Loading [MathJax]/jax/output/SVG/jax.js
Editorial

Neuroethics: what the study of brain disorders can tell about moral behavior

  • Received: 04 October 2021 Accepted: 14 October 2021 Published: 25 October 2021
  • The growing interest in the study of morality has led to the birth of a new discipline in the field of moral philosophy called Neuroethics, a multidisciplinary approach that aims to combine philosophy and neuroscience. In this editorial, we explored the relevance of clinical models affected by neurological/psychiatric disorders to learn more about mechanisms sub-serving ethical behaviour at neural and cognitive level.

    Citation: Carmelo M Vicario, Chiara Lucifora. Neuroethics: what the study of brain disorders can tell about moral behavior[J]. AIMS Neuroscience, 2021, 8(4): 543-547. doi: 10.3934/Neuroscience.2021029

    Related Papers:

    [1] Najmeddine Attia, Ahmed Ghezal . Global stability and co-balancing numbers in a system of rational difference equations. Electronic Research Archive, 2024, 32(3): 2137-2159. doi: 10.3934/era.2024097
    [2] Bin Wang . Random periodic sequence of globally mean-square exponentially stable discrete-time stochastic genetic regulatory networks with discrete spatial diffusions. Electronic Research Archive, 2023, 31(6): 3097-3122. doi: 10.3934/era.2023157
    [3] Tran Hong Thai, Nguyen Anh Dai, Pham Tuan Anh . Global dynamics of some system of second-order difference equations. Electronic Research Archive, 2021, 29(6): 4159-4175. doi: 10.3934/era.2021077
    [4] Amira Khelifa, Yacine Halim . Global behavior of P-dimensional difference equations system. Electronic Research Archive, 2021, 29(5): 3121-3139. doi: 10.3934/era.2021029
    [5] Qianhong Zhang, Shirui Zhang, Zhongni Zhang, Fubiao Lin . On three-dimensional system of rational difference equations with second-order. Electronic Research Archive, 2025, 33(4): 2352-2365. doi: 10.3934/era.2025104
    [6] Wedad Albalawi, Fatemah Mofarreh, Osama Moaaz . Dynamics of a general model of nonlinear difference equations and its applications to LPA model. Electronic Research Archive, 2024, 32(11): 6072-6086. doi: 10.3934/era.2024281
    [7] Miao Peng, Rui Lin, Zhengdi Zhang, Lei Huang . The dynamics of a delayed predator-prey model with square root functional response and stage structure. Electronic Research Archive, 2024, 32(5): 3275-3298. doi: 10.3934/era.2024150
    [8] Feng Wang, Taotao Li . Dynamics of a stochastic epidemic model with information intervention and vertical transmission. Electronic Research Archive, 2024, 32(6): 3700-3727. doi: 10.3934/era.2024168
    [9] Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour . On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, 2021, 29(5): 2841-2876. doi: 10.3934/era.2021017
    [10] Yunxia Niu, Chaoran Qi, Yao Zhang, Wahidullah Niazi . Numerical analysis and simulation of the compact difference scheme for the pseudo-parabolic Burgers' equation. Electronic Research Archive, 2025, 33(3): 1763-1791. doi: 10.3934/era.2025080
  • The growing interest in the study of morality has led to the birth of a new discipline in the field of moral philosophy called Neuroethics, a multidisciplinary approach that aims to combine philosophy and neuroscience. In this editorial, we explored the relevance of clinical models affected by neurological/psychiatric disorders to learn more about mechanisms sub-serving ethical behaviour at neural and cognitive level.



    First of all, it is important to keep in mind that N0, Z, R, R+ and R+{0}, refer to the non-negative integer set, integer set, real set, positive real set and non-negative real set, respectively. If Φ,ΨZ and ΦΨ, the notation k=¯Φ,Ψ stands for {kZ:ΦkΨ}.

    It is of utmost importance to use different branches of science in tandem. Mathematics can also be deployed in research fields of other scientific areas. Especially, mathematical models of many sorts have been developed for many areas of study, such as ecology, medicine, population biology, biostatistics and molecular biology in [1]. In order to apply mathematical modeling in biology, both mathematical and biological information are required. As such, multidisciplinary or interdisciplinary research studies are very popular these days (see [2,3,4,5,6,7,8,9,10,11,12,13,14,15]).

    Difference equations, which represent a topic of applied mathematics, can also be used in mathematical modeling. In addition, difference equations are used to define real discrete models in different areas of advanced science, such as control theory, biology, physics, economics and psychology. One of the applications of difference equations in biology is the population model. Some population models involve exponential-form difference equations. Difference equations of the mentioned type attract the attention of mathematicians. But, their stability analysis process can be complex. Therefore, studying these difference equations and systems is worthwhile. To date, a significant number of papers concerning difference equations have been published (see [16,17,18,19,20,21,22,23,24,25,26,27]).

    As a model in the field of mathematical biology, several difference equations of the exponential-type were studied. For example, the following single-species population model

    Un+1=κ+ϵUn1eUn, nN0, (1.1)

    where κ,ϵR+ and U1,U0R+{0}, was investigated by El-Metwally et al. in [28]. κ was used as the migration rate and ϵ was taken as the population growth rate in Eq (1.1).

    There is another example, in which the authors of [29] changed Eq (1.1) to a newer version as;

    Un+1=κ+ϵUneUn1, nN0, (1.2)

    where U1,U0R+{0} and κ,ϵR+. As a model in the field of mathematical biology, Eq (1.2) was investigated. In Eq (1.2), κ is the migration rate and ϵ is the population growth rate.

    The authors of [30] researched the dynamical properties of the next exponential-type difference equation:

    Un+1=κ+ϵeUnζ+Un1, nN0, (1.3)

    where U1,U0R+{0} and κ,ϵ,ζR+. Equation (1.3) represent a mathematical biology-purposed model, where κ is the migration rate, ϵ is the population growth proportion and ζ is the carrying capacity.

    Comert et al. in [31], explored the global behavior of the next exponential-type difference equation:

    Un+1=δ+ϵeUnζ+Unk, nN0, (1.4)

    where k is an even number, the initial values Uk,Uk+1,,U0R+{0} and the parameters δ,ϵ,ζR+.

    Moreover, there are numerous studies that can be viewed as a model for difference equations of the exponential-type in the literature [32,33,34,35].

    Some authors extended Eq (1.3) to the two-dimensional exponential-type difference equations systems. For instance, Papaschinopoulos et al. examined the following systems of two-dimensional exponential-form difference equations:

    Tn+1=κ+ϵeRnζ+Rn1, Rn+1=δ+λeTnμ+Tn1,Tn+1=κ+ϵeRnζ+Tn1, Rn+1=δ+λeTnμ+Rn1,Tn+1=κ+ϵeTnζ+Rn1, Rn+1=δ+λeRnμ+Tn1, (1.5)

    for nN0, where T1,T0,R1,R0R+ and κ,ϵ,ζ,δ,λ,μR+ in [36]. The systems given by in (1.5) are two-species population models.

    In addition, Thai et al. in [37], studied the dynamical properties of the following systems:

    Tn+1=α1+β1eTn1γ1+Rn, Rn+1=α2+β2eRn1γ2+Tn,Tn+1=α1+β1eRn1γ1+Tn, Rn+1=α2+β2eTn1γ2+Rn, (1.6)

    for nN0, where the parameters αk,βk,γkR+, for k{1,2} and T1,T0,R1,R0R+. Two-dimensional exponential-form difference equations systems have been studied by many authors in recent years (see [38,39,40,41,42,43,44]).

    Our aim in this paper is to generalize the systems given by (1.6) to the following three-dimensional system of difference equations of exponential-form:

    Υn+1=Γ1+δ1eΨn1Θ1+Ψn, Ψn+1=Γ2+δ2eΩn1Θ2+Ωn,Ωn+1=Γ3+δ3eΥn1Θ3+Υn, (1.7)
    Υn+1=Γ1+δ1eΨn1Θ1+Υn, Ψn+1=Γ2+δ2eΩn1Θ2+Ψn,Ωn+1=Γ3+δ3eΥn1Θ3+Ωn, (1.8)

    for nN0, where the parameters Γk, δk, Θk for k=¯1,3 and the initial values Υν, Ψν, Ων, for ν{0,1} are positive constants. Another goal of this study is to contribute to the literature, since there are few studies on systems of three-dimensional exponential-form difference equations in the literature (see [45,46]).

    In mathematical biology, the systems given by (1.7) and (1.8) can be viewed as three-species population models. Also, the biological parameters of systems (1.7) and (1.8) are shown in Table 1.

    Table 1.  Biological presentations in systems (1.7) and (1.8).
    Parameters Biological presentations
    Γ1 Migration rate of species Υn
    δ1 Population growth rate of species Υn
    Θ1 The carrying capacity of species Υn
    Γ2 Migration rate of species Ψn
    δ2 Population growth rate of species Ψn
    Θ2 The carrying capacity of species Ψn
    Γ3 Migration rate of species Ωn
    δ3 Population growth rate of species Ωn
    Θ3 The carrying capacity of species Ωn

     | Show Table
    DownLoad: CSV

    Our paper is organized as follows: In the following section, we study the boundedness, local and global stability of the unique positive equilibrium point and rate of convergence of system (1.7). In the third section, we study the boundedness, local and global stability of the unique positive equilibrium point and rate of convergence of system (1.8). The conclusion is given in the last section.

    Before we start our analysis, recall some lemmas and definitions which are used throughout this work. For more particulars, one can refer to the references [47,48,49,50].

    n+1=f(n,n1,ρn,ρn1,σn,σn1),ρn+1=g(n,n1,ρn,ρn1,σn,σn1), nN0,σn+1=h(n,n1,ρn,ρn1,σn,σn1), (1.9)

    where f:U2×V2×W2U, g:U2×V2×W2V, h:U2×V2×W2W are continuous differentiable functions and U, V, W are some intervals of real numbers. Also, a solution {n,ρn,σn}n=1 of system (1.9) is uniquely defined by the initial values (μ,ρμ,σμ)U×V×W for μ{0,1}. Along with system (1.9), we take into account the suitable vector map F=(f,n,g,ρn,h,σn). An equilibrium point of system (1.9) is a point (¯,¯ρ,¯σ) that supplies

    ¯=f(¯,¯,¯ρ,¯ρ,¯σ,¯σ), ¯ρ=g(¯,¯,¯ρ,¯ρ,¯σ,¯σ), ¯σ=h(¯,¯,¯ρ,¯ρ,¯σ,¯σ).

    The point (¯,¯,¯ρ,¯ρ,¯σ,¯σ) is named a fixed point of the vector map F.

    Definition 1. Assume that (¯,¯,¯ρ,¯ρ,¯σ,¯σ) is a fixed point of the vector map F=(f,n,g,ρn,h,σn), where f, g and h are continuous differentiable functions at (¯,¯ρ,¯σ). The linearized system given by system (1.9) about the equilibrium point (¯,¯ρ,¯σ) is

    Kn+1=JFKn,

    where Kn=(nn1ρnρn1σnσn1) and JF is the Jacobian matrix of system (1.9) about the equilibrium point (¯,¯ρ,¯σ).

    Lemma 1. Let Kn+1=F(Kn), nN0, be a system of difference equations where ¯K is a fixed point of F. If all eigenvalues of the Jacobian matrix JF about ¯K lie inside the open unit disk |λ|<1, then ¯K is locally asymptotically stable. If one of them has a modulus greater than one, then ¯K is unstable.

    Definition 2. If there exist positive constants t and T and an integer N1, the positive solution {n,ρn,σn}n=1 of system (1.9) is bounded and persists such that

    tn,ρn,σnT, nN.

    The following lemma gives the rate of convergence of solutions of the systems of difference equations.

    Lemma 2. ([37])

    Xn+1=[α+β(n)]Xn, (1.10)

    where Xn is a k-dimensional vector, αCk×k is a constant matrix and β:Z+Ck×k is a matrix function satisfying

    ||βn||0,when n, (1.11)

    where ||.|| denotes any matrix norm which is associated with the vector norm

    ||(x,y)||=x2+y2.

    Lemma 3. Every positive solution of system (1.7) is bounded and persists.

    Proof. Suppose that {(Υn,Ψn,Ωn)} is an arbitrary solution of system (1.7). We get

    ΥnΓ1+δ1Θ1=Π1, ΨnΓ2+δ2Θ2=Π2, ΩnΓ3+δ3Θ3=Π3, nN. (2.1)

    Then, from system (1.7) and Eq (2.1), we have

    ΥnΓ1+δ1e(Γ2+δ2Θ2)Θ1+(Γ2+δ2Θ2)=Λ1,ΨnΓ2+δ2e(Γ3+δ3Θ3)Θ2+(Γ3+δ3Θ3)=Λ2,ΩnΓ3+δ3e(Γ1+δ1Θ1)Θ3+(Γ1+δ1Θ1)=Λ3, (2.2)

    for nN.

    Therefore, from Eqs (2.1) and (2.2), the proof of the lemma is complete.

    We can indicate the following lemma, which is useful for our study of system (1.7). We consider the following general system of difference equations:

    xn+1=f(yn,yn1), yn+1=g(zn,zn1), zn+1=h(xn,xn1), (2.3)

    where f, g and h are continuous functions and the initial conditions x1, x0, y1, y0, z1 and z0 are positive numbers.

    Lemma 4. Let f, g, h, f:R+R+, g:R+R+ and h:R+R+ be continuous functions. Let a1, b1, a2, b2, a3 and b3 be positive numbers such that a1<b1, a2<b2, a3<b3 and

    f:[a2,b2]×[a2,b2][a1,b1], g:[a3,b3]×[a3,b3][a2,b2], h:[a1,b1]×[a1,b1][a3,b3].

    Suppose that the function f(u,v) is a decreasing function with respect to u (resp. v) for every v (resp. u), g(w,t) is a decreasing function with respect to w (resp. t) for all t (resp. w) and h(p,s) is a decreasing function with respect to p (resp. s) for every s (resp. p). Finally, suppose that, if m, M, r, R, t and T are real numbers such that, if

    M=f(r,r), m=f(R,R), R=g(t,t), r=g(T,T), T=h(m,m), t=h(M,M), (2.4)

    then m=M, r=R and t=T. Then, system (2.3) has a unique positive equilibrium (¯x,¯y,¯z) and every positive solution of system (2.3) that satisfies

    xn0[a1,b1],xn0+1[a1,b1],yn0[a2,b2],yn0+1[a2,b2],zn0[a3,b3],zn0+1[a3,b3],n0N,

    tends to the unique positive equilibrium of system (2.3).

    Proof. System (2.3) is equivalent to the following system of separated equations:

    xn+1=f(yn,yn1)=f(g(zn1,zn2),g(zn2,zn3))=f(g(h(xn2,xn3),h(xn3,xn4)),g(h(xn3,xn4),h(xn4,xn5)))=F(xn2,xn3,xn4,xn5),n4,yn+1=g(zn,zn1)=g(h(xn1,xn2),h(xn2,xn3))=g(h(f(yn2,yn3),f(yn3,yn4)),h(f(yn3,yn4),f(yn4,yn5)))=G(yn2,yn3,yn4,yn5),n4,zn+1=h(xn,xn1)=h(f(yn1,yn2),f(yn2,yn3))=h(f(g(zn2,zn3),g(zn3,zn4)),f(g(zn3,zn4),g(zn4,zn5)))=H(zn2,zn3,zn4,zn5),n4.

    We consider the equation

    xn+1=F(xn2,xn3,xn4,xn5). (2.5)

    From the conditions of f, g, h, we have that F:[a1,b1]×[a1,b1]×[a1,b1][a1,b1] and F(α,β,γ,δ) is increasing in α for all β,γ,δ; increasing in β for all α,γ,δ; increasing in γ for all α,β,δ; increasing in δ for all α,β,γ. Now, let us take m and M as positive numbers so that

    M=F(M,M,M,M,)=f(g(h(M,M),h(M,M)),g(h(M,M),h(M,M))),m=F(m,m,m,m,)=f(g(h(m,m),h(m,m)),g(h(m,m),h(m,m))).

    By setting h(m,m)=T and h(M,M)=t, we get

    M=f(g(t,t),g(t,t)),m=f(g(T,T),g(T,T)).

    By setting g(t,t)=R and g(T,T)=r, we have that the relations given by Eq (2.4) are satisfied. Then, from a hypothesis of Lemma 4, we have that m=M. Equation (2.5) has a unique positive equilibrium ¯x, and every positive solution of Eq (2.5) tends to the unique positive equilibrium ¯x. Similarly, we can prove that the equation

    yn+1=G(yn2,yn3,yn4,yn5), (2.6)

    has a unique positive equilibrium ¯y and every positive solution of Eq (2.6) tends to the unique positive equilibrium ¯y. Similarly, we can prove that the equation

    zn+1=H(zn2,zn3,zn4,zn5), (2.7)

    has a unique positive equilibrium ¯z and every positive solution of Eq (2.7) tends to the unique positive equilibrium ¯z. This completes the proof of the lemma.

    Theorem 3. For the local stability about (¯Υ,¯Ψ,¯Ω)[Λ1,Π1]×[Λ2,Π2]×[Λ3,Π3], i.e., the equilibrium point of system (1.7), the next declarations are valid:

    (i) (¯Υ,¯Ψ,¯Ω) is locally asymptotically stable if L1<1,

    (ii) (¯Υ,¯Ψ,¯Ω) is unstable if U1>1,

    where

    L1=1Θ1Θ2Θ3(Λ1Λ2Λ3+e1(δ1(Λ3+δ2eΛ2)+δ2(Λ1+δ3eΛ3)+δ3(Λ2+δ1eΛ1))+δ1δ2δ3), (2.8)
    U1=1(Θ1+Π2)(Θ2+Π3)(Θ3+Π1)((Γ1+δ1eΠ2)(Γ2+δ2eΠ3)(Γ3+δ3eΠ1)(Θ1+Π2)(Θ2+Π3)(Θ3+Π1)+δ1δ2δ3eΠ1Π2Π3)+(Γ2+δ2eΠ3)(Θ1+Π2)(Θ2+Π3)2(Θ3+Π1)((Γ1+δ1eΠ2)δ3eΠ1(Θ1+Π2)+(Γ3+δ3eΠ1)δ1eΠ2(Θ3+Π1))+(Γ1+δ1eΠ2)δ2eΠ3(Θ1+Π2)(Θ2+Π3)(Θ3+Π1)((Γ3+δ3eΠ1)(Θ1+Π2)(Θ3+Π1)+δ3eΠ1(Θ1+Π2))+δ1eΠ2(Θ1+Π2)(Θ2+Π3)(Θ3+Π1)((Γ2+δ2eΠ3)δ3eΠ1(Θ2+Π3)+(Γ3+δ3eΠ1)δ2eΠ3(Θ3+Π1)). (2.9)

    Proof. (i) From system (1.7), we obtain

    ¯Υ=Γ1+δ1e¯ΨΘ1+¯Ψ, ¯Ψ=Γ2+δ2e¯ΩΘ2+¯Ω, ¯Ω=Γ3+δ3e¯ΥΘ3+¯Υ. (2.10)

    In order to construct the corresponding linearized form of system (1.7), we consider the following transformation:

    (Υn+1,Υn,Ψn+1,Ψn,Ωn+1,Ωn)(f,f1,g,g1,h,h1), (2.11)

    where

    f=Γ1+δ1eΨn1Θ1+Ψn, f1=Υn,g=Γ2+δ2eΩn1Θ2+Ωn,g1=Ψn,h=Γ3+δ3eΥn1Θ3+Υn, h1=Ωn. (2.12)

    By using the transformation given by Eq (2.11), we obtain

    FJ(¯Υ,¯Ψ,¯Ω)=(00s1t1001000000000s2t2001000s3t30000000010), (2.13)

    where

    s1=Γ1+δ1e¯Ψ(Θ1+¯Ψ)2, t1=δ1e¯ΨΘ1+¯Ψ,s2=Γ2+δ2e¯Ω(Θ2+¯Ω)2, t2=δ2e¯ΩΘ2+¯Ω,s3=Γ3+δ3e¯Υ(Θ3+¯Υ)2, t3=δ3e¯ΥΘ3+¯Υ. (2.14)

    The characteristic equation of FJ(¯Υ,¯Ψ,¯Ω) is below:

    λ6+m1λ3+m2λ2+m3λ+m4=0, (2.15)

    where

    m1=s1s2s3,m2=(s1s2t3+s1t2s3+t1s2s3),m3=(s1t2t3+t1s2t3+t1t2s3),m4=t1t2t3. (2.16)

    Because xex<e1, for x>0, we have

    4i=1|mi|=(Γ1+δ1e¯Ψ)(Γ2+δ2e¯Ω)(Γ3+δ3e¯Υ)(Θ1+¯Ψ)2(Θ2+¯Ω)2(Θ3+¯Υ)2+(Γ1+δ1e¯Ψ)(Γ2+δ2e¯Ω)δ3e¯Υ(Θ1+¯Ψ)2(Θ2+¯Ω)2(Θ3+¯Υ)+(Γ1+δ1e¯Ψ)δ2e¯Ω(Γ3+δ3e¯Υ)(Θ1+¯Ψ)2(Θ2+¯Ω)(Θ3+¯Υ)2+δ1e¯Ψ(Γ2+δ2e¯Ω)(Γ3+δ3e¯Υ)(Θ1+¯Ψ)(Θ2+¯Ω)2(Θ3+¯Υ)2+(Γ1+δ1e¯Ψ)δ2δ3e¯Ω¯Υ(Θ1+¯Ψ)2(Θ2+¯Ω)(Θ3+¯Υ)+(Γ2+δ2e¯Ω)δ1δ3e¯Ψ¯Υ(Θ1+¯Ψ)(Θ2+¯Ω)2(Θ3+¯Υ)+(Γ3+δ3e¯Υ)δ1δ2e¯Ψ¯Ω(Θ1+¯Ψ)(Θ2+¯Ω)(Θ3+¯Υ)2+δ1δ2δ3e¯Υ¯Ψ¯Ω(Θ1+¯Ψ)(Θ2+¯Ω)(Θ3+¯Υ)=¯Υ ¯Ψ ¯Ω(Θ1+¯Ψ)(Θ2+¯Ω)(Θ3+¯Υ)+¯Ψδ3e¯Υ¯Υ(Θ1+¯Ψ)(Θ2+¯Ω)(Θ3+¯Υ)+¯Υδ2e¯Ω¯Ω(Θ1+¯Ψ)(Θ2+¯Ω)(Θ3+¯Υ)+¯Ωδ1e¯Ψ¯Ψ(Θ1+¯Ψ)(Θ2+¯Ω)(Θ3+¯Υ)+δ3e¯Υ¯Υδ2e¯Ω(Θ1+¯Ψ)(Θ2+¯Ω)(Θ3+¯Υ)+δ1e¯Ψ¯Ψδ3e¯Υ(Θ1+¯Ψ)(Θ2+¯Ω)(Θ3+¯Υ)+δ2e¯Ω¯Ωδ1e¯Ψ(Θ1+¯Ψ)(Θ2+¯Ω)(Θ3+¯Υ)+δ1δ2δ3e¯Υ¯Ψ¯Ω(Θ1+¯Ψ)(Θ2+¯Ω)(Θ3+¯Υ)<¯Υ ¯Ψ ¯ΩΘ1Θ2Θ3+e1(δ3¯Ψ+δ2¯Υ+δ1¯Ω+δ2δ3e¯Ω+δ1δ3e¯Υ+δ1δ2e¯Ψ)Θ1Θ2Θ3+δ1δ2δ3Θ1Θ2Θ3<1Θ1Θ2Θ3(Λ1Λ2Λ3+e1(δ1(Λ3+δ2eΛ2)+δ2(Λ1+δ3eΛ3)+δ3(Λ2+δ1eΛ1))+δ1δ2δ3)<1. (2.17)

    By supposing that L1<1, from Eq (2.17), we have that 4i=1|mi|<1. According to the Rouche theorem, (¯Υ,¯Ψ,¯Ω) is locally asymptotically stable.

    (ii) We get

    4i=1|mi|=(Γ1+δ1e¯Ψ)(Γ2+δ2e¯Ω)(Γ3+δ3e¯Υ)(Θ1+¯Ψ)2(Θ2+¯Ω)2(Θ3+¯Υ)2+(Γ1+δ1e¯Ψ)(Γ2+δ2e¯Ω)δ3e¯Υ(Θ1+¯Ψ)2(Θ2+¯Ω)2(Θ3+¯Υ)+(Γ1+δ1e¯Ψ)δ2e¯Ω(Γ3+δ3e¯Υ)(Θ1+¯Ψ)2(Θ2+¯Ω)(Θ3+¯Υ)2+δ1e¯Ψ(Γ2+δ2e¯Ω)(Γ3+δ3e¯Υ)(Θ1+¯Ψ)(Θ2+¯Ω)2(Θ3+¯Υ)2+(Γ1+δ1e¯Ψ)δ2δ3e¯Ω¯Υ(Θ1+¯Ψ)2(Θ2+¯Ω)(Θ3+¯Υ)+(Γ2+δ2e¯Ω)δ1δ3e¯Ψ¯Υ(Θ1+¯Ψ)(Θ2+¯Ω)2(Θ3+¯Υ)+(Γ3+δ3e¯Υ)δ1δ2e¯Ψ¯Ω(Θ1+¯Ψ)(Θ2+¯Ω)(Θ3+¯Υ)2+δ1δ2δ3e¯Υ¯Ψ¯Ω(Θ1+¯Ψ)(Θ2+¯Ω)(Θ3+¯Υ)(Γ1+δ1eΠ2)(Γ2+δ2eΠ3)(Γ3+δ3eΠ1)(Θ1+Π2)2(Θ2+Π3)2(Θ3+Π1)2+(Γ1+δ1eΠ2)(Γ2+δ2eΠ3)δ3eΠ1(Θ1+Π2)2(Θ2+Π3)2(Θ3+Π1)+(Γ1+δ1eΠ2)δ2eΠ3(Γ3+δ3eΠ1)(Θ1+Π2)2(Θ2+Π3)(Θ3+Π1)2+δ1eΠ2(Γ2+δ2eΠ3)(Γ3+δ3eΠ1)(Θ1+Π2)(Θ2+Π3)2(Θ3+Π1)2+(Γ1+δ1eΠ2)δ2δ3eΠ3Π1(Θ1+Π2)2(Θ2+Π3)(Θ3+Π1)+(Γ2+δ2eΠ3)δ1δ3eΠ2Π1(Θ1+Π2)(Θ2+Π3)2(Θ3+Π1)+(Γ3+δ3eΠ1)δ1δ2eΠ2Π3(Θ1+Π2)(Θ2+Π3)(Θ3+Π1)2+δ1δ2δ3eΠ1Π2Π3(Θ1+Π2)(Θ2+Π3)(Θ3+Π1)=1(Θ1+Π2)(Θ2+Π3)(Θ3+Π1)((Γ1+δ1eΠ2)(Γ2+δ2eΠ3)(Γ3+δ3eΠ1)(Θ1+Π2)(Θ2+Π3)(Θ3+Π1)+δ1δ2δ3eΠ1Π2Π3)+(Γ2+δ2eΠ3)(Θ1+Π2)(Θ2+Π3)2(Θ3+Π1)((Γ1+δ1eΠ2)δ3eΠ1(Θ1+Π2)+(Γ3+δ3eΠ1)δ1eΠ2(Θ3+Π1))+(Γ1+δ1eΠ2)δ2eΠ3(Θ1+Π2)(Θ2+Π3)(Θ3+Π1)((Γ3+δ3eΠ1)(Θ1+Π2)(Θ3+Π1)+δ3eΠ1(Θ1+Π2))+δ1eΠ2(Θ1+Π2)(Θ2+Π3)(Θ3+Π1)((Γ2+δ2eΠ3)δ3eΠ1(Θ2+Π3)+(Γ3+δ3eΠ1)δ2eΠ3(Θ3+Π1))>1. (2.18)

    By supposing that U1>1, from Eq (2.18), we have that 4i=1|mi|>1. According to the Rouche theorem, (¯Υ,¯Ψ,¯Ω) is unstable.

    Theorem 4. System (1.7) has a unique positive equilibrium (¯Υ,¯Ψ,¯Ω), and every positive solution of system (1.7) tends to the unique positive equilibrium of system (1.7) as n if

    δ1,δ3<Θ2,δ1,δ2<Θ3,δ2,δ3<Θ1. (2.19)

    Proof. We consider the functions

    f(u,v)=Γ1+δ1euΘ1+v, g(w,t)=Γ2+δ2ewΘ2+t,h(k,l)=Γ3+δ3ekΘ3+l,  (2.20)

    where

    k,l[Λ1,Π1]=[Γ1+δ1e(Γ2+δ2Θ2)Θ1+(Γ2+δ2Θ2),Γ1+δ1Θ1],u,v[Λ2,Π2]=[Γ2+δ2e(Γ3+δ3Θ3)Θ2+(Γ3+δ3Θ3),Γ2+δ2Θ2],w,t[Λ3,Π3]=[Γ3+δ3e(Γ1+δ1Θ1)Θ3+(Γ1+δ1Θ1),Γ3+δ3Θ3]. (2.21)

    From Eqs (2.20) and (2.21) we get the following relations for k,l[Λ1,Π1], u,v[Λ2,Π2] and w,t[Λ3,Π3]:

    f(u,v)[Λ1,Π1],g(w,t)[Λ2,Π2],h(k,l)[Λ3,Π3];

    thus, f:[Λ2,Π2]×[Λ2,Π2][Λ1,Π1], g:[Λ3,Π3]×[Λ3,Π3][Λ2,Π2] and h:[Λ1,Π1]×[Λ1,Π1][Λ3,Π3]. Let {(Υn,Ψn,Ωn)} be an arbitrary solution of system (1.7). Therefore, from Lemma 3, for nN, we get

    Υn[Λ1,Π1],Ψn[Λ2,Π2],Ωn[Λ3,Π3].

    Now, let m, M, r, R, t and T be positive numbers such that

    M=Γ1+δ1erΘ1+r, m=Γ1+δ1eRΘ1+R,R=Γ2+δ2etΘ2+t, r=Γ2+δ2eTΘ2+T,T=Γ3+δ3emΘ3+m, t=Γ3+δ3eMΘ3+M. (2.22)

    Then, we consider the functions

    F(x)=Γ1+δ1eq1(x)Θ1+q1(x)x, q1(x)=Γ3+δ3exΘ3+x, x[Λ1,Π1], (2.23)
    G(y)=Γ2+δ2eq2(y)Θ2+q2(y)y, q2(y)=Γ1+δ1eyΘ1+y, y[Λ2,Π2], (2.24)
    H(z)=Γ3+δ3eq3(z)Θ3+q3(z)z, q3(z)=Γ2+δ2ezΘ2+z, z[Λ3,Π3]. (2.25)

    Note that F maps the interval [Λ1,Π1] into itself. We claim that the equation F(x)=0 has a unique solution in [Λ1,Π1]. From Eq (2.23), we get

    F(x)=q1(x)δ1eq1(x)(Θ1+q1(x))+Γ1+δ1eq1(x)(Θ1+q1(x))21,q1(x)=δ3ex(Θ3+x)+(Γ3+δ3ex)(Θ3+x)2, x[Λ1,Π1]. (2.26)

    Let ¯x, ¯x[Λ1,Π1] be a solution of the equation F(x)=0. Then, from Eq (2.23), we get

    ¯x(Θ1+q1(¯x))=Γ1+δ1eq1(¯x), q1(¯x)(Θ3+¯x)=Γ3+δ3e¯x. (2.27)

    Now, observe that Eqs (2.26) and (2.27) imply that

    q1(¯x)=δ3e¯x+q1(¯x)Θ3+¯x, δ1eq1(¯x)(Θ1+q1(¯x))+Γ1+δ1eq1(¯x)(Θ1+q1(¯x))2=δ1eq1(¯x)+¯xΘ1+q1(¯x). (2.28)

    Then, from Eqs (2.19), (2.26) and (2.28), we have

    F(¯x)=δ3e¯x+q1(¯x)Θ1+q1(¯x)×δ1eq1(¯x)+¯xΘ3+¯x1<0. (2.29)

    Therefore, from Eq (2.29), we see that the equation F(x)=0 has a unique solution in [Λ1,Π1].

    Note that G maps the interval [Λ2,Π2] into itself. We claim that the equation G(y)=0 has a unique solution in [Λ2,Π2]. From Eq (2.24), we get

    G(y)=q2(y)δ2eq2(y)(Θ2+q2(y))+Γ2+δ2eq2(y)(Θ2+q2(y))21,q2(y)=δ1ey(Θ1+y)+(Γ1+δ1ey)(Θ1+y)2, y[Λ2,Π2]. (2.30)

    Let ¯y, ¯y[Λ2,Π2] be a solution of the equation G(y)=0. Then, from Eq (2.24), we get

    ¯y(Θ2+q2(¯y))=Γ2+δ2eq2(¯y), q2(¯y)(Θ1+¯y)=Γ1+δ1e¯y. (2.31)

    Now, observe that Eqs (2.30) and (2.31) imply that

    q2(¯y)=δ1e¯y+q2(¯y)Θ1+¯y, δ2eq2(¯y)(Θ2+q2(¯y))+Γ2+δ2eq2(¯y)(Θ2+q2(¯y))2=δ2eq2(¯y)+¯yΘ2+q2(¯y). (2.32)

    Then, from Eqs (2.19), (2.30) and (2.32), we have

    G(¯y)=δ1e¯y+q2(¯y)Θ2+q2(¯y)×δ2eq2(¯y)+¯yΘ1+¯y1<0. (2.33)

    Therefore, from Eq (2.33), we see that the equation G(y)=0 has a unique solution in [Λ2,Π2].

    Note that H maps the interval [Λ3,Π3] into itself. We claim that the equation H(z)=0 has a unique solution in [Λ3,Π3]. From Eq (2.25), we get

    H(z)=q3(z)δ3eq3(z)(Θ3+q3(z))+Γ3+δ3eq3(z)(Θ3+q3(z))21,q3(z)=δ2ez(Θ2+z)+(Γ2+δ2ez)(Θ2+z)2, z[Λ3,Π3]. (2.34)

    Let ¯z, ¯z[Λ3,Π3] be a solution of the equation H(z)=0. Then, from Eq (2.25), we get

    ¯z(Θ3+q3(¯z))=Γ3+δ3eq3(¯z), q3(¯z)(Θ2+¯z)=Γ2+δ2e¯z. (2.35)

    Now, observe that Eqs (2.34) and (2.35) imply that

    q3(¯z)=δ2e¯z+q3(¯z)Θ2+¯z, δ3eq3(¯z)(Θ3+q3(¯z))+Γ3+δ3eq3(¯z)(Θ3+q3(¯z))2=δ3eq3(¯z)+¯zΘ3+q3(¯z). (2.36)

    Then, from Eqs (2.19), (2.34) and (2.36), we have

    H(¯z)=δ2e¯z+q3(¯z)Θ3+q3(¯z)×δ3eq3(¯z)+¯zΘ2+¯z1<0. (2.37)

    Therefore, from, Eq (2.37) we see that the equation H(z)=0 has a unique solution in [Λ3,Π3].

    In addition, Eq (2.22) implies that m and M are roots of F(x)=0. Hence, we get that m=M. Similarly, Eq (2.22) implies that r and R are roots of G(y)=0. Hence, we get that r=R. Finally, Eq (2.22) implies that t and T are roots of H(z)=0. Hence, we get that t=T. From Lemma 4, system (1.7) has a unique positive equilibrium (¯Υ,¯Ψ,¯Ω) and every positive solution of system (1.7) tends to the unique positive equilibrium as n. This completes the proof of the theorem.

    Theorem 5. If {(Υn,Ψn,Ωn,)}n=1 is a positive solution of system (1.7) such that

    limnΥn=¯Υ, limnΨn=¯Ψ, limnΩn=¯Ω, (2.38)

    where

    ¯Υ[Λ1,Π1], ¯Ψ[Λ2,Π2], ¯Ω[Λ3,Π3], (2.39)

    then the error vector Φn=(Φ1n,Φ1n1,Φ2n,Φ2n1,Φ3n,Φ3n1)T of every solution of system (1.7) supplies both of the following asymptotic relations:

    limn(||Φn||)1n=|λ1,2,3,4,5,6FJ(¯Υ,¯Ψ,¯Ω)|,limn||Φn+1||||Φn||=|λ1,2,3,4,5,6FJ(¯Υ,¯Ψ,¯Ω)|, (2.40)

    where |λ1,2,3,4,5,6FJ(¯Υ,¯Ψ,¯Ω)| denotes the characteristic root of FJ(¯Υ,¯Ψ,¯Ω).

    Proof. To find the error terms, from system (1.7), we obtain

    Υn+1¯Υ=Γ1+δ1eΨn1Θ1+ΨnΓ1+δ1e¯ΨΘ1+¯Ψ=Γ1+δ1e¯Ψ(Θ1+Ψn)(Θ1+¯Ψ)(Ψn¯Ψ)+δ1(eΨn1e¯Ψ)(Θ1+Ψn)(Ψn1¯Ψ)(Ψn1¯Ψ),Ψn+1¯Ψ=Γ2+δ2eΩn1Θ2+ΩnΓ2+δ2e¯ΩΘ2+¯Ω=Γ2+δ2e¯Ω(Θ2+Ωn)(Θ2+¯Ω)(Ωn¯Ω)+δ2(eΩn1e¯Ω)(Θ2+Ωn)(Ωn1¯Ω)(Ωn1¯Ω),Ωn+1¯Ω=Γ3+δ3eΥn1Θ3+ΥnΓ3+δ3e¯ΥΘ3+¯Υ=Γ3+δ3e¯Υ(Θ3+Υn)(Θ3+¯Υ)(Υn¯Υ)+δ3(eΥn1e¯Υ)(Θ3+Υn)(Υn1¯Υ)(Υn1¯Υ), (2.41)

    that is,

    Υn+1¯Υ=Γ1+δ1e¯Ψ(Θ1+Ψn)(Θ1+¯Ψ)(Ψn¯Ψ)+δ1(eΨn1e¯Ψ)(Θ1+Ψn)(Ψn1¯Ψ)(Ψn1¯Ψ),Ψn+1¯Ψ=Γ2+δ2e¯Ω(Θ2+Ωn)(Θ2+¯Ω)(Ωn¯Ω)+δ2(eΩn1e¯Ω)(Θ2+Ωn)(Ωn1¯Ω)(Ωn1¯Ω),Ωn+1¯Ω=Γ3+δ3e¯Υ(Θ3+Υn)(Θ3+¯Υ)(Υn¯Υ)+δ3(eΥn1e¯Υ)(Θ3+Υn)(Υn1¯Υ)(Υn1¯Υ). (2.42)

    Set

    Φ1n=Υn¯Υ, Φ2n=Ψn¯Ψ, Φ3n=Ωn¯Ω. (2.43)

    By using Eq (2.43), Eq (2.42) can be written in the following form:

    Φ1n+1=dnΦ2n+enΦ2n1,Φ2n+1=fnΦ3n+gnΦ3n1,Φ3n+1=hnΦ1n+jnΦ1n1, (2.44)

    where

    dn=Γ1+δ1e¯Ψ(Θ1+Ψn)(Θ1+¯Ψ), en=δ1(eΨn1e¯Ψ)(Θ1+Ψn)(Ψn1¯Ψ),fn=Γ2+δ2e¯Ω(Θ2+Ωn)(Θ2+¯Ω), gn=δ2(eΩn1e¯Ω)(Θ2+Ωn)(Ωn1¯Ω),hn=Γ3+δ3e¯Υ(Θ3+Υn)(Θ3+¯Υ), jn=δ3(eΥn1e¯Υ)(Θ3+Υn)(Υn1¯Υ). (2.45)

    By taking the limits of dn, en, fn, gn, hn and jn, we respectively obtain

    limndn=Γ1+δ1e¯Ψ(Θ1+¯Ψ)2, limnen=δ1e¯ΨΘ1+¯Ψ,limnfn=Γ2+δ2e¯Ω(Θ2+¯Ω)2, limngn=δ2e¯ΩΘ2+¯Ω,limnhn=Γ3+δ3e¯Υ(Θ3+¯Υ)2, limnjn=δ3e¯ΥΘ3+¯Υ, (2.46)

    that is,

    dn=Γ1+δ1e¯Ψ(Θ1+¯Ψ)2+ξ2n, en=δ1e¯ΨΘ1+¯Ψ+ξ2n1,fn=Γ2+δ2e¯Ω(Θ2+¯Ω)2+ξ3n, gn=δ2e¯ΩΘ2+¯Ω+ξ3n1,hn=Γ3+δ3e¯Υ(Θ3+¯Υ)2+ξ1n, jn=δ3e¯ΥΘ3+¯Υ+ξ1n1, (2.47)

    where ξ1n0, ξ1n10, ξ2n0, ξ2n10, ξ3n0 and ξ3n10 as n. Then, we get Poincare difference system (1.10) of [51], where

    A=(00Γ1+δ1e¯Ψ(Θ1+¯Ψ)2δ1e¯ΨΘ1+¯Ψ001000000000Γ2+δ2e¯Ω(Θ2+¯Ω)2δ2e¯ΩΘ2+¯Ω001000Γ3+δ3e¯Υ(Θ3+¯Υ)2δ3e¯ΥΘ3+¯Υ0000000010), (2.48)

    and

    Bn=(00ξ2nξ2n1001000000000ξ3nξ3n1001000ξ1nξ1n10000000010), (2.49)

    and ||Bn||0 as n. Moreover, the limiting system of error terms turns into

    (Φ1n+1Φ1nΦ2n+1Φ2nΦ3n+1Φ3n)=(00Γ1+δ1e¯Ψ(Θ1+¯Ψ)2δ1e¯ΨΘ1+¯Ψ001000000000Γ2+δ2e¯Ω(Θ2+¯Ω)2δ2e¯ΩΘ2+¯Ω001000Γ3+δ3e¯Υ(Θ3+¯Υ)2δ3e¯ΥΘ3+¯Υ0000000010)(Φ1nΦ1n1Φ2nΦ2n1Φ3nΦ3n1), (2.50)

    which is similar to the linearized system (1.7) about the equilibrium (¯Υ,¯Ψ,¯Ω).

    Lemma 5. Every positive solution of system (1.8) is bounded and persists.

    Proof. Suppose that {(Υn,Ψn,Ωn)} is an arbitrary solution of system (1.8). From Lemma 3, by using induction and applying nN, we obtain

    ΥnI4=[Γ1+δ1e(Γ2+δ2Θ2)Θ1+(Γ1+δ1Θ1),Γ1+δ1Θ1]=[Λ4,Π4],ΨnI5=[Γ2+δ2e(Γ3+δ3Θ3)Θ2+(Γ2+δ2Θ2),Γ2+δ2Θ2]=[Λ5,Π5],ΩnI6=[Γ3+δ3e(Γ1+δ1Θ1)Θ3+(Γ3+δ3Θ3),Γ3+δ3Θ3]=[Λ6,Π6]. (3.1)

    The proof of the lemma is similar to Lemma 3, so it is omitted.

    Theorem 6. For the local stability about (¯Υ,¯Ψ,¯Ω)[Λ4,Π4]×[Λ5,Π5]×[Λ6,Π6], i.e., the equilibrium point of system (1.8), the next declarations are valid:

    (i) (¯Υ,¯Ψ,¯Ω) is locally asymptotically stable if L2<1,

    (ii) (¯Υ,¯Ψ,¯Ω) is unstable if U2>1,

    where

    L2=1Θ1Θ2Θ3(Θ2Λ4(Θ3+2Λ6)+Θ3Λ5(Θ1+2Λ4)+Θ1Λ6(Θ2+2Λ5)+Λ4Λ5Λ6+δ1δ2δ3), (3.2)
    U2=Π4(Θ2+Π5)(Θ1+Π4)(Θ2+Π5)(Θ3+Π6)(Θ3+2Π6)+Π5(Θ3+Π6)(Θ1+Π4)(Θ2+Π5)(Θ3+Π6)(Θ1+2Π4)+Π6(Θ1+Π4)(Θ1+Π4)(Θ2+Π5)(Θ3+Π6)(Θ2+2Π5)+1(Θ1+Π4)(Θ2+Π5)(Θ3+Π6)(Π4Π5Π6+δ1δ2δ3eΠ4Π5Π6). (3.3)

    Proof. (i) From system (1.8), we have

    ¯Υ=Γ1+δ1e¯ΨΘ1+¯Υ, ¯Ψ=Γ2+δ2e¯ΩΘ2+¯Ψ, ¯Ω=Γ3+δ3e¯ΥΘ3+¯Ω. (3.4)

    In order to construct the corresponding linearized form of system (1.8), we consider the following transformation:

    (Υn+1,Υn,Ψn+1,Ψn,Ωn+1,Ωn)(f,f1,g,g1,h,h1), (3.5)

    where

    f=Γ1+δ1eΨn1Θ1+Υn, f1=Υn,g=Γ2+δ2eΩn1Θ2+Ψn, g1=Ψn,h=Γ3+δ3eΥn1Θ3+Ωn, h1=Ωn. (3.6)

    By using the transformation given by Eq (3.5), we have

    FJ(¯Υ,¯Ψ,¯Ω)=(s400t40010000000s500t50010000s600t60000010), (3.7)

    where

    s4=Γ1+δ1e¯Ψ(Θ1+¯Υ)2, t4=δ1e¯ΨΘ1+¯Υ,s5=Γ2+δ2e¯Ω(Θ2+¯Ψ)2, t5=δ2e¯ΩΘ2+¯Ψ,s6=δ3e¯ΥΘ3+¯Ω, t6=Γ3+δ3e¯Υ(Θ3+¯Ω)2. (3.8)

    The characteristic equation of FJ(¯Υ,¯Ψ,¯Ω) is below:

    λ6+ˆm1λ5+ˆm2λ4+ˆm3λ3+ˆm4=0, (3.9)

    where

    ˆm1=(s4+s5+t6),ˆm2=s4s5+s4t6+s5t6,ˆm3=s4s5t6,ˆm4=s6t4t5. (3.10)

    Now, we can compute 4i=1|ˆmi| as follows:

    4i=1|ˆmi|=(Γ1+δ1e¯Ψ)(Θ1+¯Υ)2+(Γ2+δ2e¯Ω)(Θ2+¯Ψ)2+(Γ3+δ3e¯Υ)(Θ3+¯Ω)2+(Γ1+δ1e¯Ψ)(Γ2+δ2e¯Ω)(Θ1+¯Υ)2(Θ2+¯Ψ)2+(Γ1+δ1e¯Ψ)(Γ3+δ3e¯Υ)(Θ1+¯Υ)2(Θ3+¯Ω)2+(Γ2+δ2e¯Ω)(Γ3+δ3e¯Υ)(Θ2+¯Ψ)2(Θ3+¯Ω)2+(Γ1+δ1e¯Ψ)(Γ2+δ2e¯Ω)(Γ3+δ3e¯Υ)(Θ1+¯Υ)2(Θ2+¯Ψ)2(Θ3+¯Ω)2+δ1δ2δ3e¯Υ¯Ψ¯Ω(Θ1+¯Υ)(Θ2+¯Ψ)(Θ3+¯Ω)=¯Υ(Θ1+¯Υ)+¯Ψ(Θ2+¯Ψ)+¯Ω(Θ3+¯Ω)+¯Υ.¯Ψ(Θ1+¯Υ)(Θ2+¯Ψ)+¯Υ.¯Ω(Θ1+¯Υ)(Θ3+¯Ω)+¯Ψ ¯Ω(Θ2+¯Ψ)(Θ3+¯Ω)+¯Υ ¯Ψ ¯Ω(Θ1+¯Υ)(Θ2+¯Ψ)(Θ3+¯Ω)+δ1δ2δ3e¯Υ¯Ψ¯Ω(Θ1+¯Υ)(Θ2+¯Ψ)(Θ3+¯Ω)=¯Υ(Θ1+¯Υ)(Θ3+¯Ω)(Θ3+2¯Ω)+¯Ψ(Θ1+¯Υ)(Θ2+¯Ψ)(Θ1+2¯Υ)+¯Ω(Θ2+¯Ψ)(Θ3+¯Ω)(Θ2+2¯Ψ)+1(Θ1+¯Υ)(Θ2+¯Ψ)(Θ3+¯Ω)(¯Υ ¯Ψ ¯Ω+δ1δ2δ3e¯Υ¯Ψ¯Ω)<¯ΥΘ1Θ3(Θ3+2¯Ω)+¯ΨΘ1Θ2(Θ1+2¯Υ)+¯ΩΘ2Θ3(Θ2+2¯Ψ)+1Θ1Θ2Θ3(¯Υ ¯Ψ ¯Ω+δ1δ2δ3)=1Θ1Θ2Θ3(Θ2¯Υ(Θ3+2¯Ω)+Θ3¯Ψ(Θ1+2¯Υ)+Θ1¯Ω(Θ2+2¯Ψ)+¯Υ ¯Ψ ¯Ω+δ1δ2δ3)<1Θ1Θ2Θ3(Θ2Λ4(Θ3+2Λ6)+Θ3Λ5(Θ1+2Λ4)+Θ1Λ6(Θ2+2Λ5)+Λ4Λ5Λ6+δ1δ2δ3)<1. (3.11)

    By supposing that L2<1, from Eq (3.11), we have that 4i=1|ˆmi|<1. According to the Rouche theorem, (¯Υ,¯Ψ,¯Ω) is locally asymptotically stable.

    (ii) We have

    4i=1|ˆmi|=(Γ1+δ1e¯Ψ)(Θ1+¯Υ)2+(Γ2+δ2e¯Ω)(Θ2+¯Ψ)2+(Γ3+δ3e¯Υ)(Θ3+¯Ω)2+(Γ1+δ1e¯Ψ)(Γ2+δ2e¯Ω)(Θ1+¯Υ)2(Θ2+¯Ψ)2+(Γ1+δ1e¯Ψ)(Γ3+δ3e¯Υ)(Θ1+¯Υ)2(Θ3+¯Ω)2+(Γ2+δ2e¯Ω)(Γ3+δ3e¯Υ)(Θ2+¯Ψ)2(Θ3+¯Ω)2+(Γ1+δ1e¯Ψ)(Γ2+δ2e¯Ω)(Γ3+δ3e¯Υ)(Θ1+¯Υ)2(Θ2+¯Ψ)2(Θ3+¯Ω)2+δ1δ2δ3e¯Υ¯Ψ¯Ω(Θ1+¯Υ)(Θ2+¯Ψ)(Θ3+¯Ω)=¯Υ(Θ1+¯Υ)(Θ3+¯Ω)(Θ3+2¯Ω)+¯Ψ(Θ1+¯Υ)(Θ2+¯Ψ)(Θ1+2¯Υ)+¯Ω(Θ2+¯Ψ)(Θ3+¯Ω)(Θ2+2¯Ψ)+1(Θ1+¯Υ)(Θ2+¯Ψ)(Θ3+¯Ω)(¯Υ.¯Ψ.¯Ω+δ1δ2δ3e¯Υ¯Ψ¯Ω)Π4(Θ2+Π5)(Θ1+Π4)(Θ2+Π5)(Θ3+Π6)(Θ3+2Π6)+Π5(Θ3+Π6)(Θ1+Π4)(Θ2+Π5)(Θ3+Π6)(Θ1+2Π4)+Π6(Θ1+Π4)(Θ1+Π4)(Θ2+Π5)(Θ3+Π6)(Θ2+2Π5)+1(Θ1+Π4)(Θ2+Π5)(Θ3+Π6)(Π4Π5Π6+δ1δ2δ3eΠ4Π5Π6)>1. (3.12)

    By supposing that U2>1, from Eq (3.12), we have that 4i=1|ˆmi|>1. According to the Rouche theorem, (¯Υ,¯Ψ,¯Ω) is unstable.

    Theorem 7. Consider system (1.8). Assume that the next relation is true:

    δ1δ2δ3<Θ1Θ2Θ3. (3.13)

    Moreover, system (1.8) has a unique positive equilibrium (¯Υ,¯Ψ,¯Ω), and every positive solution of system (1.8) tends to the unique positive equilibrium of system (1.8) as n.

    Proof. We consider the functions

    f2(Υ,Ψ)=Γ1+δ1eΨΘ1+Υ, g2(Ψ,Ω)=Γ2+δ2eΩΘ2+Ψ, h2(Υ,Ω)=Γ3+δ3eΥΘ3+Ω, (3.14)

    where

    ΥI4, ΨI5, ΩI6, (3.15)

    and I4,I5,I6 are defined in Eq (3.1). From Eqs (3.14) and (3.15), we see that, for ΥI4, ΨI5 and ΩI6,

    f2(Υ,Ψ)I4, g2(Ψ,Ω)I5, h2(Υ,Ω)I6;

    thus,

    f2:I4×I5I4, g2:I5×I6I5, h2:I4×I6I6.

    Let p, P, l, L, w and W be positive numbers such that

    P=Γ1+δ1elΘ1+p, p=Γ1+δ1eLΘ1+P,L=Γ2+δ2ewΘ2+l, l=Γ2+δ2eWΘ2+L,W=Γ3+δ3epΘ3+w, w=Γ3+δ3ePΘ3+W. (3.16)

    From Eq (3.16), we get

    el=P(Θ1+p)Γ1δ1, eL=p(Θ1+P)Γ1δ1,
    ew=L(Θ2+l)Γ2δ2, eW=l(Θ2+L)Γ2δ2,
    ep=W(Θ3+w)Γ3δ3, eP=w(Θ3+W)Γ3δ3,

    which imply that

    Pp=δ1Θ1(eleL)=δ1Θ1elL(eLel),Ll=δ2Θ2(eweW)=δ2Θ2ewW(eWew),Ww=δ3Θ3(epeP)=δ3Θ3epP(ePep). (3.17)

    Moreover, we get

    ePep=ed1(Pp), min{P,p}d1max{P,p},eLel=ed2(Ll), min{L,l}d2max{L,l},eWew=ed3(Ww), min{W,w}d3max{W,w}. (3.18)

    Then Eqs (3.17) and (3.18) imply that

    Pp=δ1Θ1ed2lL(Ll),Ll=δ2Θ2ed3wW(Ww),Ww=δ3Θ3ed1pP(Pp); (3.19)

    thus,

    |Pp|δ1Θ1|Ll|,|Ll|δ2Θ2|Ww|,|Ww|δ3Θ3|Pp|. (3.20)

    In addition, observe that Eqs (3.13) and (3.20) imply that

    (1δ1δ2δ3Θ1Θ2Θ3)|Pp|0,(1δ1δ2δ3Θ1Θ2Θ3)|Ll|0,(1δ1δ2δ3Θ1Θ2Θ3)|Ww|0,

    from which we have that P=p, L=l and W=w. Thus from Eq (3.1), system (1.8) has a unique positive equilibrium (¯Υ,¯Ψ,¯Ω), and every positive solution of system (1.8) tends to the unique positive equilibrium as n.

    Theorem 8. If {(Υn,Ψn,Ωn,)}n=1 is a positive solution of system (1.8) such that

    limnΥn=¯Υ, limnΨn=¯Ψ, limnΩn=¯Ω, (3.21)

    where

    ¯Υ[Λ4,Π4], ¯Ψ[Λ5,Π5], ¯Ω[Λ6,Π6], (3.22)

    then the error vector Φn=(Φ4n,Φ4n1,Φ5n,Φ5n1,Φ6n,Φ6n1)T of every solution of system (1.8) supplies both of the following asymptotic relations:

    limn(||Φn||)1n=|λ1,2,3,4,5,6FJ(¯Υ,¯Ψ,¯Ω)|,limn||Φn+1||||Φn||=|λ1,2,3,4,5,6FJ(¯Υ,¯Ψ,¯Ω)|, (3.23)

    where |λ1,2,3,4,5,6FJ(¯Υ,¯Ψ,¯Ω)| denotes the characteristic root of FJ(¯Υ,¯Ψ,¯Ω).

    Proof. To find the error terms, from system (1.8), we apply

    Υn+1¯Υ=Γ1+δ1eΨn1Θ1+ΥnΓ1+δ1e¯ΨΘ1+¯Υ=Γ1+δ1e¯Ψ(Θ1+Υn)(Θ1+¯Υ)(Υn¯Υ)+δ1(eΨn1e¯Ψ)(Θ1+Υn)(Ψn1¯Ψ)(Ψn1¯Ψ),Ψn+1¯Ψ=Γ2+δ2eΩn1Θ2+ΨnΓ2+δ2e¯ΩΘ2+¯Ψ=Γ2+δ2e¯Ω(Θ2+Ψn)(Θ2+¯Ψ)(Ψn¯Ψ)+δ2(eΩn1e¯Ω)(Θ2+Ψn)(Ωn1¯Ω)(Ωn1¯Ω),Ωn+1¯Ω=Γ3+δ3eΥn1Θ3+ΩnΓ3+δ3e¯ΥΘ3+¯Ω=Γ3+δ3e¯Υ(Θ3+Ωn)(Θ3+¯Ω)(Ωn¯Ω)+δ3(eΥn1e¯Υ)(Θ3+Ωn)(Υn1¯Υ)(Υn1¯Υ), (3.24)

    that is,

    Υn+1¯Υ=Γ1+δ1e¯Ψ(Θ1+Υn)(Θ1+¯Υ)(Υn¯Υ)+δ1(eΨn1e¯Ψ)(Θ1+Υn)(Ψn1¯Ψ)(Ψn1¯Ψ),Ψn+1¯Ψ=Γ2+δ2e¯Ω(Θ2+Ψn)(Θ2+¯Ψ)(Ψn¯Ψ)+δ2(eΩn1e¯Ω)(Θ2+Ψn)(Ωn1¯Ω)(Ωn1¯Ω),Ωn+1¯Ω=Γ3+δ3e¯Υ(Θ3+Ωn)(Θ3+¯Ω)(Ωn¯Ω)+δ3(eΥn1e¯Υ)(Θ3+Ωn)(Υn1¯Υ)(Υn1¯Υ). (3.25)

    Set

    Φ4n=Υn¯Υ, Φ5n=Ψn¯Ψ, Φ6n=Ωn¯Ω. (3.26)

    By using Eq (3.26), Eq (3.25) can be written in the following form:

    Φ4n+1=ˆdnΦ4n+ˆenΦ5n1,Φ5n+1=ˆfnΦ5n+ˆgnΦ6n1,Φ6n+1=ˆhnΦ6n+ˆjnΦ4n1, (3.27)

    where

    ˆdn=Γ1+δ1e¯Ψ(Θ1+Υn)(Θ1+¯Υ), ˆen=δ1(eΨn1e¯Ψ)(Θ1+Υn)(Ψn1¯Ψ),ˆfn=Γ2+δ2e¯Ω(Θ2+Ψn)(Θ2+¯Ψ), ˆgn=δ2(eΩn1e¯Ω)(Θ2+Ψn)(Ωn1¯Ω),ˆhn=Γ3+δ3e¯Υ(Θ3+Ωn)(Θ3+¯Ω), ˆjn=δ3(eΥn1e¯Υ)(Θ3+Ωn)(Υn1¯Υ). (3.28)

    By taking the limits of ˆdn, ˆen, ˆfn, ˆgn, ˆhn and ˆjn, we respectively obtain

    limnˆdn=Γ1+δ1e¯Ψ(Θ1+¯Υ)2, limnˆen=δ1e¯ΨΘ1+¯Υ,limnˆfn=Γ2+δ2e¯Ω(Θ2+¯Ψ)2, limnˆgn=δ2e¯ΩΘ2+¯Ψ,limnˆhn=Γ3+δ3e¯Υ(Θ3+¯Ω)2, limnˆjn=δ3e¯ΥΘ3+¯Ω, (3.29)

    that is,

    ˆdn=Γ1+δ1e¯Ψ(Θ1+¯Υ)2+ξ4n, ˆen=δ1e¯ΨΘ1+¯Υ+ξ5n1,ˆfn=Γ2+δ2e¯Ω(Θ2+¯Ψ)2+ξ5n, ˆgn=δ2e¯ΩΘ2+¯Ψ+ξ6n1,ˆhn=Γ3+δ3e¯Υ(Θ3+¯Ω)2+ξ6n, ˆjn=δ3e¯ΥΘ3+¯Ω+ξ4n1, (3.30)

    where ξ4n0, ξ4n10, ξ5n0, ξ5n10, ξ6n0 and ξ6n10 as n. Then, we obtain Poincare difference system (1.10) of [51], where

    ˆA=(Γ1+δ1e¯Ψ(Θ1+¯Υ)200δ1e¯ΨΘ1+¯Υ0010000000Γ2+Ψ2e¯Ω(Θ2+¯Ψ)200δ2e¯ΩΘ2+¯Ψ0010000δ3e¯ΥΘ3+¯Ω00Γ3+δ3e¯Υ(Θ3+¯Ω)20000010), (3.31)

    and

    ˆBn=(ξ4n00ξ5n10010000000ξ5n00ξ6n10010000ξ4n100ξ6n0000010), (3.32)

    and ||ˆBn||0 as n. Moreover, the limiting system of error terms turns into

    (Φ4n+1Φ4nΦ5n+1Φ5nΦ6n+1Φ6n)=(Γ1+δ1e¯Ψ(Θ1+¯Υ)200δ1e¯ΨΘ1+¯Υ0010000000Γ2+δ2e¯Ω(Θ2+¯Ψ)200δ2e¯ΩΘ2+¯Ψ0010000δ3e¯ΥΘ3+¯Ω00Γ3+δ3e¯Υ(Θ3+¯Ω)20000010)(Φ4nΦ4n1Φ5nΦ5n1Φ6nΦ6n1), (3.33)

    which is similar to the linearized system (1.8) about the equilibrium (¯Υ,¯Ψ,¯Ω).

    In this paper, the global dynamics of two exponential-type systems of difference equations are investigated. The main results are as follows:

    (i) All positive solutions of systems (1.7) and (1.8) have been shown to persist and to be bounded.

    (ii) It has been shown that the equilibrium points of systems (1.7) and (1.8) are locally asymptotically stable or unstable based on the parameters L1, L2, U1 and U2.

    (iii) It has been explained, by using both increasing and decreasing functions and a well-known mean-value theorem, that the equilibrium points of systems (1.7) and (1.8) are globally asymptotically stable when the conditions given by Eqs (2.19) and (3.13) are valid.

    (iv) Information has been given regarding the rates of convergence of systems (1.7) and (1.8).

    The author declares that she has not used artificial intelligence (AI) tools in the creation of this article.

    The author declares no conflict of interest that may influence the publication of this paper.



    Conflict of interest



    The authors declare that there are no conflicts of interest.

    [1] Roskies A (2002) Neuroethics for the new millennium. Neuron 35: 21-23. doi: 10.1016/S0896-6273(02)00763-8
    [2] Harlow JM (1848) Passage of an iron rod through the head. Boston Med Surg J 39: 389-393. doi: 10.1056/NEJM184812130392001
    [3] Damasio A (1994)  L'errore di Cartesio. Emozione, ragione, cervello umano Milano: Adelphi.
    [4] Tranel D, Damasio H (1991) Somatic Markers and the Guidance of Behaviour–Theory and Preliminary Testing. Frontal Lobe Function and Dysfunction, New York 217-229.
    [5] Bechara A, Damasio AR, Damasio H, et al. (1994) Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50: 7-15. doi: 10.1016/0010-0277(94)90018-3
    [6] Fumagalli M, Priori A (2012) Functional and clinical neuroanatomy of morality. Brain 135: 2006-2021. doi: 10.1093/brain/awr334
    [7] Vicario CM, Rafal RD, Martino D, et al. (2017) Core, social and moral disgust are bounded: A review on behavioral and neural bases of repugnance in clinical disorders. Neurosci Biobehav Rev 80: 185-200. doi: 10.1016/j.neubiorev.2017.05.008
    [8] Vicario CM, Rafal RD, di Pellegrino G, et al. (2020) Indignation for moral violations suppresses the tongue motor cortex: preliminary TMS evidence. Soc Cogn Affect Neurosci .
    [9] Vicario CM (2016) Emotional Appraisal of Moral Dilemmas: What Neuroimaging Can Tell about the Disgust-Morality Link. J Neurosci 36: 263-264. doi: 10.1523/JNEUROSCI.3483-15.2016
    [10] Fumagalli M, Giannicola G, Rosa M, et al. (2011) Conflict-dependent dynamic of subthalamic nucleus oscillations during moral decisions. Soc Neurosci 6: 243-256. doi: 10.1080/17470919.2010.515148
    [11] Vicario CM, Rafal RD, Borgomaneri S, et al. (2017) Pictures of disgusting foods and disgusted facial expressions suppress the tongue motor cortex. Soc Cogn Affect Neurosci 12: 352-362. doi: 10.1093/scan/nsw129
    [12] Vicario CM, Martino D (2018) Social communication in Tourette syndrome: a glimpse at the contribution of the insula and the prefrontal cortex. Brain 141: e58. doi: 10.1093/brain/awy140
    [13] Vicario CM, Gulisano M, Maugeri N, et al. (2021) Moral Decision-Making in Adolescents with Tourette Syndrome. Mov Disord 36: 2205-2206. doi: 10.1002/mds.28705
    [14] Vicario CM (2013) Morality and disgust: insights from obsessive compulsive disorder. Front Psychiatry 3: 113. doi: 10.3389/fpsyt.2012.00113
    [15] Pulcu E, Zahn R, Elliott R (2013) The role of self-blaming moral emotions in major depression and their impact on social-economical decision making. Front Psychol 4: 310. doi: 10.3389/fpsyg.2013.00310
    [16] Ekman P, Friesen WV (1975)  Unmasking the face: A guide to recognizing emotions from facial cues Englewood Cliffs, NJ: Prentice-Hall.
    [17] Pizarro D, Inbar Y, Helion C (2011) On disgust and moral judgment. Emotion Rev 3: 267-268. doi: 10.1177/1754073911402394
    [18] Chapman HA, Kim DA, Susskind JM, et al. (2009) In bad taste: Evidence for the oral origins of moral disgust. Science 323: 1222-1226. doi: 10.1126/science.1165565
    [19] Wheatley T, Haidt J (2005) Hypnotic disgust makes moral judgments more severe. Psychol Sci 16: 780-784. doi: 10.1111/j.1467-9280.2005.01614.x
    [20] Vicario CM, Rafal RD (2017) Relationship between body mass index and moral disapproval rating for ethical violations. Pers Indiv differ 104: 8-11. doi: 10.1016/j.paid.2016.07.027
    [21] Bowers D, Miller K, Mikos A, et al. (2006) Startling facts about emotion in Parkinson's disease: blunted reactivity to aversive stimuli. Brain 129: 3356-3365. doi: 10.1093/brain/awl301
    [22] Ille R, Wabnegger A, Schwingenschuh P, et al. (2015) Role of disgust proneness in Parkinson's disease: avoxel-based morphometry study. J Int Neuropsychol Soc 21: 314-317. doi: 10.1017/S135561771500017X
    [23] Mitchell IJ, Heims H, Neville EA, et al. (2005) Huntington's disease patients show impaired perception of disgust inthe gustatory and olfactory modalities. J Neuropsychiatry Clin Neurosci 17: 119-121. doi: 10.1176/jnp.17.1.119
    [24] Hayes CJ, Stevenson RJ, Coltheart M (2007) Disgust and Huntington's disease. Neuropsychologia 45: 1135-1151. doi: 10.1016/j.neuropsychologia.2006.10.015
    [25] Tsao SD, McKay D (2004) Behavioral avoidance tests and disgust in contamination fears: distinctions from trait anxiety. Behav Res Ther 42: 207-216. doi: 10.1016/S0005-7967(03)00119-0
    [26] Powell PA, Simpson J, Overton PG (2013) When disgust leads to dysphoria: a three wave longitudinal study assessing the temporal relationship between self-disgust anddepressive symptoms. Cogn Emot 27: 900-913. doi: 10.1080/02699931.2013.767223
    [27] Vicario CM, Kuran KA, Rogers R, et al. (2018) The effect of hunger and satiety in the judgment of ethical violations. Brain Cogn 125: 32-36. doi: 10.1016/j.bandc.2018.05.003
    [28] Wright A, Rickards H, Cavanna AE (2012) Impulse-control disorders in gilles de la tourette syndrome. J Neuropsychiatry Clin Neurosci 24: 16-27. doi: 10.1176/appi.neuropsych.10010013
    [29] Lucifora C, Martino G, Curcuruto A, et al. (2021) How Self-Control Predicts Moral Decision Making: An Exploratory Study on Healthy Participants. Int J Environ Res Public Health 18: 3840. doi: 10.3390/ijerph18073840
    [30] Haidt J (2001) The emotional dog and its rational tail: a social intuitionist approach to moral judgment. Psychol Rev 108: 814-834. doi: 10.1037/0033-295X.108.4.814
    [31] Hutcherson CA, Montaser-Kouhsari L, Woodward J, et al. (2015) Emotional and Utilitarian Appraisals of Moral Dilemmas Are Encoded in Separate Areas and Integrated in Ventromedial Prefrontal Cortex. J Neurosci 35: 12593-12605. doi: 10.1523/JNEUROSCI.3402-14.2015
  • This article has been cited by:

    1. Hashem Althagafi, Ahmed Ghezal, Analytical Study of Nonlinear Systems of Higher-Order Difference Equations: Solutions, Stability, and Numerical Simulations, 2024, 12, 2227-7390, 1159, 10.3390/math12081159
    2. Messaoud Berkal, Juan Francisco Navarro, Raafat Abo-Zeid, Global Behavior of Solutions to a Higher-Dimensional System of Difference Equations with Lucas Numbers Coefficients, 2024, 29, 2297-8747, 28, 10.3390/mca29020028
    3. Najmeddine Attia, Ahmed Ghezal, Global stability and co-balancing numbers in a system of rational difference equations, 2024, 32, 2688-1594, 2137, 10.3934/era.2024097
    4. Hashem Althagafi, Ahmed Ghezal, Solving a system of nonlinear difference equations with bilinear dynamics, 2024, 9, 2473-6988, 34067, 10.3934/math.20241624
    5. Ömer Aktaş, Merve Kara, Yasin Yazlik, Solvability of two-dimensional system of difference equations with constant coefficients, 2024, 6, 2687-6531, 1, 10.54286/ikjm.1433383
    6. Hashem Althagafi, Ahmed Ghezal, Stability analysis of biological rhythms using three-dimensional systems of difference equations with squared terms, 2025, 1598-5865, 10.1007/s12190-024-02363-2
    7. Leonid Shaikhet, About stability of equilibria of one system of stochastic delay differential equations with exponential nonlinearity, 2025, 2351-6046, 1, 10.15559/25-VMSTA274
    8. Hashem Althagafi, Dynamics of difference systems: a mathematical study with applications to neural systems, 2025, 10, 2473-6988, 2869, 10.3934/math.2025134
    9. Merve Kara, Yasin Yazlik, Nouressadat Touafek, On a difference equation whose solution is related to Fibonacci numbers, 2024, 38, 0354-5180, 7199, 10.2298/FIL2420199K
    10. Merve Kara, Yasin Yazlik, Global dynamics of the system of difference equations , 2025, 75, 0139-9918, 339, 10.1515/ms-2025-0026
    11. Yacine Halim, Asma Allam, Ibraheem M. Alsulami, On a multidimensional close-to-cyclic system of difference equations, 2025, 26, 1787-2405, 275, 10.18514/MMN.2025.5135
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2779) PDF downloads(97) Cited by(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog