Nucleic Acids 25: 342-354. https://doi.org/10.1016/j.omtn.2021.05.020
    [44] Himeda CL, Jones TI, Jones PL (2016) CRISPR/dCas9-mediated Transcriptional Inhibition Ameliorates the Epigenetic Dysregulation at D4Z4 and Represses DUX4-fl in FSH Muscular Dystrophy. Mol Ther 24: 527-535. https://doi.org/10.1038/mt.2015.200
    [45] Goossens R, Boogaard ML van den, Lemmers RJLF, et al. (2019) Intronic SMCHD1 variants in FSHD: testing the potential for CRISPR-Cas9 genome editing. J Med Genet 56: 828-837. https://doi.org/10.1136/jmedgenet-2019-106402
    [46] Himeda CL, Jones TI, Jones PL (2020) Targeted epigenetic repression by CRISPR/dSaCas9 suppresses pathogenic DUX4-fl expression in FSHD. Mol Ther Methods Clin Dev 20: 298-311. https://doi.org/10.1016/j.omtm.2020.12.001
    [47] Statland J, Halseth A, Zhu Y, et al. Interim Results from FORTITUDETM, a Randomized Phase 1/2 Trial Evaluating AOC 1020 in Adults with FSHD (1996). [cited 2024 November 25]. Available from: https://www.aviditybiosciences.com/wp-content/uploads/2024/10/Final-NMSG-2024-FORTITUDE-Poster-16SEP24.pdf
    [48] Fulcrum TherapeuticsFulcrum Therapeutics Announces Topline Results from Phase 3 REACH Clinical Trial of Losmapimod in Facioscapulohumeral Muscular Dystrophy (FSHD) (2024). [cited 2024 November 25]. Available from: https://ir.fulcrumtx.com/news-releases/news-release-details/fulcrum-therapeutics-announces-topline-results-phase-3-reach/
    [49] PR NewswireAvidity Announces Unprecedented AOC 1020 Data from Phase 1/2 FORTITUDE™ Trial Demonstrating Greater Than 50 Percent Reduction in DUX4 Regulated Genes and Trends of Functional Improvement in People Living with Facioscapulohumeral Muscular Dystrophy (2024). [cited 2024 November 25]. Available from: https://www.prnewswire.com/news-releases/avidity-announces-unprecedented-aoc-1020-data-from-phase-12-fortitude-trial-demonstrating-greater-than-50-percent-reduction-in-dux4-regulated-genes-and-trends-of-functional-improvement-in-people-living-with-facioscapulohumeral-m-302170099.html
    [50] Dhuri K, Bechtold C, Quijano E, et al. (2020) Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development. J Clin Med 9: 2004. https://doi.org/10.3390/jcm9062004
    [51] Ansseau E, Vanderplanck C, Wauters A, et al. (2017) Antisense Oligonucleotides Used to Target the DUX4 mRNA as Therapeutic Approaches in FaciosScapuloHumeral Muscular Dystrophy (FSHD). Genes (Basel) 8: 93. https://doi.org/10.3390/genes8030093
    [52] Mocciaro E, Runfola V, Ghezzi P, et al. (2021) DUX4 Role in Normal Physiology and in FSHD Muscular Dystrophy. Cells 10: 3322. https://doi.org/10.3390/cells10123322
    [53] Ward AJ, Norrbom M, Chun S, et al. (2014) Nonsense-mediated decay as a terminating mechanism for antisense oligonucleotides. Nucleic Acids Res 42: 5871-5879. https://doi.org/10.1093/nar/gku184
    [54] Sardone V, Zhou H, Muntoni F, et al. (2017) Antisense Oligonucleotide-Based Therapy for Neuromuscular Disease. Molecules 22: 563. https://doi.org/10.3390/molecules22040563
    [55] Lim KRQ, Yokota T (2023) Knocking Down DUX4 in Immortalized Facioscapulohumeral Muscular Dystrophy Patient-Derived Muscle Cells. Methods Mol Biol 2587: 197-208. https://doi.org/10.1007/978-1-0716-2772-3_12
    [56] Lu-Nguyen N, Dickson G, Malerba A, et al. (2022) Long-Term Systemic Treatment of a Mouse Model Displaying Chronic FSHD-like Pathology with Antisense Therapeutics That Inhibit DUX4 Expression. Biomedicines 10: 1623. https://doi.org/10.3390/biomedicines10071623
    [57] Bouwman LF, den Hamer B, van den Heuvel A, et al. (2021) Systemic delivery of a DUX4-targeting antisense oligonucleotide to treat facioscapulohumeral muscular dystrophy. Mol Ther Nucleic Acids 26: 813-827. https://doi.org/10.1016/j.omtn.2021.09.010
    [58] Rashnonejad A, Amini-Chermahini G, Taylor NK, et al. (2020) Designed U7 snRNAs inhibit DUX4 expression and improve FSHD-associated outcomes in DUX4 overexpressing cells and FSHD patient myotubes. Mol Ther Nucleic Acids 23: 476-486. https://doi.org/10.1016/j.omtn.2020.12.004
    [59] Beck SL, Yokota T (2024) Oligonucleotide Therapies for Facioscapulohumeral Muscular Dystrophy: Current Preclinical Landscape. Int J Mol Sci 25: 9065. https://doi.org/10.3390/ijms25169065
    [60] Collotta D, Bertocchi I, Chiapello E, et al. (2023) Antisense oligonucleotides: a novel Frontier in pharmacological strategy. Front Pharmacol 14: 1304342. https://doi.org/10.3389/fphar.2023.1304342
    [61] Otto A, Patel K (2010) Signalling and the control of skeletal muscle size. Exp Cell Res 316: 3059-3066. https://doi.org/10.1016/j.yexcr.2010.04.009
    [62] Smith RC, Lin BK (2013) Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders. Curr Opin Support Palliat Care 7: 352-360. https://doi.org/10.1097/SPC.0000000000000013
    [63] National Library of Medicine, National Center for Biotechnology Information, ClinicalTrials.govStudy of ACE-083 in Patients With Facioscapulohumeral Muscular Dystrophy (FSHD) (2022). [cited 2024 November 25]. Available from: https://clinicaltrials.gov/study/NCT02927080
    [64] Pearsall RS, Davies MV, Cannell M, et al. (2019) Follistatin-based ligand trap ACE-083 induces localized hypertrophy of skeletal muscle with functional improvement in models of neuromuscular disease. Sci Rep 9: 11392. https://doi.org/10.1038/s41598-019-47818-w
    [65] Statland JM, Campbell C, Desai U, et al. (2022) Randomized phase 2 study of ACE-083, a muscle-promoting agent, in facioscapulohumeral muscular dystrophy. Muscle Nerve 66: 50-62. https://doi.org/10.1002/mus.27558
    [66] Institute of MyologyAcceleron abandons development of ACE-083 in FSH (2022). [cited 2024 November 25]. Available from: https://www.institut-myologie.org/en/2022/07/12/acceleron-abandons-development-of-ace-083-in-fsh/
    [67] Wagner KR, Fleckenstein JL, Amato AA, et al. (2008) A phase I/IItrial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol 63: 561-571. https://doi.org/10.1002/ana.21338
    [68] Campbell C, McMillan HJ, Mah JK, et al. (2017) Myostatin inhibitor ACE-031 treatment of ambulatory boys with Duchenne muscular dystrophy: Results of a randomized, placebo-controlled clinical trial. Muscle Nerve 55: 458-464. https://doi.org/10.1002/mus.25268
    [69] Wagner KR, Abdel-Hamid HZ, Mah JK, et al. (2020) Randomized phase 2 trial and open-label extension of domagrozumab in Duchenne muscular dystrophy. Neuromuscul Disord 30: 492-502. https://doi.org/10.1016/j.nmd.2020.05.002
    [70] National Library of Medicine, National Center for Biotechnology Information, ClinicalTrials.govA Study to Evaluate RO7204239 in Participants With Facioscapulohumeral Muscular Dystrophy (MANOEUVRE) (2024). [cited 2024 November 25]. Available from: https://clinicaltrials.gov/study/NCT05548556
    [71] Azzag K, Bosnakovski D, Tungtur S, et al. (2022) Transplantation of PSC-derived myogenic progenitors counteracts disease phenotypes in FSHD mice. NPJ Regen Med 7: 43. https://doi.org/10.1038/s41536-022-00249-0
    [72] Blokhuis AM, Deenen JCW, Voermans NC, et al. (2021) The socioeconomic burden of facioscapulohumeral muscular dystrophy. J Neurol 268: 4778-4788. https://doi.org/10.1007/s00415-021-10591-w
    [73] American Occupational Therapy Association.Occupational Therapy Scope of Practice. Am J Occup Ther (2021) 75: 7513410020. https://doi.org/10.5014/ajot.2021.75S3005
    [74] Lu J, Yao Z, Yang Y, et al. (2019) Management strategies in facioscapulohumeral muscular dystrophy. Intractable Rare Dis Res 8: 9–13. https://doi.org/10.5582/irdr.2019.01016
    [75] Sezer S, Cup EHC, Roets-Merken LM, et al. (2022) Experiences of patients with facioscapulohumeral dystrophy with facial weakness: a qualitative study. Disabil Rehabil 44: 6775-6782. https://doi.org/10.1080/09638288.2021.1973122
    [76] Wellecke C, D'Cruz K, Winkler D, et al. (2022) Accessible design features and home modifications to improve physical housing accessibility: A mixed-methods survey of occupational therapists. Disabil Health J 15: 101281. https://doi.org/10.1016/j.dhjo.2022.101281
    [77] Essers JMN, Meijer K, Peters AA, et al. (2023) The effects of facioscapulohumeral dystrophy and dynamic arm support on upper extremity muscle coordination in functional tasks. Neuromuscul Disord 33: 651-659. https://doi.org/10.1016/j.nmd.2022.11.002
    [78] Cruz A, Callaway L, Randall M, et al. (2021) Mobile arm supports in Duchenne muscular dystrophy: a pilot study of user experience and outcomes. Disabil Rehabil Assist Technol 16: 880-889. https://doi.org/10.1080/17483107.2020.1749892
    [79] Faux-Nightingale A, Kulshrestha R, Emery N, et al. (2021) Upper Limb Rehabilitation in Facioscapulohumeral Muscular Dystrophy: A Patients' Perspective. Arch Rehabil Res Clin Transl 3: 100157. https://doi.org/10.1016/j.arrct.2021.100157
    [80] Hazenberg A, van Alfen N, Voet NBM, et al. (2015) Facioscapulohumeral muscular dystrophy and respiratory failure; what about the diaphragm?. Respir Med Case Rep 14: 37-39. https://doi.org/10.1016/j.rmcr.2014.12.006
    [81] Wohlgemuth M, van der Kooi EL, van Kesteren RG, et al. (2004) Ventilatory support in facioscapulohumeral muscular dystrophy. Neurology 63: 176-178. https://doi.org/10.1212/01.WNL.0000133126.86377.E8
    [82] Kilmer DD, Abresch RT, McCrory MA, et al. (1995) Profiles of neuromuscular diseases. Facioscapulohumeral muscular dystrophy. Am J Phys Med Rehabil 74: S131-139. https://doi.org/10.1097/00002060-199509001-00007
    [83] Moreira S, Wood L, Smith D, et al. (2017) Respiratory involvement in ambulant and non-ambulant patients with facioscapulohumeral muscular dystrophy. J Neurol 264: 1271-1280. https://doi.org/10.1007/s00415-017-8525-9
    [84] Santos DB, Boussaid G, Stojkovic T, et al. (2015) Respiratory muscle dysfunction in facioscapulohumeral muscular dystrophy. Neuromuscul Disord 25: 632-639. https://doi.org/10.1016/j.nmd.2015.04.011
    [85] LoRusso S, Johnson NE, McDermott MP, et al. (2019) Clinical trial readiness to solve barriers to drug development in FSHD (ReSolve): protocol of a large, international, multi-center prospective study. BMC Neurol 19: 224. https://doi.org/10.1186/s12883-019-1452-x
    [86] Glasser CE, Gartner MR, Wilson D, et al. (2018) Locally acting ACE-083 increases muscle volume in healthy volunteers. Muscle Nerve 57: 921-926. https://doi.org/10.1002/mus.26113
    [87] Himeda CL, Debarnot C, Homma S, et al. (2014) Myogenic Enhancers Regulate Expression of the Facioscapulohumeral Muscular Dystrophy-Associated DUX4 Gene. Mol Cell Biol 34: 1942-1955. https://doi.org/10.1128/MCB.00149-14
    [88] Lek A, Rahimov F, Jones PL, et al. (2015) Emerging preclinical animal models for FSHD. Trends Mol Med 21: 295-306. https://doi.org/10.1016/j.molmed.2015.02.011
    [89] Megalizzi D, Trastulli G, Colantoni L, et al. (2024) Deciphering the Complexity of FSHD: A Multimodal Approach as a Model for Rare Disorders. Int J Mol Sci 25: 10949. https://doi.org/10.3390/ijms252010949
  • This article has been cited by:

    1. Songbai Guo, Wanbiao Ma, Global behavior of delay differential equations model of HIV infection with apoptosis, 2015, 21, 1531-3492, 103, 10.3934/dcdsb.2016.21.103
    2. Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya, Global stability of sirs epidemic models with a class of nonlinear incidence rates and distributed delays, 2012, 32, 02529602, 851, 10.1016/S0252-9602(12)60066-6
    3. Bentout Soufiane, Tarik Mohammed Touaoula, Global analysis of an infection age model with a class of nonlinear incidence rates, 2016, 434, 0022247X, 1211, 10.1016/j.jmaa.2015.09.066
    4. Jinliang Wang, Jingmei Pang, Xianning Liu, Modelling diseases with relapse and nonlinear incidence of infection: a multi-group epidemic model, 2014, 8, 1751-3758, 99, 10.1080/17513758.2014.912682
    5. C. Connell McCluskey, Yu Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay, 2015, 25, 14681218, 64, 10.1016/j.nonrwa.2015.03.002
    6. Jinliang Wang, Jingmei Pang, Toshikazu Kuniya, Yoichi Enatsu, Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays, 2014, 241, 00963003, 298, 10.1016/j.amc.2014.05.015
    7. Haitao Song, Shengqiang Liu, Weihua Jiang, Global dynamics of a multistage SIR model with distributed delays and nonlinear incidence rate, 2016, 01704214, 10.1002/mma.4130
    8. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, 2012, 9, 1551-0018, 819, 10.3934/mbe.2012.9.819
    9. Divine Wanduku, The stationary distribution and stochastic persistence for a class of disease models: Case study of malaria, 2020, 13, 1793-5245, 2050024, 10.1142/S1793524520500242
    10. Tsuyoshi Kajiwara, Toru Sasaki, Yasuhiro Takeuchi, Construction of Lyapunov functionals for delay differential equations in virology and epidemiology, 2012, 13, 14681218, 1802, 10.1016/j.nonrwa.2011.12.011
    11. Horst R. Thieme, Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators, 2011, 250, 00220396, 3772, 10.1016/j.jde.2011.01.007
    12. Sean T. Vittadello, Scott W. McCue, Gency Gunasingh, Nikolas K. Haass, Matthew J. Simpson, A novel mathematical model of heterogeneous cell proliferation, 2021, 82, 0303-6812, 10.1007/s00285-021-01580-8
    13. Manuel De la Sen, Asier Ibeas, Ravi P. Agarwal, On Confinement and Quarantine Concerns on an SEIAR Epidemic Model with Simulated Parameterizations for the COVID-19 Pandemic, 2020, 12, 2073-8994, 1646, 10.3390/sym12101646
    14. Jinliang Wang, Jiying Lang, Xianning Liu, Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells, 2015, 20, 1531-3492, 3215, 10.3934/dcdsb.2015.20.3215
    15. Kanica Goel, , Stability behavior of a nonlinear mathematical epidemic transmission model with time delay, 2019, 98, 0924-090X, 1501, 10.1007/s11071-019-05276-z
    16. Horst R. Thieme, Hal L. Smith, Chemostats and epidemics: Competition for nutrients/hosts, 2013, 10, 1551-0018, 1635, 10.3934/mbe.2013.10.1635
    17. Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya, Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model, 2012, 13, 14681218, 2120, 10.1016/j.nonrwa.2012.01.007
    18. C. Connell McCluskey, Using Lyapunov Functions to Construct Lyapunov Functionals for Delay Differential Equations, 2015, 14, 1536-0040, 1, 10.1137/140971683
    19. Hongying Shu, Xiang-Sheng Wang, Global dynamics of a coupled epidemic model, 2017, 22, 1553-524X, 1575, 10.3934/dcdsb.2017076
    20. Global properties of a delayed SIR epidemic model with multiple parallel infectious stages, 2012, 9, 1551-0018, 685, 10.3934/mbe.2012.9.685
    21. Yoichi Enatsu, Yukihiko Nakata, Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate, 2014, 11, 1551-0018, 785, 10.3934/mbe.2014.11.785
    22. Chao Liu, Wenquan Yue, Peiyong Liu, Dynamical Behavior and Stability Analysis in a Hybrid Epidemiological-Economic Model with Incubation, 2014, 2014, 1085-3375, 1, 10.1155/2014/639405
    23. G. Neofytou, Y.N. Kyrychko, K.B. Blyuss, Time-delayed model of immune response in plants, 2016, 389, 00225193, 28, 10.1016/j.jtbi.2015.10.020
    24. Xun-Yang Wang, Khalid Hattaf, Hai-Feng Huo, Hong Xiang, Stability analysis of a delayed social epidemics model with general contact rate and its optimal control, 2016, 12, 1547-5816, 1267, 10.3934/jimo.2016.12.1267
    25. Xia Wang, Yuefen Chen, Shengqiang Liu, Xinyu Song, A class of delayed virus dynamics models with multiple target cells, 2013, 32, 0101-8205, 211, 10.1007/s40314-013-0004-z
    26. Yoichi Enatsu, Eleonora Messina, Yoshiaki Muroya, Yukihiko Nakata, Elvira Russo, Antonia Vecchio, Stability analysis of delayed SIR epidemic models with a class of nonlinear incidence rates, 2012, 218, 00963003, 5327, 10.1016/j.amc.2011.11.016
    27. Aboudramane Guiro, Dramane Ouedraogo, Harouna Ouedraogo, Stability Analysis for a Discrete SIR Epidemic Model with Delay and General Nonlinear Incidence Function, 2018, 09, 2152-7385, 1039, 10.4236/am.2018.99070
    28. Manuel De la Sen, Asier Ibeas, Leonid Shaikhet, On a Sir Epidemic Model for the COVID-19 Pandemic and the Logistic Equation, 2020, 2020, 1607-887X, 1, 10.1155/2020/1382870
    29. Global stability for epidemic model with constant latency and infectious periods, 2012, 9, 1551-0018, 297, 10.3934/mbe.2012.9.297
    30. Xiaojuan Li, Shengmao Fu, Global stability of a virus dynamics model with intracellular delay and CTL immune response, 2015, 38, 01704214, 420, 10.1002/mma.3078
    31. Luju Liu, A delayed SIR model with general nonlinear incidence rate, 2015, 2015, 1687-1847, 10.1186/s13662-015-0619-z
    32. Jinliang Wang, Ran Zhang, Toshikazu Kuniya, The dynamics of an SVIR epidemiological model with infection age: Table 1., 2016, 81, 0272-4960, 321, 10.1093/imamat/hxv039
    33. Yoichi Enatsu, Eleonora Messina, Yukihiko Nakata, Yoshiaki Muroya, Elvira Russo, Antonia Vecchio, Global dynamics of a delayed SIRS epidemic model with a wide class of nonlinear incidence rates, 2012, 39, 1598-5865, 15, 10.1007/s12190-011-0507-y
    34. Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya, Giuseppe Izzo, Antonia Vecchio, Global dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates, 2012, 18, 1023-6198, 1163, 10.1080/10236198.2011.555405
    35. Ousmane Koutou, Bakary Traoré, Boureima Sangaré, Yuriy Rogovchenko, Mathematical model of malaria transmission dynamics with distributed delay and a wide class of nonlinear incidence rates, 2018, 5, 2574-2558, 1564531, 10.1080/25742558.2018.1564531
    36. Chuangxia Huang, Jie Cao, Fenghua Wen, Xiaoguang Yang, Wei-Xing Zhou, Stability Analysis of SIR Model with Distributed Delay on Complex Networks, 2016, 11, 1932-6203, e0158813, 10.1371/journal.pone.0158813
    37. Salih Djilali, Tarik Mohammed Touaoula, Sofiane El-Hadi Miri, A Heroin Epidemic Model: Very General Non Linear Incidence, Treat-Age, and Global Stability, 2017, 152, 0167-8019, 171, 10.1007/s10440-017-0117-2
    38. Tayebeh Waezizadeh, Seir epidemic model with two time delays, 2016, 14, 1726-037X, 189, 10.1080/1726037X.2016.1250503
    39. Cuicui Jiang, Wendi Wang, Complete classification of global dynamics of a virus model with immune responses, 2014, 19, 1553-524X, 1087, 10.3934/dcdsb.2014.19.1087
    40. Tianhu Yu, Dengqing Cao, Shengqiang Liu, Epidemic model with group mixing: Stability and optimal control based on limited vaccination resources, 2018, 61, 10075704, 54, 10.1016/j.cnsns.2018.01.011
    41. SALIH DJILALI, ANWAR ZEB, TAREQ SAEED, EFFECT OF OCCASIONAL HEROIN CONSUMERS ON THE SPREAD OF HEROIN ADDICTION, 2022, 30, 0218-348X, 10.1142/S0218348X22401648
    42. Dandan Sun, Yingke Li, Zhidong Teng, Tailei Zhang, Jingjing Lu, Dynamical properties in an SVEIR epidemic model with age‐dependent vaccination, latency, infection, and relapse, 2021, 44, 0170-4214, 12810, 10.1002/mma.7583
    43. Lingmin Dong, Shuai Hou, Chengxia Lei, Global attractivity of the equilibria of the diffusive SIR and SEIR epidemic models with multiple parallel infectious stages and nonlinear incidence mechanism, 2022, 134, 08939659, 108352, 10.1016/j.aml.2022.108352
    44. Divine Wanduku, ESTIMATING WHITE NOISE INTENSITY REGIONS FOR COMPARABLE PROPERTIES OF A CLASS OF SEIRS STOCHASTIC AND DETERMINISTIC EPIDEMIC MODELS, 2021, 11, 2156-907X, 1095, 10.11948/20190372
    45. Mostafa Adimy, Abdennasser Chekroun, Toshikazu Kuniya, Global asymptotic stability for a distributed delay differential–difference system of a Kermack–McKendrick SIR model, 2022, 0003-6811, 1, 10.1080/00036811.2022.2075352
    46. Ousmane Koutou, Bakary Traoré, Boureima Sangaré, Analysis of Schistosomiasis Global Dynamics with General Incidence Functions and Two Delays, 2021, 7, 2349-5103, 10.1007/s40819-021-01188-y
    47. Fatima Zohra Hathout, Tarik Mohammed Touaoula, Salih Djilali, Mathematical analysis of a triple age dependent epidemiological model with including a protection strategy, 2022, 27, 1531-3492, 7409, 10.3934/dcdsb.2022048
    48. Manuel De la Sen, Asier Ibeas, Aitor Garrido, On a new SEIRDE o I o epidemic model eventually initiated from outside with delayed re-susceptibility and vaccination and treatment feedback controls, 2021, 96, 0031-8949, 095002, 10.1088/1402-4896/ac018c
    49. Zareen A. Khan, Abdesslem Lamrani Alaoui, Anwar Zeb, Mouhcine Tilioua, Salih Djilali, Global dynamics of a SEI epidemic model with immigration and generalized nonlinear incidence functional, 2021, 27, 22113797, 104477, 10.1016/j.rinp.2021.104477
    50. Soufiane Bentout, Salih Djilali, Sunil Kumar, Tarik Mohammed Touaoula, Threshold dynamics of difference equations for SEIR model with nonlinear incidence function and infinite delay, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-01466-0
    51. Ousmane Koutou, Abou Bakari Diabaté, Boureima Sangaré, Mathematical analysis of the impact of the media coverage in mitigating the outbreak of COVID-19, 2023, 205, 03784754, 600, 10.1016/j.matcom.2022.10.017
    52. Salih Djilali, Yuming Chen, Soufiane Bentout, Asymptotic analysis of SIR epidemic model with nonlocal diffusion and generalized nonlinear incidence functional, 2022, 0170-4214, 10.1002/mma.8903
    53. Abdesslem Lamrani Alaoui, Moulay Rchid Sidi Ammi, Mouhcine Tilioua, Delfim F.M. Torres, 2022, 9780323905046, 191, 10.1016/B978-0-32-390504-6.00016-4
    54. Yukihiko Nakata, Yoichi Enatsu, Hisashi Inaba, Toshikazu Kuniya, Yoshiaki Muroya, Yasuhiro Takeuchi, Stability of epidemic models with waning immunity, 2014, 50, 0916-5746, 10.55937/sut/1424972727
    55. Salih Djilali, Soufiane Bentout, Tarik Mohamed Touaoula, Abdon Atangana, Threshold dynamics for an age‐structured heroin epidemic model with distributed delays, 2023, 0170-4214, 10.1002/mma.9275
    56. Abou Bakari Diabaté, Boureima Sangaré, Ousmane Koutou, Optimal control analysis of a COVID-19 and Tuberculosis (TB) co-infection model with an imperfect vaccine for COVID-19, 2023, 2254-3902, 10.1007/s40324-023-00330-8
    57. Mostafa Adimy, Abdennasser Chekroun, Toshikazu Kuniya, Hanene Meghelli, Global stability of a SEIR discrete delay differential‐difference system with protection phase, 2023, 0170-4214, 10.1002/mma.9533
    58. Jiapu Zhang, 2023, Chapter 28, 978-3-031-36772-4, 897, 10.1007/978-3-031-36773-1_28
    59. Mostafa Adimy, Abdennasser Chekroun, Charlotte Dugourd-Camus, Hanene Meghelli, Global Asymptotic Stability of a Hybrid Differential–Difference System Describing SIR and SIS Epidemic Models with a Protection Phase and a Nonlinear Force of Infection, 2024, 23, 1575-5460, 10.1007/s12346-023-00891-z
    60. Esra KARAOĞLU, On the stability analysis of a fractional order epidemic model including the most general forms of nonlinear incidence and treatment function, 2023, 73, 1303-5991, 285, 10.31801/cfsuasmas.1258454
    61. Nursanti Anggriani, Lazarus Kalvein Beay, Meksianis Z. Ndii, Fatuh Inayaturohmat, Sanubari Tansah Tresna, A mathematical model for a disease outbreak considering waning-immunity class with nonlinear incidence and recovery rates, 2024, 25889338, 10.1016/j.jobb.2024.05.005
    62. Adama Kiemtore, Wenddabo Olivier Sawadogo, Pegdwindé Ousséni Fabrice Ouédraogo, Fatima Aqel, Hamza Alaa, Kounpielime Sosthène Somda, Abdel Karim Serme, Mathematical modelling of the impact of vaccination, treatment and media awareness on the hepatitis B epidemic in Burkina Faso, 2024, 4, 2791-8564, 139, 10.53391/mmnsa.1528691
    63. Thabet Abdeljawad, Nadeem Khan, Bahaaeldin Abdalla, Asma Al-Jaser, Manar Alqudah, Kamal Shah, A mathematical analysis of human papilloma virus (HPV) disease with new perspectives of fractional calculus, 2025, 125, 11100168, 575, 10.1016/j.aej.2025.03.136
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(204) PDF downloads(17) Cited by(0)

Article outline

Figures and Tables

Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog