Processing math: 100%
Research article Special Issues

Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions

  • We study a new class of boundary value problems of nonlinear fractional differential equations whose nonlinear term depends on a lower-order derivative with fractional non-separated type integral boundary conditions. Some existence and uniqueness results are obtained by using standard fixed point theorems. Examples are given to illustrate the results.

    Citation: Djamila Chergui, Taki Eddine Oussaeif, Merad Ahcene. Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions[J]. AIMS Mathematics, 2019, 4(1): 112-133. doi: 10.3934/Math.2019.1.112

    Related Papers:

    [1] Idris Ahmed, Sotiris K. Ntouyas, Jessada Tariboon . Separated boundary value problems via quantum Hilfer and Caputo operators. AIMS Mathematics, 2024, 9(7): 19473-19494. doi: 10.3934/math.2024949
    [2] Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176
    [3] Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316
    [4] Ayub Samadi, Chaiyod Kamthorncharoen, Sotiris K. Ntouyas, Jessada Tariboon . Mixed Erdélyi-Kober and Caputo fractional differential equations with nonlocal non-separated boundary conditions. AIMS Mathematics, 2024, 9(11): 32904-32920. doi: 10.3934/math.20241574
    [5] Nayyar Mehmood, Niaz Ahmad . Existence results for fractional order boundary value problem with nonlocal non-separated type multi-point integral boundary conditions. AIMS Mathematics, 2020, 5(1): 385-398. doi: 10.3934/math.2020026
    [6] Abdelouaheb Ardjouni . Positive solutions for nonlinear Hadamard fractional differential equations with integral boundary conditions. AIMS Mathematics, 2019, 4(4): 1101-1113. doi: 10.3934/math.2019.4.1101
    [7] Thabet Abdeljawad, Pshtiwan Othman Mohammed, Hari Mohan Srivastava, Eman Al-Sarairah, Artion Kashuri, Kamsing Nonlaopon . Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application. AIMS Mathematics, 2023, 8(2): 3469-3483. doi: 10.3934/math.2023177
    [8] Bashir Ahmad, Ahmed Alsaedi, Ymnah Alruwaily, Sotiris K. Ntouyas . Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2020, 5(2): 1446-1461. doi: 10.3934/math.2020099
    [9] Mona Alsulami . Existence theory for a third-order ordinary differential equation with non-separated multi-point and nonlocal Stieltjes boundary conditions. AIMS Mathematics, 2023, 8(6): 13572-13592. doi: 10.3934/math.2023689
    [10] Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880
  • We study a new class of boundary value problems of nonlinear fractional differential equations whose nonlinear term depends on a lower-order derivative with fractional non-separated type integral boundary conditions. Some existence and uniqueness results are obtained by using standard fixed point theorems. Examples are given to illustrate the results.


    Boundary value problems for nonlinear fractional differential equations have recently been investigated by several researchers. The study of fractional equations ranges from the theoretical aspects of existence and uniqueness of solutions to the analytic and numerical methods for finding solutions. A strong motivation for studying fractional differential equations comes from the fact that they have been proved to be valuable tools in the modeling of many phenomena in engineering and sciences such as physics, mechanics, chemistry, economics and biology, etc. [4,7,10,14]

    Ahmad and Ntouyas [6] investigated the existence of solutions for a fractional boundary value problem with fractional separated boundary conditions given by

    {cDqx(t)=f(t,x(t)),t[0,T],1q2,α1x(0)+β1(cDpx(0))=γ1,α2x(1)+β2(cDpx(1))=γ2,0<p<1.

    Where cDq denotes the Caputo fractional derivative of order q, f is continuous function on [0,T]×R and αi,βi,γi,(i=1,2) are real constants, with αi0.

    Also Xiaoyou Liu and Zhenhai Liu [17] investigated the existence and uniqueness of solutions for the nonlinear fractional boundary value problem with fractional separated boundary conditions given by :

    {cDαx(t)=f(t,x(t),cDβx(t)),t[0,T],1q2,1<β1a1x(0)+b1(cDγx(0))=c1,a2x(T)+b2(cDγx(T))=c2,0<γ<1.

    Where cDα denotes the Caputo fractional derivative of order α, f is continuous function on [0,T]×R×R and ai,bi,ci,(i=1,2) are real constants, with a10 and T>0.

    Bashir Ahmad, Juan J, Nieto and Ahmed Alsaedi [5] investigated the existence and uniqueness of the solutions for a new class of boundary value problems of nonlinear fractional differential equations with non-separated type integral boundary conditions. Precisely, they consider the following problem

    {cDqx(t)=f(t,x(t)),t[0,T],T>0,1<q2,x(0)λ1x(T)=μ1T0g(s,x(s))ds,x(0)λ2x(T)=μ2T0h(s,x(s))ds.

    Where cDq denotes the Caputo fractional derivative of order q, and f,g,h:[0,T]×RR are given continuous functions and λ1,λ2,μ1,μ2R with λ11,λ21.

    In this paper, we discuss the existence and uniqueness of solutions for a new class of boundary value problems of nonlinear fractional differential equations depending with non-separated type integral boundary conditions. Precisely, we consider the following problem

    {cDqx(t)=f(t,x(t),cDrx(t)),t[0,T],T>0,1<q2,0<r1x(0)λ1x(T)=μ1T0g(s,x(s))ds,x(0)λ2x(T)=μ2T0h(s,x(s))ds. (1.1)

    Where cDq denotes the Caputo fractional derivative of order q, and fC([0,T]×R×R,R),g,h:[0,T]×RR are given continuous functions and λ1,λ2,μ1,μ2R with λ11,λ21.

    The rest of the paper is arranged as follows. In Section 2, we establish a basic result that lays the foundation for defining a fixed point problem equivalent to the given problem (1.1). The main results, based on Banach's contraction mapping principal, Schauder fixed point theorem and nonlinear alternative of Leray-Schauder type, are obtained in Section 3. Illustrating examples are discussed in Section 4.

    For convenience of the reader, we present here some necessary definitions about fractional calculus theory, which can be found in [1,9,12,13].

    Definition 2.1. The Riemann-Liouville fractional integral of order q for a continuous function f is defined as

    Iqf(t)=1Γ(q)t0(ts)q1f(s)ds,q>0,

    provided the right-hand side is point-wise defined on (0,), where Γ(.) is the gamma function, which is defined by Γ(α)=0tα1etdt.

    Definition 2.2. For a at least n-times continuously differentiable function f:(0,)R, the Caputo derivative of order q>0 is defined as

    cDqf(t)=1Γ(nq)t0(ts)nq1f(n)(s)ds,n1<q<n,n=[q]+1,

    where [q] denotes the integer part of the real number q.

    Lemma 2.3. Let α>0, then the differential equation

    cDαh(t)=0

    has solutions h(t)=c0+c1t+c2t2++cn1tn1 and

    IαcDαh(t)=h(t)+c0+c1t+c2t2++cn1tn1,

    here ciR,i=0,1,2,,n1 and n=[α]+1.

    Theorem 2.4. (Schauder fixed Point theorem)(see [2]) Let U be a closed, convex and nonempty subset of a Banach space X, let P:UU be a continuous mapping such that P(U) is a relatively compact subset of X. Then P has at least one fixed point in U.

    Theorem 2.5. (Nonlineair alternative of Leray-Schauder type)(see [2]) Let E be a Banach space, C a closed, convex subset of E,U an open subset of C, and 0U. Suppose that F:ˉUC is a continuous, compact (that is, F(ˉU) is a relatively compact subset of C ) map. Then either

    (i)F has a fixed point in ˉU, or

    (ii) there is a uU (the boundary of U in C) and λ(0,1) with u=λF(x).

    Let I=[0,T] and C(I,R) be the space of all continuous real functions defined on I. Define the space X={x(t):x(t)C(I,R)andcDrxC(I,R)},(0<r1) endowed with the norm x=c1maxtI|x(t)|+c2maxtI|cDrx(t)|,c1,c2R+, we know that (X,.) is a Banach space.

    Now we present the Green's function for boundary value problem of fractional differential equation.

    Lemma 3.1. For a given yC([0,T],R), the unique solution of the fractional non separated boundary-value problem

    {cDqx(t)=y(t),t[0,T],T>0,1<q2,x(0)λ1x(T)=μ1T0g(s,x(s))ds,x(0)λ2x(T)=μ2T0h(s,x(s))ds, (3.1)

    is given by :

    x(t)=T0G(t,s)f(s,x(s),cDrx(s))ds+μ2[λ1T+(1λ1)t](λ21)(λ11)T0h(s,x(s))dsμ1λ11T0g(s,x(s))ds,

    where G(t,s) is the Green's function given by

    G(t,s)={(ts)q1Γ(q)λ1(ts)q1(λ11)Γ(q)+λ2[λ1T+(1λ1)t](ts)q1(λ21)(λ11)Γ(q1)st,λ1(ts)q1(λ11)Γ(q)+λ2[λ1T+(1λ1)t](ts)q1(λ21)(λ11)Γ(q1)ts, (3.2)

    Proof. We omit the proof as it employs the standard arguments for instance, see [3].

    In this section, we given some existence results for the problem (1.1) In view of Lemma 3.1 we define an operator F:XX

    (Fx)(t)=t0(ts)q1Γ(q)f(s,x(s),cDrx(s))dsξ1λ1T0(Ts)q1Γ(q)f(s,x(s),cDrx(s))ds+ξ2λ2[λ1(Tt)+t]T0(Ts)q2Γ(q1)f(s,x(s),cDrx(s))ds+ξ2μ2[λ1(Tt)+t]T0h(s,x(s))dsμ1ξ1T0g(s,x(s))ds,t[0,T], (3.3)
    ξ1=1λ11,ξ2=1(λ21)(λ11).

    It is clear that the problem (1.1) has solutions if and only if the operator equation Fx=x has fixed points. For any xX, let

    (Nx)(t)=f(t,x(t),cDrx(t)),t[0,T].

    Since the function f is continuous and

    (cDrFx)(t)=(IqrNx)(t)kt1rΓ(2r). (3.4)

    We know that the operator F maps X into X. Here k is constant given by

    k=λ2(λ21)Γ(q1)T0(Ts)q2f(s,x(s),cDrx(s))ds+μ2(λ21)T0h(s,x(s))ds.

    We put Fx=F1x+F2x, where

    (F1x)(t)=t0(ts)q1Γ(q)f(s,x(s),cDrx(s))ds,
    (F2x)(t)=ξ1λ1T0(Ts)q1Γ(q)f(s,x(s),cDrx(s))ds+ξ2λ2[λ1(Tt)+t]T0(Ts)q2Γ(q1)f(s,x(s),cDrx(s))ds+ξ2μ2[λ1(Tt)+t]T0h(s,x(s))dsμ1ξ1T0g(s,x(s))ds.

    Observe that problem (1.1) has solution if the operator Eq. (3.3) has fixed points, our first result is based on the Banach fixed point theorem (see [11]).

    Theorem 3.2. We suppose that

    (A1) The function g,hC([0,T]×R,R), there exist L1,L2>0 and 0<L<1, such that

    |g(t,x)g(t,y)|L1|xy|,|h(t,x)h(t,y)|L2|xy|,fort[0,T],x,yR,

    (A2)fC([0,T]×R×R,R) and there exist constants

    0<c2<Γ(2r)[Lc1c1|ξ2μ2||1+λ1|T2L2c1|μ1ξ1|TL1]T2r|μ2ξ2||λ11|L2,
    L>|ξ2μ2||1+λ1|T2L2+|μ1ξ1|TL1

    and

    θ1,θ20

    with

    θ1M1N1,θ2M2N2,

    such that

    |f(t,x1,y1)f(t,x2,y2)|θ1|x1x2|+θ2|y1y2|,fort[0,T],x1,x2,y1,y2R.

    where :

    M1=Γ(q+1)Γ(2r)Γ(qr+1){Γ(2r)[Lc1c1|ξ2μ2||1+λ1|T2L2c1|μ1ξ1|TL1]T2r|μ2ξ2||λ11|L2c2},
    N1=Γ(2r)2Γ(qr+1)c1Tq+Γ(2r)2Γ(qr+1)c1|ξ1λ1|Tq+Γ(2r)2Γ(qr+1)c1|ξ2λ2||1+λ1|Tqq+Γ(2r)2Γ(q+1)Tqrc2+Γ(2r)Γ(qr+1)Tqr|λ2ξ2||λ11|c2q

    and

    M2=Lc2Γ(q+1)Γ(2r)Γ(qr+1),
    N2=Γ(2r)Γ(qr+1)Tqc1+Γ(2r)Γ(qr+1)|ξ1λ1|Tqc1+Γ(2r)Γ(qr+1)|ξ2λ2||1+λ1|Tqc1q+Γ(q+1)Γ(2r)Tqrc2+Γ(qr+1)Tqr|λ2ξ2||λ11|c2q.

    Then the boundary value problem (1.1) has a unique solution.

    Proof. Let us set

    suptI|f(t,0,0)|=M,suptI|g(t,0)|=M1,suptI|h(t,0)|=M2,

    BR={xX,xR}, where Rγ1L with :

    γ=MTqc1Γ(q+1)+|ξ1λ1|TqMc1Γ(q+1)+|ξ2λ2||1+λ1|TqMc1Γ(q)+|ξ2μ2||1+λ1|T2M2c1+|μ1ξ1|TM1c1+TqrMc2Γ(qr+1)+Tqr|λ2ξ2||λ11|Mc2Γ(2r)Γ(q)+T2r|μ2ξ2||λ11|M2c2Γ(2r).

    Now we show that FBRBR, where F:XX is defined by Eq. (3.3) for xBR, we have:

    |(Fx)(t)|(Tqθ1Γ(q+1)+|ξ1λ1|Tqθ1Γ(q+1)+|ξ2λ2||1+λ1|Tqθ1Γ(q)+|ξ2μ2||1+λ1|T2L2+|μ1ξ1|TL1)|x|+(Tqθ2Γ(q+1)+|ξ1λ1|Tqθ2Γ(q+1)+|ξ2λ2||1+λ1|Tqθ2Γ(q))|cDrx|+TqMΓ(q+1)+|ξ1λ1|TqMΓ(q+1)+ξ2λ2||1+λ1|TqMΓ(q)+|ξ2μ2||1+λ1|T2M2+|μ1ξ1|TM1.

    Similarly, we have

    |(cDrfx)(t)|1Γ(qr)t0(ts)qr1(θ1|x|+θ2|cDrx|+M)ds+T1rΓ(2r)|λ2||λ21|Γ(q1)T0(Ts)q2(θ1|x|+θ2|cDrx|+M)ds+T1rΓ(2r)|μ2||λ21|T0(L2|x|+M2)ds(Tqrθ1Γ(qr+1)+Tqr|λ2ξ2||λ11|θ1Γ(2r)Γ(q)+T2r|μ2ξ2||λ11|L2Γ(2r))|x|+(Tqrθ2Γ(qr+1)+Tqr|λ2ξ2||λ11|θ2Γ(2r)Γ(q))|cDrx|+TqrMΓ(qr+1)+Tqr|λ2ξ2||λ11|MΓ(2r)Γ(q)+T2r|μ2ξ2||λ11|M2Γ(2r).

    From the above inequalities, we obtain :

    Fxc1((Tqθ1Γ(q+1)+|ξ1λ1|Tqθ1Γ(q+1)+|ξ2λ2||1+λ1|Tqθ1Γ(q)+|ξ2μ2||1+λ1|T2L2+|μ1ξ1|TL1)|x|+(Tqθ2Γ(q+1)+|ξ1λ1|Tqθ2Γ(q+1)+|ξ2λ2||1+λ1|Tqθ2Γ(q))|cDrx|+TqMΓ(q+1)+|ξ1λ1|TqMΓ(q+1)+ξ2λ2||1+λ1|TqMΓ(q)+|ξ2μ2||1+λ1|T2M2+|μ1ξ1|TM1)+c2((Tqrθ1Γ(qr+1)+Tqr|λ2ξ2||λ11|θ1Γ(2r)Γ(q)+T2r|μ2ξ2||λ11|L2Γ(2r))|x|+(Tqrθ2Γ(qr+1)+Tqr|λ2ξ2||λ11|θ2Γ(2r)Γ(q))|cDrx|+TqrMΓ(qr+1)+Tqr|λ2ξ2||λ11|MΓ(2r)Γ(q)+T2r|μ2ξ2||λ11|M2Γ(2r))(c1Tqθ1Γ(q+1)+c1|ξ1λ1|Tqθ1Γ(q+1)+c1|ξ2λ2||1+λ1|Tqθ1Γ(q)+c1|ξ2μ2||1+λ1|T2L2+c1|μ1ξ1|TL1+Tqrθ1c2Γ(qr+1)+Tqr|λ2ξ2||λ11|θ1c2Γ(2r)Γ(q)+T2r|μ2ξ2||λ11|L2c2Γ(2r))|x|+(Tqθ2c1Γ(q+1)+|ξ1λ1|Tqθ2c1Γ(q+1)+|ξ2λ2||1+λ1|Tqθ2c1Γ(q)+Tqrθ2c2Γ(qr+1)+Tqr|λ2ξ2||λ11|θ2c2Γ(2r)Γ(q))|cDrx|+MTqc1Γ(q+1)+|ξ1λ1|TqMc1Γ(q+1)+|ξ2λ2||1+λ1|TqMc1Γ(q)+|ξ2μ2||1+λ1|T2M2c1+|ξ1μ1|TM1c1+TqrMc2Γ(qr+1)+Tqr|λ2ξ2||λ11|Mc2Γ(2r)Γ(q)+T2r|μ2ξ2||λ11|M2c2Γ(2r)L(c1|x|+c2|cDrx|)+γLR+γR.

    Now, for any x,yX and for each t[0,T], we obtain

    |(F1x)(t)(F1y)(t)|TqΓ(q+1)(θ1|xy|+θ2|cDrxcDry|),
    |(F2x)(t)(F2y)(t)|(Tqrθ1Γ(qr1)+Tqr|λ2ξ2||λ11|θ1Γ(2r)Γ(q)+T2r|μ2ξ2||λ11|L2Γ(2r))|xy|+(Tqrθ2Γ(qr1)+Tqr|λ2ξ2||λ11|θ2Γ(2r)Γ(q))|cDrxcDry|.

    We obtain :

    |(Fx)(t)(Fy)(t)|(Tqθ1Γ(q+1)+|ξ1λ1|Tqθ1Γ(q+1)+|ξ2λ2||1+λ1|Tqθ1Γ(q)+|ξ2μ2||1+λ1|T2L2+|μ1ξ1|TL1)|xy|+(Tqθ2Γ(q+1)+|ξ1λ1|Tqθ2Γ(q+1)+|ξ2λ2||1+λ1|Tqθ2Γ(q))|cDrxcDry|.

    Similary, we have :

    |(cDrFx)(t)(cDrFy)(t)|=|(IqrNx)(t)t1rΓ(2r)λ2(λ21)Γ(q1)T0(Ts)q2N(x)(s)dst1rΓ(2r)μ2(λ21)T0h(s,x(s))ds(IqrNy)(t)+t1rΓ(2r)λ2(λ21)Γ(q1)T0(Ts)q2N(y)(s)ds+t1rΓ(2r)μ2(λ21)T0h(s,y(s))ds|(Tqrθ1Γ(qr+1)+Tqr|λ2ξ2||λ11|θ1Γ(2r)Γ(q)+T2r|μ2ξ2||λ11|L2Γ(2r))|xy|+(Tqrθ2Γ(qr+1)+Tqr|λ2ξ2||λ11|θ2Γ(2r)Γ(q))|cDrxcDry|.

    From the above inequalities, we obtain

    (Fx)(t)(Fy)(t)(Tqθ1c1Γ(q+1)+|ξ1λ1|Tqθ1c1Γ(q+1)+|ξ2λ2||1+λ1|Tqθ1c1Γ(q)+|ξ2μ2||1+λ1|T2L2c1+|μ1ξ1|TL1c1+Tqrθ1c2Γ(qr+1)+Tqr|λ2ξ2||λ11|θ1c2Γ(2r)Γ(q)+T2r|μ2ξ2||λ11|L2c2Γ(2r))|xy|+(Tqθ2c1Γ(q+1)+|ξ1λ1|Tqθ2c1Γ(q+1)+|ξ2λ2||1+λ1|Tqθ2c1Γ(q)+Tqrθ2c2Γ(qr+1)+Tqr|λ2ξ2||λ11|θ2c2Γ(2r)Γ(q))|cDrxcDry|L(c1|xy|+c2|cDrxcDrx|)Lxy.

    Which implies that F is a contraction mapping. By means of the Banach contraction mapping principle, F has a unique fixed point which is a unique solution of the boundary value problem (1.1).

    Now, we state a known result due to Schauder which is needed to prove the existence of at least one solution of (1.1).

    Theorem 3.3. Let f:[0,T]×R×RR, and g,h:[0,T]×RR be a continuous functions. Assume that

    f(t,x,y)∣≤m1(t)+d1|x|ρ1+d1|y|ρ1,
    g(t,x)∣≤m2(t)+d2|x|ρ2,h(t,x)∣≤m3(t)+d3|x|ρ3,

    for each t[0,T] and x,yR with m1L([0,T],R+),m2,m3L1([0,T],R+) and di,d10,0ρi,ρ1<1,i=1,2,3. Then problem (1.1) has at least one solution on [0,T].

    Proof. Schauder's Fixed point theorem is used to prove that F defined by Eq. (3.3) has a fixed point. The proof will be given in several steps.

    Step 1: F maps the bounded sets into the bounded sets in X.

    Denote m1=supt[0,T]m1(t), let BR={xX,xR} and R>0 is a positive number. It is clear that BR is a closed, bounded and convex subset of the Banach space X. For any xBR, we have:

    |(F1x)(t)|m1TqΓ(q+1)+(d1rρ1+d1rρ1)TqΓ(q+1),
    |(F2x)(t)|(|ξ1λ1|TqΓ(q+1)+|ξ2λ2||1+λ1|TqΓ(q))m1+|ξ2μ2||1+λ1|Tm3+|ξ1μ1|m2+(|ξ1λ1|TqΓ(q+1)+|ξ2μ2||1+λ1|TqΓ(q))(d1rρ1+d1rρ1)+|ξ1μ1|Td2rρ2+|ξ2μ2||1+λ1|T2d3rρ3.

    So, we have

    |(Fx)(t)|(TqΓ(q+1)+|ξ1λ1|TqΓ(q+1)+ξ2λ2||1+λ1|TqΓ(q))m1+|ξ1μ1|m2+|ξ2μ2||1+λ1|Tm3+(TqΓ(q+1)+|ξ1λ1|TqΓ(q+1)+|ξ2λ2||1+λ1|TqΓ(q))(d1rρ1+d1rρ1)+|ξ1μ1|Td2rρ2+|ξ2μ2||1+λ1|T2d3rρ3.

    Then from Eq. (3.4), we have

    |(cDrFx)(t)|Tqrm1Γ(qr+1)+TqrΓ(qr+1)(d1rρ1+d1rρ1)+|k|T1rΓ(2r),

    where

    |k||λ2ξ2||λ11|Tq1Γ(q)m1+|μ2ξ2||λ21|m3+|ξ2λ2||λ11|Tq1Γ(q)(d1rρ1+d1rρ1)+|ξ2μ2||λ21|Td3|r|ρ3.

    So, we have:

    |(cDrFx)(t)|(TqrΓ(qr+1)+|λ2ξ2||λ11|TqrΓ(2r)Γ(q))m1+|μ2ξ2||λ11|T1rΓ(2r)m3+(TqrΓ(qr+1)+|λ2ξ2||λ11|TqrΓ(q)Γ(2r))(d1rρ1+d1rρ1)+T2rΓ(2r)|μ2ξ2||λ11|d3rρ3.

    From above inequalities, we obtain

    (Fx)(t)(c1TqΓ(q+1)+|ξ1λ1|c1TqΓ(q+1)+ξ2λ2||1+λ1|c1TqΓ(q))m1+c1|ξ1μ1|m2+c1|ξ2μ2||1+λ1|Tm3+(c1TqΓ(q+1)+|ξ1λ1|c1TqΓ(q+1)+|ξ2λ2||1+λ1|c1TqΓ(q))(d1rρ1+d1rρ1)+c1|ξ1μ1|Td2rρ2+c1|ξ2μ2||1+λ1|T2d3rρ3+(c2TqrΓ(qr+1)+|λ2ξ2||λ11|c2TqrΓ(2r)Γ(q))m1+|μ2ξ2||λ11|c2T1rΓ(2r)m3+(c2TqrΓ(qr+1)+|λ2ξ2||λ11|c2TqrΓ(q)Γ(2r))(d1rρ1+d1rρ1)+c2T2rΓ(2r)|μ2ξ2||λ11|d3rρ3.

    Denote:

    L=(c1TqΓ(q+1)+|ξ1λ1|c1TqΓ(q+1)+ξ2λ2||1+λ1|c1TqΓ(q))m1+c1|ξ2μ2||1+λ1|Tm3+c1|ξ1μ1|m2+(c2TqrΓ(qr+1)+|λ2ξ2||λ11|c2TqrΓ(2r)Γ(q))m1+|μ2ξ2||λ11|c2T1rΓ(2r)m3,
    M1=(c1TqΓ(q+1)+|ξ1λ1|c1TqΓ(q+1)+|ξ2λ2||1+λ1|c1TqΓ(q)+c2TqrΓ(qr+1)+|λ2ξ2||λ11|c2TqrΓ(q)Γ(2r))(d1rρ1+d1rρ1),
    M2=c1|ξ1μ1|T,M3=c1|ξ2μ2||1+λ1|T2+c2|μ2ξ2||λ11|T2rΓ(2r).

    Now let R be a positive number such that:

    Rmax(5L,(5M1d1)11ρ1,(5M1d1)11ρ1,(5M2d2)11ρ2,(5M3d3)11ρ3).

    Then it is obvious that for any xBR,

    FxL+M1(d1rρ1+d1rρ1)+M2d2rρ2+M3d3rρ3R5+R5+R5+R5+R5=R.

    This implies that F:BRBR.

    Step 2: F is continuous.

    Suppose that {xn}n=1X and xn(t) converges to x(t) uniformly on [0,T] as n; that is, limnxnx=0.

    So we have

    limnxnx=0andlimncDrxncDrx=0,

    which implies that

    limnxn(t)=x(t)andlimncDrxn(t)=cDrx(t),t[0,T],

    therefore

    limnf(t,xn(t),cDrxn(t))=f(t,x(t),cDrx(t))
    limng(t,xn(t))=g(t,x(t)),limnh(t,xn(t))=h(t,x(t)),t[0,T],

    which gives

    |(Fxn)(t)(Fx)(t)|t0(ts)q1Γ(q)|f(s,xn,cDrxn)f(s,x,cDrx)|ds+|ξ1λ1|T0(Ts)q1Γ(q)|f(s,xn,cDrxn)f(s,x,cDrx)|ds+|ξ2λ2||1+λ1|TT0(Ts)q2Γ(q1)|f(s,xn,cDrxn)f(s,x,cDrx)|ds+|ξ2μ2||1+λ2|TT0|h(s,xn)h(s,x)|ds+|μ1ξ1|T0|g(s,xn)g(s,x)|ds

    and

    |(cDrFxn)(t)(cDrFx)(t)|t0(ts)qr1Γ(qr)(|f(s,xn,cDrxn)f(s,x,cDrx)|)ds+T1rΓ(2r)|ξ2λ2||λ11|T0(Ts)q2Γ(q1)×(|f(s,xn,cDrxn)f(s,x,cDrx)|)ds+T1rΓ(2r)|ξ2μ2||λ11|T0|h(s,xn)h(s,x)|ds.

    Finely, we have

    (Fxn)(t)(Fx)(t)=c1(Fxn)(t)(Fx)(t)+c2(cDrFxn)(t)(cDrFx)(t)n0,

    which means that F is continuous.

    Step 3: F(BR) is equicontinuous with BR defined as in Step 2.

    Since f is continuous, we can assume, without any loss of generality, that |f(t,x(t),cDrx(t))|N1 and |h(t,x(t))|N2 for any xBR and t[0,T].

    Now let, 0t1t2T. Then we have

    |(F1x)(t2)(F1x)(t1)|=|t20(t2s)q1Γ(q)f(s,x(s),cDrx(s))dst10(t1s)q1Γ(q)f(s,x(s),cDrx(s))ds|t10|(t2s)q1(t1s)q1|Γ(q)|f(s,x(s),cDrx(s))|ds+t2t1(t2s)q1Γ(q)|f(s,x(s),cDrx(s))|ds|tq2(t2t1)qtq1|Γ(q+1)N1+(t2t1)qΓ(q+1)N12N1(t2t1)qΓ(q+1)+N1|tq2tq1|Γ(q+1),
    |(F2x)(t2)(F2x)(t1)|(|ξ2λ2||1λ1|Tq1Γ(q)N1+|ξ2μ2||1λ2|TN2)|t2t1|.

    So, we have:

    |(Fx)(t2)(Fx)(t1)|2N1(t2t1)qΓ(q+1)+N1|tq2tq1|Γ(q+1)+(|ξ2λ2||1λ1|Tq1Γ(q)N1+|ξ2μ2||1λ2|TN2)|t2t1|,

    we find that

    |(cDrFx)(t2)(cDrFx)(t1)|=|1Γ(qr)t10((t2s)qr1(t1s)qr1)f(s,x(s),cDrx(s))ds+1Γ(qr)t2t1(t2s)qr1f(s,x(s),cDrx(s))ds(λ2(λ21)Γ(q1)T0(Ts)q2f(s,x(s),cDrx(s))ds+μ2(λ21)T0h(s,x(s))ds)(t1r2t1r1)Γ(2r)|N1|tqr2tqr1|Γ(qr+1)+2N1(t2t1)qrΓ(qr+1)+(|λ2ξ2||λ11|Tq1Γ(q)N1+|μ1ξ2||λ11|TN2)|t1r2t1r1|Γ(2r).

    Hence we have (since q>1,qr>0 and 1r0)

    (Fx)(t2)(Fx)(t1)0ast2t1

    and the limit is independent of xBR. As a consequence of step 1 to 3 together with the Arzela-Ascoli theorem implies that F(BR) is relatively compact in X. From Theorem 2.4 the problem (1.1) has at least one solution and the proof is completed.

    Now, we prove the existence of solution of (1.1) by applying Alternative of Leray-Schauder fixed point theorem.

    Theorem 3.4. Let f:[0,T]×R2R is continuous function and that

    (H1) There exists positive functions ai(t),bi(t),di(t)C([0,T],R) such that

    |f(t,x,y)|a1(t)+a2(t)|x|+a3(t)|y|,
    |g(t,x)|b1(t)+b2(t)|x|,|h(t,x)|d1(t)+d2(t)|x|,t[0,T].

    (H2) \quad Suppose that A and ρ positive constants such that, 0<A< and 0<ρ<1.

    Then the problem (1.1) has at least one solution.

    Proof. It is trivially that F:XX.

    We have shown in Theorem 3.3 that F is continuous.

    Firstly, Let ˉB be a uniformly bounded subset of X and let R>0 be such that xR for all xˉB. We prove that F:ˉBˉB. For any xˉB, we have

    |(Fx)(t)|{t0(ts)q1Γ(q)ds+|ξ1λ1|T0(Ts)q1Γ(q)ds+|ξ2λ2||1+λ1|TT0(Ts)q2Γ(q1)ds}|f(s,x(s),cDrx(s))|+|ξ2μ2||1+λ1|TT0|h(s,x(s))|ds+|μ1ξ1|T0|g(s,x(s))|ds{TqΓ(q+1)+|ξ1λ1|TqΓ(q+1)+|ξ1λ1||1+λ1|TqΓ(q)}M1+|ξ2μ2||1+λ1|TM2+|μ1ξ1|M3.

    So, we have

    |(cDrFx)(t)|{1Γ(qr)t0(ts)qr1ds+T1rΓ(2r)|ξ2λ2||λ11|T0(Ts)q2Γ(q1)ds}|f(s,x(s),cDrx(s))|+|ξ2μ2||λ11|T0|h(s,x(s))|ds{TqrΓ(qr+1)+|ξ2λ2||λ11|TqrΓ(q)}M1+|μ2ξ2||λ11|T1rΓ(2r)M2.

    Finely, we have

    |(Fx)(t)|{c1TqΓ(q+1)+c1|ξ1λ1|TqΓ(q+1)+c1|ξ1λ1||1+λ1|TqΓ(q)+c2TqrΓ(qr+1)+c2|ξ2λ2||λ11|TqrΓ(q)}M1+{c1|ξ2μ2||1+λ1|T+c2|μ2ξ2||λ11|T1rΓ(2r)}M2+c1|μ1ξ1|M3K1M1+K2M2+K3M3.

    Where:

    M1=max(s,z1,z2)[0,T]×R2|f(s,z1,z2)|,M2=max(s,z1)[0,T]×RT0|h(s,z1)|,
    M3=max(s,z1)[0,T]×RT0|g(s,z1)|
    K1=c1TqΓ(q+1)+c1|ξ1λ1|TqΓ(q+1)+c1|ξ1λ1||1+λ1|TqΓ(q)+c2TqrΓ(qr+1)+c2|ξ2λ2||λ11|TqrΓ(q)
    K2=c1|ξ2μ2||1+λ1|T+c2|μ2ξ2||λ11|T1rΓ(2r),K3=c1|μ1ξ1|.

    Hence Fu is uniformly bounded.

    Secondly, we prove the compactness of the operator F, we define |f(t,x(t),cDrx(t))|N1,|h(t,x(t))|N2. For any t1,t2[0,T] are such that t1t2, we have the following facts:

    |(Fx)(t2)(Fx)(t1)|2(t2t1)q+|tq2tq1|Γ(q+1)N1+(|ξ2λ2||λ11|Tq1Γ(q)N1+|ξ2μ2||λ11|TN2)|t2t1|.

    So, we have

    |(cDrFx)(t2)(cDrFx)(t1)|2|t2t1|qr+(tqr2tqr1)Γ(qr+1)N1+(|ξ2λ2||λ11|Tq1Γ(q)N1+|ξ2μ2||λ11|TN2)|t1r2t1r1|Γ(2r).

    Hence

    (Fx)(t2)(Fx)(t1)2c1(t2t1)q+c1|tq2tq1|Γ(q+1)N1+(|ξ2λ2||λ11|Tq1Γ(q)c1N1+|ξ2μ2||λ11|Tc1N2)|t2t1|+2c2|t2t1|qr+c2(tqr2tqr1)Γ(qr+1)N1+(|ξ2λ2||λ11|Tq1Γ(q)c2N1+|ξ2μ2||λ11|Tc2N2)|t1r2t1r1|Γ(2r)t2t10

    and the limit is independent of xˉB. Therefor the operator F is equicontinuous. By the Arzela-Ascoli theorem, the operator F is completely continuous.

    Thirdly, the result will follow from the Leray-Schauder nonlinear alternative (Theorem 2.5) once we have proved the boundeness of the set of all solutions to equations x=λFx for λ(0,1).

    Let U={xX:x<R} where R=A1ρ. Then

    |(Fx)(t)|t0(ts)q1Γ(q)a1(s)ds+|ξ1λ1|T0(Ts)q1Γ(q)a1(s)ds+|ξ2λ2[λ1(Tt)+T]|T0(Ts)q2Γ(q)a1(s)ds+|ξ2μ2[λ2(Tt)+T]|T0d1(s)ds+|μ1ξ1|T0b1(s)ds+{t0(ts)q1Γ(q)a2(s)ds+|ξ1λ1|T0(Ts)q1Γ(q)a2(s)ds+|ξ2λ2[λ1(Tt)+T]|T0(Ts)q2Γ(q)a2(s)ds+|ξ2μ2[λ2(Tt)+T]|T0d2(s)|x|ds+|μ1ξ1|T0b2(s)ds}|x|+{t0(ts)q1Γ(q)a3(s)|cDrx|ds+|ξ1λ1|T0(Ts)q1Γ(q)a3(s)ds+|ξ2λ2[λ1(Tt)+T]|T0(Ts)q2Γ(q)a3(s)ds}|cDrx|A1+A2|x|+A3|cDrx|.

    Where

    A1=t0(ts)q1Γ(q)a1(s)ds+|ξ1λ1|T0(Ts)q1Γ(q)a1(s)ds+|ξ2λ2[λ1(Tt)+T]|T0(Ts)q2Γ(q)a1(s)ds+|ξ2μ2[λ2(Tt)+T]|T0d1(s)ds+|μ1ξ1|T0b1(s)ds
    A2=t0(ts)q1Γ(q)a2(s)ds+|ξ1λ1|T0(Ts)q1Γ(q)a2(s)ds+ξ2λ2[λ1(Tt)+T]|T0(Ts)q2Γ(q)a2(s)ds+ξ2μ2[λ2(Tt)+T]|T0d2(s)|x|ds+|μ1ξ1|T0b2(s)ds
    A3=t0(ts)q1Γ(q)a3(s)|cDrx|ds+|ξ1λ1|T0(Ts)q1Γ(q)a3(s)ds+ξ2λ2[λ1(Tt)+T]|T0(Ts)q2Γ(q)a3(s)ds

    By the definition of the Caputo fractional derivative with 0<r1,

    |cDr(Fx)(t)|1Γ(qr)t0(ts)qr1a1(s)ds+T1r|λ2|Γ(2r)Γ(q1)|λ21|T0(Ts)q2a1(s)ds+T1r|μ2|Γ(2r)|λ21|T0d1(s)ds +{1Γ(qr)t0(ts)qr1a2(s)ds+T1r|λ2|Γ(2r)Γ(q1)|λ21|T0(Ts)q2a2(s)ds+T1r|μ2|Γ(2r)|λ21|T0d2(s)ds}|x|+{1Γ(qr)t0(ts)qr1a3(s)ds+T1r|λ2|Γ(2r)Γ(q1)|λ21|T0(Ts)q2a3(s)ds}|cDrx|A1+A2|x|+A3|cDrx|.

    Where

    A1=1Γ(qr)t0(ts)qr1a1(s)ds+T1r|λ2|Γ(2r)Γ(q1)|λ21|T0(Ts)q2a1(s)ds+T1r|μ2|Γ(2r)|λ21|T0d1(s)ds
    A2=1Γ(qr)t0(ts)qr1a2(s)ds+T1r|λ2|Γ(2r)Γ(q1)|λ21|T0(Ts)q2a2(s)ds+T1r|μ2|Γ(2r)|λ21|T0d2(s)ds
    A3=1Γ(qr)t0(ts)qr1a3(s)ds+T1r|λ2|Γ(2r)Γ(q1)|λ21|T0(Ts)q2a3(s)ds

    Therefore, we can obtain that

    Fx(t)c1(A1+A2|x(t)|+A3|cDrx(t)|)+c2(A1+A2|x(t)|+A3|cDrx(t)|)=(c1A1+c2A1)=A+(c1A2+c2A2)|x(t)|+(c1A3+c2A3)|cDrx(t)|A+ρ(c1maxtI|x(t)|+c2maxtI|cDrx(t)|)A+ρx.

    Suppose there exists a xU and a λ(0,1) such that x=λFx, then for this x and λ we have

    R=x=λFx<A+ρx=R,

    which is a contradiction. By Theorem 2.5, there exists a fixed point xˉU of F. This fixed point is a solution of (1.1) and the proof is complete.

    Example 4.1. Consider the following boundary value problem :

    {cD32x(t)=1(t+4)2tan1(x)+|cD34x(t)|(t+3)2(1+|cD34x(t)|),t[0,1]x(0)+12x(1)=13103|x|4+|x|dx,x(0)+13x(1)=32102|x|3+|x|dx. (4.1)

    Here,

    q=32,r=34,λ1=12,λ2=13,μ1=13,μ2=32,c1=12,c2=13,ξ1=23,
    ξ2=12,T=1and|f(t,x1,y1)f(t,x2,y2)|116|x1x2|+19|y1y2|,
    g(t,x)g(t,y)∣≤34|xy|,h(t,x)h(t,y)∣≤23|xy|,θ1=116,θ2=19,
    L1=34,L2=23.

    Furthermore,

    θ10.14971,θ20.54173,1>L>0,6666.

    Thus, by Theorem 3.2 the boundary value problem (4.1) has a unique solution on [0,1].

    Example 4.2. Consider the following boundary value problem :

    {cD53x(t)=(4t29t)ex3(t)+14|x(t)|12+12(|cD34x(t)|1+cos2x(t))13,t[0,1]x(0)+12x(1)=1510[(s1)ex2(s)+13|x(s)|12]ds,x(0)+15x(1)=1310[(s32s)ex2(s)+19|x(s)|12]ds. (4.2)

    In this case, we have

    f(t,x,y)=(4t29t)ex3+14|x|12+12(|y|1+cos2x)13

    and q=53,r=34,T=1,λ1=12,λ2=15,μ1=15,μ2=13

    g(t,x)=(t1)ex2+13|x(s)|12,h(t,x)=(t32t)ex2+19|x|12,

    since

    |f(t,x,y)||4t29t|+14|x|12+12|y|13,
    |g(t,x)||t1|+13|x|12,|h(t,x)||t32t|+19|x|12.

    Let

    d1=14,d2=12,ρ1=12,ρ2=13,d3=13,d4=19,ρ3=ρ4=12

    and

    m(t)=|4t29t|L(0,1),m1(t)=|t1|L1(0,1),m2(t)=|t32t|L1(0,1)

    Now it is easy to verify that all conditions of Theorem 3.3 are satisfied. Therfore, the fractional boundary value problem (4.2) has at least one solution on [0,1].

    The authors declare no conflict of interest.



    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, In: North-Holland Mathematics Studies, Amsterdam: Elsevier Science, 2006.
    [2] A. Granas, J. Dugundji, Fixed Point Theory, New York: Springer, 2003.
    [3] B. Ahmad, J. J. Nieto, Existence of solutions for nonlocal boundary value problems of higher order nonlinear fractional differential equations, Abstr. Appl. Anal., 2009 (2009), ID: 494720.
    [4] B. Ahmad, A. Alsaedi, B. Alghamdi, Analytic approximation of soltions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal: Real World Appl., 9 (2008), 1727—1740.
    [5] B. Ahmad, J. J. Nieto, A. Alsaedi, Existence and uniqueness of solutions for nonlinear fractional differential equations with non-separated type integral boundary conditions, Acta Math. Sci., 31 (2011), 2122—2130.
    [6] B. Ahmad, S. K. Ntouyas, Fractional differential inclusions with fractional separated boundary conditions, Fract. Calc. Appl. Anal., 15 (2012), 362—382.
    [7] D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional Dynamics and Control, New York: Springer, 2012.
    [8] F. Yan, M. Zuo, X. Hao, Positive solution for a fractional singular boundary value problem with p-Laplacian operator, Bound. Value Probl., 2018 (2018), 1—10.
    [9] I. Podlubny, Fractional Differenrial Equations, San Diego: Academic Press, 1999.
    [10] J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in Fractional Calculus - Theoretical Developments and Applications in Physics and Engineering, Dordrecht: Springer, 2007.
    [11] R. P. Agarwal, M. Meehan, D. O'Regan, Fixed Point Theory and Applications, Cambridge University Press & Beijing World Publishing Corporation, 2008.
    [12] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, USA: Gordon and Breach Science Publishers, 1993.
    [13] S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differ. Eq., 2006 (2006), 1—12.
    [14] V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, 2009.
    [15] X. Hao, H.Wang, Positive solutions of semipositone singular fractional differenrial systems with a parameter and integral boundary conditions, Open Math., 16 (2018), 581—596.
    [16] X. Hao, H. Sun, L. Liu, Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval, Math. Meth. Appl. Sci., 41 (2018), 6984—6996.
    [17] X. Liu, Z. Liu, Separated boundary value problem for fractional differential equations depending on lower-order derivative, Adv. Differ. Equations, 2013 (2013), 1—11.
    [18] X. Y. Liu, Y. L. Liu, Fractional differential equations with fractional non-separated boundary conditions, Electron. J. Differ. Eq., 2013 (2013), 1—13.
    [19] Y. F. Sun, Z. Zeng, J. Song, Existence and uniqueness for the boundary value Problems of nonlinear fractional differential equations, Appl. Math., 8 (2017), 312—323.
  • This article has been cited by:

    1. Ali Ahmadian, Shahram Rezapour, Soheil Salahshour, Mohammad Esmael Samei, Solutions of sum‐type singular fractional q integro‐differential equation with m ‐point boundary value problem using quantum calculus , 2020, 43, 0170-4214, 8980, 10.1002/mma.6591
    2. Sameer Qasim Hasan, Uniqueness Solution Of Abstract Fractional Order Nonlinear Dynamical Control Problems, 2020, 1591, 1742-6588, 012065, 10.1088/1742-6596/1591/1/012065
    3. Mandana Talaee, Mehdi Shabibi, Alireza Gilani, Shahram Rezapour, On the existence of solutions for a pointwise defined multi-singular integro-differential equation with integral boundary condition, 2020, 2020, 1687-1847, 10.1186/s13662-020-2517-2
    4. S. Joe Christin Mary, Ayyadurai Tamilselvan, Numerical method for a non-local boundary value problem with Caputo fractional order, 2021, 1598-5865, 10.1007/s12190-021-01501-4
    5. Yige Zhao, Yibing Sun, Zhi Liu, Yilin Wang, Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type, 2020, 5, 2473-6988, 557, 10.3934/math.2020037
    6. Abdelkader Amara, Existence results for hybrid fractional differential equations with tree-point boundary conditions, 2020, 5, 2473-6988, 1074, 10.3934/math.2020075
    7. Choukri Derbazi, Hadda Hammouche, Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory, 2020, 5, 2473-6988, 2694, 10.3934/math.2020174
    8. Rezzoug Imad, Oussaeif Taki-Eddine, Solvability of a solution and controllability of partial fractional differential systems, 2021, 0972-0502, 1, 10.1080/09720502.2020.1838754
    9. Sakhri Aicha, Ahcene Merad, Solvability of nonlinear fractional integro-differential equation with nonlocal condition, 2021, 1319-5166, 10.1108/AJMS-05-2021-0109
    10. Saleh Fahad Aljurbua, Extended existence results of solutions for FDEs of order $ 1 < \gamma\leq 2 $, 2024, 9, 2473-6988, 13077, 10.3934/math.2024638
    11. Suzana Aleksic, Alberto Cabada, Sladjana Dimitrijevic, Tatjana Tomovic-Mladenovic, The existence of a solution for nonlinear fractional differential equations where nonlinear term depends on the fractional and first order derivative of an unknown function, 2023, 37, 0354-5180, 3871, 10.2298/FIL2312871A
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5457) PDF downloads(1349) Cited by(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog