Research article

Coeffcient bounds for a subclass of multivalent functions of reciprocal order

  • Received: 24 January 2017 Accepted: 25 May 2017 Published: 05 June 2017
  • The aim of this paper is to introduce a new subclass of multivalent functions of complex order and to study some interesting properties such as coeffcient estimates, suffciency criteria, Fekete-Szego inequality, inclusion result and integral preserving property for this newly defined class.

    Citation: Khalida Inayat Noor, Nazar Khan, Qazi Zahoor Ahmad. Coeffcient bounds for a subclass of multivalent functions of reciprocal order[J]. AIMS Mathematics, 2017, 2(2): 322-335. doi: 10.3934/Math.2017.2.322

    Related Papers:

    [1] Huo Tang, Shahid Khan, Saqib Hussain, Nasir Khan . Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. AIMS Mathematics, 2021, 6(6): 5421-5439. doi: 10.3934/math.2021320
    [2] Tamer M. Seoudy, Amnah E. Shammaky . Certain subclasses of spiral-like functions associated with q-analogue of Carlson-Shaffer operator. AIMS Mathematics, 2021, 6(3): 2525-2538. doi: 10.3934/math.2021153
    [3] Nazar Khan, Bilal Khan, Qazi Zahoor Ahmad, Sarfraz Ahmad . Some Convolution Properties of Multivalent Analytic Functions. AIMS Mathematics, 2017, 2(2): 260-268. doi: 10.3934/Math.2017.2.260
    [4] Nazar Khan, Ajmal Khan, Qazi Zahoor Ahmad, Bilal Khan, Shahid Khan . Study of Multivalent Spirallike Bazilevic Functions. AIMS Mathematics, 2018, 3(3): 353-364. doi: 10.3934/Math.2018.3.353
    [5] Bo Wang, Rekha Srivastava, Jin-Lin Liu . Certain properties of multivalent analytic functions defined by q-difference operator involving the Janowski function. AIMS Mathematics, 2021, 6(8): 8497-8508. doi: 10.3934/math.2021493
    [6] Ying Yang, Jin-Lin Liu . Some geometric properties of certain meromorphically multivalent functions associated with the first-order differential subordination. AIMS Mathematics, 2021, 6(4): 4197-4210. doi: 10.3934/math.2021248
    [7] Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073
    [8] Mohammad Faisal Khan, Ahmad A. Abubaker, Suha B. Al-Shaikh, Khaled Matarneh . Some new applications of the quantum-difference operator on subclasses of multivalent q-starlike and q-convex functions associated with the Cardioid domain. AIMS Mathematics, 2023, 8(9): 21246-21269. doi: 10.3934/math.20231083
    [9] Sarem H. Hadi, Maslina Darus, Choonkil Park, Jung Rye Lee . Some geometric properties of multivalent functions associated with a new generalized q-Mittag-Leffler function. AIMS Mathematics, 2022, 7(7): 11772-11783. doi: 10.3934/math.2022656
    [10] Tamer M. Seoudy, Amnah E. Shammaky . Certain subfamily of multivalently Bazilevič and non-Bazilevič functions involving the bounded boundary rotation. AIMS Mathematics, 2025, 10(5): 12745-12760. doi: 10.3934/math.2025574
  • The aim of this paper is to introduce a new subclass of multivalent functions of complex order and to study some interesting properties such as coeffcient estimates, suffciency criteria, Fekete-Szego inequality, inclusion result and integral preserving property for this newly defined class.


    1. Introduction

    Let Ap denote the class of p-valent functions f which are analytic in the regions U={zC:|z|<1} and normalized by

    f(z)=zp+k=1ap+kzp+k. (1.1)

    We note that A1=A. Also let N(α) and M(α) denote the usual classes of starlike and convex functions of reciprocal order α, α>1, and are defined by

    N(α)={f(z)A:Rezf(z)f(z)<α, (zU)}, (1.2)
    M(α)={f(z)A:1+Rezf(z)f(z)<α, (zU)}. (1.3)

    These classes were introduced by Uralegaddi et.al [21] in 1994 and then studied by the authors in [12]. After that Nunokawa and his coauthors [11] proved that for fN(α), 0<α<12, if and only if the following inequality holds

    |zf(z)f(z)12α|<12α,(zU).

    In 2002, Owa and Srivastava [13] generalized this idea for the classes of p-valent starlike and p-valent convex functions of reciprocal order α with α>p, and further investigated by Polatoglu et.al [14]. Recently in 2011, Uyanik et.al [22] extended this idea to the classes of p-valently spirallike and p-valently Robertson functions and discussed coefficient inequalities and sufficient conditions for the functions of these classes.

    The convolution (Hadamard product) of functions f,gAp is defined by

    (fg)(z)=zp+n=1an+pbk+pzn+p,zU,

    where f is given by (1.1) and

    g(z)=zp+n=1bn+pzn+p,zU.

    The incomplete beta function ϕp defined by

    ϕp(a,c;z)=zp+n=1(a)n(c)nzn+p,(aR,cR(0,1,...),zU),

    where (α)n is the pochhamer symbol defined in terms of Gamma function by

    (α)n=Γ(α+n)Γ(α)={α(α+1)...(α+n1),if nN1,if n=0.

    With the help of incomplete beta function ϕp and concepts of convolution, Saitoh in [18,19] introduced the operator Lp:ApAp and is defined by

    Lp(a,c)f(z)=ϕp(a,c;z)f(z),=zp+n=1φn(a) an+p zn+p1.4 (1.4)

    with a>p and

    φn(a)=Γ(a+n)Γ(c)Γ(a)Γ(c+n). (1.5)

    This operator is an extension of the familiar Carlson-Shaffer operator, which has been used widely on the space of analytic and univalent functions in U, see [3,20]. The following identity can be easily derived

    z(Lp(a,c)f(z))=aLp(a+1,c)f(z)(ap)Lp(a,c)f(z). (1.6)

    Motivated from the above mentioned work, we now introduce a new subclass of multivalent functions of reciprocal order using the operator defined in (1.4).

    An analytic multivalent function f of the form (1.1) belongs to the class SCλp(a,b,c,β), if and only if

    Re{2eiλb(Lp(a+1,c)f(z)Lp(a,c)f(z)1)}<(β1)cosλ,

    where b λ is real with |λ|<π2, β>1.

    It is noticed that, by giving specific values to a,b,c,β and λ in SCλp(a,b,c,β), we obtain many well-known as well as new subclasses of analytic, univalent and multivalent functions, for example;

    (ⅰ) For λ=0, a=1=c and b=2, we obtain SC0p(1,2,1,β)=Mp(β) studied in [13] and further for p=1, we have the class M(β) introduced and studied in [7,21].

    (ⅱ) For p=c=b=1, λ=0 and a=2, we have SC01(1,2,1,β)=N(β) studied in [7,21].

    (ⅲ) For a=1=c and b=2, we get the class SC and for b=c=1, we obtain SCλp(1,2,1,β)=Cp(λ,β), introduced and studied in [22].

    (ⅳ) For λ=0, a=2, b=p=1, and c=2α, we obtain the class SC01(2,1,2α,β)=Pα(β) [4].

    The qth Hankel determinant Hq(n), q1, n1, stated by Pommerenke [15] and furter investigated by Noonan and Thomas [10] as

    Hq(n)=|anan+1an+q+1an+1an+2an+qan+q1an+qan+2q2|

    This Hankel determinant is useful and has also been studied by several authors for details see [1,2]. The growth rate of Hankel determinant Hq(n) as n was investigated, respectively, when f is a member of certain subclass of analytic functions, such as the class of p-valent functions [15,10], the class of starlike functions [15], the class of univalent functions [16], the class of close-to-convex functions [9], a new class Vk [9]. It is well known that the Fekete-Szegö functional is H2(1)=|a3a22|. Fekete and Szegö further generalized the estimate |a3μa22| where μ is real and f S, the class of univalent functions. For our discussion in this paper we investigate the coeficient bound, the upper bounds of the Hankel determinant H3(1) for a subclass of multivalent functions.

    We will need the following lemma's for our work.

    Lemma 1.2. [17]. If q is an analytic function with Req(z)>0 and

    q(z)=1+n=1dnzn, zU, (1.7)

    then for} n1,

    |dn|2.

    Lemma 1.3. [6]. If q is of the form (1.7) with positive real part, then the following sharp estimate holds

    |d2υd21|2max{1,|2υ1|}, for all υC.

    Lemma 1.4. [5]. If q is of the form (1.7) with positive real part, then

    2d2=d21+x(4d21).4d3=d31+2(4d21)d1xd1(4d21)x2+2(4d21)(1|x|2)z.

    for some x, z with |x|1 and |z|1.


    2. Main Results

    Theorem 2.1. If fSCλp(a,b,c,β), then

    |ap+1||b||η|cp,

    and

    |an+p1|a|b||η|(n+p2)φn1(a)n2j=1(1+a|b||η|(p+j)),n3, (2.1)

    where φn1(δ) is given by (1.5) and

    η=(1β)cosλ+isinλ. (2.2)

    Proof. Let fSCλp(a,b,c,β). Then we have

    Re{2eiλb(Lp(a+1,c)f(z)Lp(a,c)f(z)1)}<(β1)cosλ,zU.

    Now let us define a function q by

    eiλ(12b+2bLp(a+1,c)f(z)Lp(a,c)f(z))=((1β)q(z)+β)cosλ+isinλ.

    where q is analytic in U with q(0)=1 and Req(z)>0, . Then (2.3) can be written as

    12b+2bLp(a+1,c)f(z)Lp(a,c)f(z)=1+(1β)cosλ+isinλeiλn=1cnzn,

    or equivalently

    2eiλ(Lp(a+1,c)f(z)Lp(a,c)f(z))=bηLp(a,c)f(z)n=1cnzn, (2.4)

    where η is given by (2.2). From (2.4) and (1.6) we have

    2eiλ[z(Lp(a,c)f(z))pLp(a,c)f(z)]=abηLp(a,c)f(z)n=1cnzn,

    that is,

    2eiλ[k=1(k+p1)φk(a)ak+pzk+p]=abη[zp+k=1φk(a)ak+pzk+p](k=1dnzn).

    Comparing the coefficients of zn+p1 on both sides, we obtain

    2eiλ(n+p2)φn1(a)an+p1=abη{d1an2φn+p2(a)+...+dn1}. (2.5)

    Taking absolute on both sides and then applying Lemma 1.1, we have

    |an+p1|a|b||η|(n+p2)φn1(a){1+φ1(a)|ap+1|+...+φn2(a)|an+p2|} (2.6)

    We now apply mathematical induction on (2.6). So for n=2

    |ap+1||b||η|cp.

    which shows that the result is true for n=2. For n=3

    |ap+2|a|b||η|(p+1)φ2(a){1+φ1(a)|ap+1|} (2.7)

    and using the bound of |ap+1| in (2.7), we have

    |ap+2|a|b||η|(p+1)φ2(a){1+a|b||η|p}.

    Therefore (2.1) holds for n=3.

    Assume that (2.1) is true for n=k, that is,

    |ak+p1|a|b||η|(k+p2)φk1(a)k2j=1(1+a|b||η|(p+j)).

    Consider

    |ak+p|a|b||η|(k+p1)φk(a){(1+a|b||η|p)+a|b||η|(p+1)(1+a|b||η|p)++a|b||η|(p+k1)k2j=1(1+a|b||η|(p+j))}=a|b||η|(k+p1)φk(a)k1j=1(1+a|b||η|(p+j)).

    Therefore, the result is true for n=k+1 and hence by using mathematical induction, (2.1) holds true for all n3.

    The following corollaries which were proved by owa and Nishawski [12] comes as a special case from Theorem 2.1 by varying the parameter a,b,c,p and λ.

    Corollary 2.2. If fM(β), then

    |an|nl=2(l+2β4)(n1)!,foralln2.

    Corollary 2.3. If fN(β), then

    |an|nl=2(l+2β4)n!,foralln2.

    Theorem 2.4. Let fAp and satisfies

    n=1|(1+2nab)eiλβcosλ|φn(a)|an+p|<|βcosλeiλ|. (2.8)

    Then fSCλp(a,b,c,β).

    Proof. To prove that f belongs to SCλp(a,b,c,β) we need to prove that

    |eiλ(12b+2bLp(a+1,c)f(z)Lp(a,c)f(z))1eiλ(12b+2bLp(a+1,c)f(z)Lp(a,c)f(z))(2βcosλ1)|<1. (2.9)

    For this consider the left hand side of (2.9), we have

    LHS=|eiλ(12b+2bLp(a+1,c)f(z)Lp(a,c)f(z))1eiλ(12b+2bLp(a+1,c)f(z)Lp(a,c)f(z))(2βcosλ1)|=|(eiλ1)bzp+n=1((b+2na)eiλ1)φn(a)an+pzn+p(beiλ2bβcosλ+b)+n=1((b+2na)eiλ2bβcosλ+b)φn(a)an+pzn+p||(eiλ1)|+n=1|(1+2nab)eiλ1|φn(a)|an+p||2βcosλeiλ1|n=1|(1+2nab)eiλ2βcosλ+1|φn(a)|an+p|.

    The last expression is bounded above by 1 if

    |eiλ1|+n=1|(1+2nab)eiλ1|φn(a)|an+p||2βcosλeiλ1|n=1|(1+2nab)eiλ2βcosλ+1|φn(a)|an+p|

    which is equivalent to the condition (2.8) and so fSCλp(a,b,c,β).

    If we set p=1,λ=0, a=1, b=2 and c=1, in above Theorem we have the following result by [12].

    Corollary 2.5. If fA satisfies

    n=2{(n1)+|n2β+1|}|an|2(β1)

    for some β(β>1), then fM(β).

    Corollary 2.6. [4]. A function fPα(β) if and only if

    n=2Γ(n+1)Γ(2α)Γ(n+1α)(nβ)|an|(β1).

    The result is sharp.

    Theorem 2.7. Let fSC0p(a,b,c,β) and of the form (1.1). Then

    |ap+2μa2p+1||b|c(c+1)(1β)(a+1)(p+1)max{1,|2υ1|}, (2.10)

    where

    υ=μbc(a+1)(p+1)(1β)2p2(c+1)ab(1β)2p. (2.11)

    Proof. Let fSC0p(a,b,c,β). Then from (2.5) with λ=0, we have

    ap+1=bc(1β)2pd1ap+2=bc(c+1)(1β)2(a+1)(p+1){d2+ab(1β)2pd21}.

    For any complex number μ, we have

    ap+2μa2p+1=bc(c+1)(1β)2(a+1)(p+1)[d2b(1β)2p{μc(a+1)(p+1)p(c+1)a}d21]=bc(c+1)(1β)2(a+1)(p+1)[d2υd21],

    where υ is given by (2.11)

    Taking modulus on both sides and applying Lemma 1.2, we have

    |ap+2μa2p+1|=|bc(c+1)(1β)2(a+1)(p+1)||d2υd21||b|c(c+1)(1β)(a+1)(p+1)max{1,|2υ1|}.

    This proves the required result.

    Taking μ=1, we obtain the following result.

    Corollary 2.8. Let fSC0p(a,b,c,β) and of the form (1.1). Then

    |ap+2a2p+1||b|c(c+1)(1β)(a+1)(p+1)max{1,|2υ1|},

    where

    υ=bc(a+1)(p+1)(1β)2p2(c+1)ab(1β)2p.

    Theorem 2.9. Let fSCλp(a,b,c,β). Then

    |ap+1ap+3a2p+2|[4|b|c(c+1)(1β)(p+1)(a+1)]2. (2.12)

    Proof. Let fSCλp(a,b,c,β). Then from (2.5) we have

    ap+1=ab(1β)2pφ1(a)d1. (2.13)
    ap+2=ab(1β)2(p+1)φ2(a){d2+ab(1β)2pd21}. (2.14)
    ap+3=ab(1β)2(p+2)φ3(a){d3+ab(1β)2(p+1)d22+{ab(1β)}24p(p+1)d21d2+ab(1β)2pd21}. (2.15)

    From (2.13), (2.14) and (2.15) we obtain

    |ap+1ap+3a2p+2|={ab(1β)}24p(p+2)φ1(a)φ3(a)×{d3+ab(1β)2(p+1)d22+{ab(1β)}24p(p+1)d21d2+ab(1β)2pd21}{ab(1β)}24(p+1)2φ22(a){d22+{ab(1β)}24p2d41+ab(1β)pd21d2}.

    After some simplification we have

    |ap+1ap+3a2p+2|=|A|24[Bd1d3+Cd1d22+Ed31d2+Fd31Gd22Hd41Kd21d2,] (2.16)

    where

    A=ab(1β),B=1p(p+1)φ1(a)φ3(a),C=A2p(p+1)(p+2)φ1(a)φ3(a),E=A24p2(p+1)(p+2)φ1(a)φ3(a),F=A2p2(p+1)φ1(a)φ3(a),G=1(p+1)2φ22(a),H=A24p2(p+1)2φ22(a),K=Ap(p+1)2φ22(a).

    Substituting the values of d2 and d3 frome Lemma 1.3 in (2.16) we have

    |Bd1d3+Cd1d22+Ed31d2+Fd31Gd22Hd41Kd21d2|=|14Bd1{d31+2d1(4d21)xd1(4d21)x2+2(4d21)(1|x|2)z}+14Cd1{d41+2d21(4d21)x+(4d21)2x2}+12Ed31{d21+(4d21)x}+Fd3114G{d41+2d21(4d21)x+(4d21)2x2}Hd4112Kd21{d21+(4d21)x}|.

    Simple computation gives

    4|Bd1d3+Cd1d22+Ed31d2+Fd31Gd22Hd41Kd21d2|=|(C+2E)d51+(BGH2K)d41+Fd31+(2B+2Cd1+2Ed12G2K)d21(4d21)|x|+2Bd1(4d21)(1|x|2)|z|+{Cd1(4d21)Bd21G(4d21)}(4d21)|x|2| (2.17)

    Applying triangle inequality and replacing |x| by ρ in (2.17) we have

    4|Bd1d3+Cd1d22+Ed31d2+Fd31Gd22Hd41Kd21d2|(|C|+2|E|)d51+|F|d31+(BG+|H|+2|K|)d41+{2B+2|C|d1+2|E|d12G+2|K|}d21(4d21)ρ+2Bd1(4d21)(1ρ2)+{|C|d1(4d21)Bd21G(4d21)}(4d21)ρ2=F(d1,ρ). (2.18)

    Taking partial derivative of F(d1,ρ) with respect to ρ, we have

    F(d1,ρ)ρ={2B+2|C|d1+2|E|d12G+2|F|}d21(4d21)4Bd1(4d21)ρ+2{|C|d1(4d21)Bd21G(4d21)}(4d21)ρ

    Clearly F(d1,ρ)ρ>0, for 0<ρ<1 and 0<d1<2. Therefore, F(d1,ρ) is an increasing function of ρ. Also for a fixed d1[0,2], we have

    max0ρ1F(d1,ρ)=F(d1,ρ)=J(d1).

    Therefore by putting ρ=1 in (2.18) we have

    J(d1)={|C|+2|E|}d51+{BG+|H|+2|K|}d41+|F|d31+{2B+2|C|d1+2|E|d12G+2|K|}d21(4d21)+{|C|d1(4d21)Bd21G(4d21)}(4d21)

    Differentiating with respect to d1, we have

    J(d1)=5{|C|+2|E|}d41+4{BG+|H|+2|K|}d31+3|F|d21+4{BG+2|K|}d1(4d21)4{BG+2|K|}d31+6{|C|+|E|}d21(4d21)4{|C|+|E|}d41+|C|d21(4d21)24|C|d21(4d21)2Bd1(4d21)+2Bd314Gd1(4d21)

    Again differentiating with respect to d1 we have

    J(d1)=20{|C|+2|E|}d31+12{BG+|H|+2|K|}d21+6|F|d1+4{BG+2|K|}(4d21)8{BG+2|K|}d2112{BG+2|K|}d21+126{|C|+|E|}(4d21)126{|C|+|E|}d3116{|C|+|E|}d31+2|C|d1(4d21)24|C|d31(4d21)28|C|d1(4d21)+8|C|d312B(4d21)+4Bd21+6Bd214G(4d21)+8Gd21.

    For maximum value of J(d1), clearly J(d1)=0 for d1=0 and J(0)<0, so J(d1) has maximum value at d1=0 hence

    |ap+1ap+3a2p+2|[4|b|c(c+1)(1β)(p+1)(a+1)]2.

    3. Subordination Results for the Function Class SCλp(a,b,c,β)

    Given functions f,gA, f is said to subordinate to g denoted by fg, zU, if there exist a function wV, where

    V={wA:w(0)=0, |w(z)|<1, zU}

    such that f(z)=g(w(z)).

    Lemma 3.1. [18]. Let q(z) be convex in U and Re(μ1q(z)+μ2)>0, where μ1,μ2, zU. If h(z) is analytic in U with q(0)=h(0) and

    h(z)+zh(z)μ1h(z)+μ2q(z),zU,

    then h(z)q(z).

    Lemma 3.2. A function fSCλp(a,b,c,β), if and only if

    eiλ(12b+2bLp(a+1,c)f(z)Lp(a,c)f(z))q(z),zU,

    where

    q(z)=cosλ{2βcosλ+isinλcosλ}z1z. (3.1)

    for some real λ(|λ|<π2) and β>p.

    The proof of above lemma is similier to that of Theorem 1 in (22) so we omit the proof.

    Theorem 3.3. Let β>p, b Then

    SC0p(a+1,b,c,β)SC0p(a,b+1,c,β1),

    where

    β1=b(a+1)a(b+1)βbaa(b+1).

    Proof. Suppose fSC0p(a+1,b,c,β) and set

    12b+1+2b+1Lp(a+1,c)f(z)Lp(a,c)f(z)=h(z), (3.2)

    where h is analytic in U and h(0)=1.

    Logarithmic differentiation of (3.2), gives

    z(Lp(a+1,c)f(z))Lp(a+1,c)f(z)z(Lp(a,c)f(z))Lp(a,c)f(z)=(b+1)zh(z)(b+1){h(z)1}+2.

    Using the identity (1.6) we have

    12b+2bLp(a+2,c)f(z)Lp(a+1,c)f(z)=1aa+1b+1b+aa+1b+1bh(z)+2b(a+1)zh(z)h(z)1+2b+1. (3.3)

    Let

    1aa+1b+1b+aa+1b+1bh(z)=H(z),

    where H is analytic in U and H(0)=1. From (3.3) we have

    12b+2bLp(a+2,c)f(z)Lp(a+1,c)f(z)=H(z)+zH(z)μ1H(z)+μ2,

    where μ1=b(a+1)2 and μ2=2aabb2. Since f(z)VD0p(a+1,b,c,β), so from Lemma 3.2 we have

    H(z)+zH(z)μ1H(z)+μ2=12b+2bLp(a+2,c)f(z)Lp(a+1,c)f(z)q(z),

    where q is given by

    q(z)=1(2β1)z1z.

    Applying Lemma 3.1 we have

    H(z)q(z)

    or equivalently

    h(z)1(2β11)z1z,

    where

    β1=b(a+1)a(b+1)βbaa(b+1).

    This complete the proof.

    Theorem 3.4. Let  fSC0p(a,b,c,β). Then FSC0p(a,b,c,β), where F is Bernardi integral operator defined by

    F(z)=p+1zcz0tc1f(t)dt,c>1. (3.5)

    Proof. Suppose

    12b+2bLp(a+2,c)F(z)Lp(a+1,c)F(z)=h(z), (3.6)

    where h is analytic in U and h(0)=1.

    Now differentiating (3.5) we have

    (c+p)f(z)=cF(z)+zF(z)

    Applying the operator Lp(a,c) we have

    (c+p)Lp(a,c)f(z)=cLp(a,c)F(z)+Lp(a+1,c)F(z) (3.7)

    and

    (c+p)Lp(a+1,c)f(z)=cLp(a+1,c)F(z)+Lp(a+2,c)F(z) (3.8)

    From (3.7) and (3.8) we have

    Lp(a+1,c)f(z)Lp(a,c)f(z)=cLp(a+1,c)f(z)Lp(a,c)f(z)+Lp(a+2,c)f(z)Lp(a+1,c)f(z)Lp(a+1,c)f(z)Lp(a,c)f(z)c+Lp(a+1,c)f(z)Lp(a,c)f(z). (3.9)

    Logarithmic differentiation of (3.6), totgether with (1.6) and (3.9) we have

    12b+2bLp(a+1,c)f(z)Lp(a,c)f(z)=h(z)+zh(z)μ3h(z)+μ4,

    where μ3=ab2 and μ4=c+pab2

    Since fSC0p(a,b,c,β), so from Lemma 3.2 we have

    h(z)+zh(z)μ3h(z)+μ4=12b+2bLp(a+1,c)f(z)Lp(a,c)f(z)q(z),

    where q is given by (3.4)

    Applying Lemma 3.1 we have

    h(z)q(z),

    which implies that FSC0p(a,b,c,β).


    Conflict of Interest

    All authors declare no conflicts of interest in this paper.


    [1] M. Arif, K. I. Noor, M. Raza, Hankel determinant problem of a subclass of analytic fucntions, J.Ineq. Appl, 22 (2012), 1-7.
    [2] M. Arif, K. I. Noor, M. Raza, W. Haq, Some properties of a generalized class of analytic functions related with Janowski functions, Abst. Appl. Anal, (2012), 1-11.
    [3] B. C. Carlson, D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737-745.
    [4] K. K. Dixit, A. L. Pathak, A new class of analytic functions with positive coeffcients, Ind. J. Pure. Appl. Math., 34 (2003), 209-218.
    [5] U. Grenander, G. Szego, Toeplitz Forms and Their Applications, University of California Press, Berkeley, 1958.
    [6] F. R. Keogh, E. P. Merkes, A coeffcient inequality for certain class of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
    [7] J. Nishiwaki, S. Owa, Coeffcient inequalities for certain analytic functios, Int. J. Math. Math Sci, 29 (2002), 285-290.
    [8] K. I. Noor, On the Hankel determinants of close-to-convex univalent functions, Int. J. Math. Math. Sci, 3 (1980), 447-481.
    [9] K. I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Revue Roumaine de Mathématiques Pures et Appliquées, 28 (1983), 731-739.
    [10] J. W. Noonan, D. K. Thomas, On second Hankel determinant of a really mean p-valent functions, Trans. Amer. Math. Soc, (1976), 337-346.
    [11] M. Nunokawa, S. Owa, J. Nishiwaki, K. Kuroki, T. Hayatni, Differential subordination and argumental property, Comput. Math. Appl., 56 (2008), 2733-2736.
    [12] S. Owa, J. Nishiwaki, Coeffcient estimates for certain classes of analytic functions, J. Ineq. Pure Appl. Math, 3 (2002), 1-5.
    [13] S. Owa, H. M. Srivastava, Some generalized convolution properties associated with certain subclasses of analytic functions, J. Ineq. Pure Appl. Math, 3 (2002), 1-13.
    [14] Y. Polatoglu, M. Blocal, A. Sen, E. Yavuz, An investigation on a subclass of p-valently starlike functions in the unit disc, Turk. J. Math., 31 (2007), 221-228.
    [15] C. Pommerenke, On the coeffcients and Hankel determinants of univalent functions, J. Lond. Math. Soc., 1 (1966), 111-122.
    [16] C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 14 (1967), 108-112.
    [17] C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprechet, Gottingen, 1975.
    [18] H. Saitoh, A linear operator and its application of first order differential subordinations, Math. Japon., 44 (1996), 31-38.
    [19] H. Saitoh, On certain subclasses of analytic functions involving a linear operator, in: Proceedings of the Second International Workshop, Japan, (1996), 401-411.
    [20] H. M. Srivastava, S. Owa, Some characterizations and distortions theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators, and certain subclasses of analytic functions, Nagoya Math. J., 106 (1987), 1-28.
    [21] B. A. Uralegaddi, M. D. Ganigi, S. M. Sarangi, Univalent functions with positive coeffcients, Tamkang J. Math., 25 (1994), 225-230.
    [22] N. Uyanik, H. Shiraishi, S. Owa, Y. Polatoglu, Reciprocal classes of p-valently spirallike and pvalently Robertson functions, J. Ineq. Appl. , (2011), 1-10.
  • This article has been cited by:

    1. Wenzheng Hu, Jian Deng, Hankel determinants, Fekete-Szegö inequality, and estimates of initial coefficients for certain subclasses of analytic functions, 2024, 9, 2473-6988, 6445, 10.3934/math.2024314
    2. Mallikarjun G. Shrigan, Sidharam D. Bhourgunde , Girish D. Shelake , Some applications of a Wright distribution series on subclasses of univalent functions, 2024, 69, 02521938, 759, 10.24193/subbmath.2024.4.04
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4606) PDF downloads(1050) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog